2016-2017学年黑龙江省大庆实验中学高一12月月考数学(详细答案版)
黑龙江省大庆市实验中学实验一部2023-2024学年高一上学期期中数学试题(含答案解析)

B. 3, 2
C.3, 2
D. , 3 2,
2.命题“ x R , x 1 0 ”的否定是( )
A. x R , x 1 0
B. x R , x 1 0
C. x R , x 1 0
D. x R , x 1 0
3.函数
f
x
lnx
3 x2
的零点所在的区间是(
)
A. 1, 2
B. 2, e
黑龙江省大庆市实验中学实验一部 2023-2024 学年高一上学 期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 A x x 2 , B x x 3 ,则 ðR A B ( )
A. R
B.4, 20, 2
C. 2, 0
D. , 42,
8.已知函数 g x 为偶函数, h x 为奇函数,且满足 g x h x 2x .若对任意的
x
1,
1 2
,均有不等式
mg
x
2
h
x
2
0
恒成立,则实数
m
的最大值为(
)
A.1
B. 0
C. 9 10
D. 2 6
试卷第 1页,共 4页
二、多选题
C.若同时增加窗户面积和地板面积,且增加的地板面积是增加的窗户面积的 3 倍,
公寓采光效果一定会变差
D.若窗户面积和地板面积都增加原来的 a% ,其中 a 0,公寓采光效果不变
11.设正实数 x , y 满足 2x y 1,则( )
A. xy 的最大值为 1 8
B.
2 x
高一数学 第一学期第一次月考模拟卷(含答案)

高一数学第一学期月考模拟卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1,2,3P =-,集合{}12Q x x =-<<,则P Q = ()A.{}1 B.{}0,1 C.{}1,0,1- D.{}0,1,22.下列函数中,是同一函数的是()A.2y x =与y x x= B.y =2y =C.2x x y x+=与1y x =+ D.21y x =+与21y t =+3.函数()11f x x =++的定义域为()A.{|3x x ≥-且}1x ≠- B.{|3x x >-且}1x ≠- C.{}1|x x ≥- D.{}|3x x ≥-4.“0x >”是“20x x +>”的()A.充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件5.若21y x ax =-+有负值,则a 的取值范围是()A .2a >或2a <-B .22a -<<C .2a ≠±D .13a <<6.下列函数中,值域是(0,)+∞的是()A.21(0)y x x =+> B.2y x = C.y = D.2y x=7.若0,0a b >>,则“4a b +≤”是“4ab ≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.已知集合{}2|340A x x x =--<,{|()[(2)]0}B x x m x m =--+>,若A B =R ,则实数m 的取值范围是()A.(1,)-+∞ B.(,2)-∞ C.(1,2)- D.[1,2]-二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合22–234,4{}3M x x x x =+-+-,,若2M ∈,则满足条件的实数x 可能为()A .2B .–2C .–3D .110.设{}28150A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值可以为()A.15B.0C.3D.1311.有下面四个不等式,其中恒成立的有()A.2a b+ B.1(1)4a a -≤C.222a b c ab bc ca++≥++ D.2b a a b+≥12.下列命题正确的是()A.2,,2(1)0a b R a b ∃∈-++≤ B.a R x R ∀∈∃∈,,使得2>ax C.0ab ≠是220a b +≠的充要条件D.1a b >-≥,则11a b a b≥++三、填空题(本大题共4个小题,每小题5分,共20分)13.若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_______________.14.已知不等式2520ax x +->的解集是M .若2M ∈且3M ∉,求a 的取值范围_______________.15.设U 为全集,对集合X 、Y ,定义运算“*”,()U X Y X Y *=I ð.对于集合{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则()X Y Z **=_______________.16.已知函数()f x ,则函数()y f x =的定义域为______________;函数(21)y f x =+的定义域是___________________.四、解答题(本大题共6个小题,18题10分,19题~23题每题12分.共70分.)17.已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当1a =时,求,A B A B ;(2)设0a >,若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.18.已知命题p :[1,2]x ∀∈,20x a -≥,命题q :x R ∃∈,2220x ax a +-=+.若命题p 与q 都是真命题,求实数a 的取值范围.19.解关于x 的不等式2(23)60()ax a x a R -++>∈.20.已知函数()2()(2)4f x x a x a R =-++∈.(1)若关于x 的不等式()0f x <的解集为()1,b ,求a 和b 的值;(2)若对14x ∀≤≤,()1f x a ≥--恒成立,求实数a 的取值范围.21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为()m x .(1)设总造价y (元)表示为长度()m x 的函数;(2)当()m x 取何值时,总造价最低,并求出最低总造价.22.已知()f x 是二次函数,且满足(0)2f =,(1)()23f x f x x +-=+.(1)求函数()f x 的解析式;(2)设()()2h x f x tx =-,当[]1,3x ∈时,求函数()h x 的最小值.高一数学第一学期月考模拟卷答案一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1,2,3P =-,集合{}12Q x x =-<<,则P Q = ()A.{}1 B.{}0,1 C.{}1,0,1- D.{}0,1,2【解析】交集是两个集合的公共元素,故{}0,1P Q ⋂=.【答案】B 2.下列函数中,是同一函数的是()A.2y x =与y x x= B.y =2y =C.2x x y x+=与1y x =+ D.21y x =+与21y t =+【解析】【详解】A 中的函数22,0,0x x y x x x x ⎧≥==⎨-<⎩,故两个函数的对应法则不同,故A 中的两个函数不是相同的函数;B 中函数y =R ,而2y =的定义域为[)0,+∞,故两个函数不是相同的函数;C 中的函数2x xy x+=的定义域为()(),00,-∞⋃+∞,而1y x =+的定义域为R ,故两个函数不是相同的函数;D 中的函数定义域相同,对应法则相同,故两个函数为同一函数,综上,选D.3.函数()11f x x =++的定义域为()A.{|3x x ≥-且}1x ≠- B.{3xx -且}1x ≠- C.{}1|x x ≥- D.{}|3x x ≥-【解析】根据二次根式的性质结合分母不为0,求出函数的定义域即可.【详解】由题意得:3010x x +≥⎧⎨+≠⎩,解得:3x ≥-且1x ≠-.故选:A .4.“0x >”是“20x x +>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】设A ={x |x >0},B ={x |x <1-,或x >0},判断集合A ,B 的包含关系,根据“谁小谁充分,谁大谁必要”的原则,即可得到答案.【详解】设A ={x |x >0},B ={x |x <1-,或x >0},∵A ≠⊂B ,故“x >0”是“20x x +>”成立的充分不必要条件.故选A .5.若21y x ax =-+有负值,则a 的取值范围是()A .2a >或2a <-B .22a -<<C .2a ≠±D .13a <<【解析】【详解】因为21y x ax =-+有负值,所以必须满足二次函数的图象与x 轴有两个不同的交点,2()40Δa =-->,24a >,即2a >或2a <-,故选A .6.下列函数中,值域是(0,)+∞的是()A.21(0)y x x =+>B.2y x =C.y =D.2y x=【解析】A 、函数21y x =+在(0,)+∞上是增函数,∴函数的值域为(1,)+∞,故错;B 、函数20y x = ,函数的值域为[)0,+∞,故错;C 、函数y =的定义域为(,1)(1,)-∞-+∞ 0>0>,故函数的值域为(0,)+∞D 、函数2y x=的值域为{|0}y y ≠,故错;故选:C .【点睛】本题考查,二次函数,一次函数的值域,考查学生发现问题解决问题的能力,属于基础题.7.若0,0a b >>,则“4a b +≤”是“4ab ≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【答案】A8.已知集合{}2|340A x x x =--<,{|()[(2)]0}B x x m x m =--+>,若A B = R ,则实数m 的取值范围是()A.(1,)-+∞ B.(,2)-∞ C.(1,2)- D.[1,2]-【解析】【详解】集合{}2|340(1,4)A x x x =--<=-,集合{|()[(2)]0}(,)(2,)B x x m x m m m =--+>=-∞⋃++∞,若A B = R ,则124m m >-⎧⎨+<⎩,解得(1,2)m ∈-,故选C.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合22–234,4{}3M x x x x =+-+-,,若2M ∈,则满足条件的实数x 可能为()A .2B .–2C .–3D .1【答案】AC10.设{}28150A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值可以为()A.15B.0C.3D.13【解析】28150x x -+= 的两个根为3和5,{}3,5A \=,A B B = ,B A ∴⊆,B ∴=∅或{}3B =或{}5B =或{}3,5B =,当B =∅时,满足0a =即可,当{}3B =时,满足310a -=,13a ∴=,当{}5B =时,满足510a -=,15a ∴=,当{}3,5B =时,显然不符合条件,∴a 的值可以是110,,35.【答案】ABD11.有下面四个不等式,其中恒成立的有()A.2a b+ B.1(1)4a a -≤C.222a b c ab bc ca++≥++ D.2b a a b+≥【解析】A.当0,0a b <<时,2a b+不成立,故错误;B.a (1﹣a )22111244a a a ⎛⎫-+=--+≤ ⎪⎝⎭,故正确;C.2222222,2,2a b ab a c a cc b cb +≥+≥+≥,两边同时相加得a 2+b 2+c 2≥ab +bc +ca ,故正确D.当,a b 异号时,不成立,故错误;故选:BC 12.下列命题正确的是()A.2,,2(1)0a b R a b ∃∈-++≤ B.a R x R ∀∈∃∈,,使得2>ax C.0ab ≠是220a b +≠的充要条件 D.1a b >-≥,则11a ba b≥++【解析】A .当2,1a b ==-时,不等式成立,所以A 正确.B.当0a =时,0=02x ⋅<,不等式不成立,所以B 不正确.C.当0,0a b =≠时,220a b +≠成立,此时=0ab ,推不出0ab ≠.所以C 不正确.D.由(1)(1)11(1)(1)(1)(1)a b a b b a a b a b a b a b +-+--==++++++,因为1a b >-≥,则11a b a b≥++,所以D 正确.【答案】AD三、填空题(本大题共4个小题,每小题5分,共20分)13.若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_______________.,【解析】由题意得若命题“2R,(1)10x x a x ∃∈+-+<”是假命题,则命题“2R,(1)10x x a x ∀∈+-+≥,”是真命题,则需()2014013a a ∆≤⇒--≤⇒-≤≤,故本题正确答案为[]1,3-.14.已知不等式2520ax x +->的解集是M .若2M ∈且3M ∉,求a 的取值范围_______________.【解析】∵不等式2520ax x +->的解集是M ,2M ∈且3M ∉,∴4809130a a +>⎧⎨+≤⎩,解得–2a <139≤-15.设U 为全集,对集合X 、Y ,定义运算“*”,()U X Y X Y *=I ð.对于集合{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则()X Y Z **=___________.【解析】【详解】由于{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则{}3X Y =I ,由题中定义可得(){}1,2,4,5,6,7,8U X Y X Y *==I ð,则(){}2,4,7U X Y Z =I I ð,因此,()(){}1,3,5,6,8UUX Y Z X Y Z **==⎡⎤⎣⎦I I ,故答案为{}1,3,5,6,8.16.已知函数f (x ),则函数y =f (x )的定义域为_____;函数(21)y f x =+的定义域是_____.【答案】(1).[]1,4-(2).31,2⎡⎤-⎢⎣⎦【解析】(1)令2340x x -++≥,解得14x -≤≤,()f x ∴的定义域为[]1,4-;(2)()f x 的定义域为[]1,4-,∴在函数(21)f x +中,满足1214x -£+£,解得312x -≤≤,(21)f x ∴+的定义域为31,2⎡⎤-⎢⎥⎣⎦.故答案为:(1)[]1,4-(2)31,2⎡⎤-⎢⎣⎦.四、解答题(本大题共6个小题,18题10分,19题~23题每题12分.共70分.)17.已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当1a =时,求,A B A B ;(2)设0a >,若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.【答案】(1){}23A B x x ⋂=≤<,{}13A B x x ⋃=<≤;(2)12a <<【解析】(1)当1a =时,{}{}2|430|13A x x x x x =-+<=<<,集合B {|23}x x =≤≤,所以{|23},{|13}A B x x A B x x ⋂=≤<⋃=<≤.(2)因为0a >,所以{}|3A x a x a =<<,B {|23}x x =≤≤,因为“x A ∈”是“x B ∈”的必要不充分条件,所以B A ≠⊂,所以2,33,a a <⎧⎨>⎩解得:12a <<.18.已知命题p :任意x ∈[1,2],x 2-a ≥0,命题q :存在x ∈R ,x 2+2ax +2-a =0.若命题p 与q 都是真命题,求实数a 的取值范围.【答案】{a |a ≤-2,或a =1}.【解析】【详解】由命题p 为真,可得不等式x 2-a ≥0在x ∈[1,2]上恒成立.所以a ≤(x 2)min ,x ∈[1,2].所以a ≤1.若命题q 为真,则方程x 2+2ax +2-a =0有解.所以判别式Δ=4a 2-4(2-a )≥0.所以a ≥1或a ≤-2.又因为p ,q 都为真命题,所以112a a a ≤⎧⎨≥≤-⎩或所以a ≤-2或a =1.所以实数a 的取值范围是{a |a ≤-2,或a =1}.19.解关于x 的不等式ax 2-(2a +3)x +6>0(a ∈R ).【答案】详见解析【解析】【详解】原不等式可化为:(ax ﹣3)(x ﹣2)>0;当a =0时,化为:x <2;当a >0时,化为:(x 3a-)(x ﹣2)>0,①当3a >2,即0<a 32<时,解为:x 3a >或x <2;②当3a =2,即a 32=时,解为:x ≠2;③当3a <2,即a 32>时,解为:x >2或x 3a<,当a <0时,化为:(x 3a -)(x ﹣2)<0,解为:3a<x <2.综上所述:当a <0时,原不等式的解集为:(3a,2);当a =0时,原不等式的解集为:(﹣∞,2);当0<a 32<时,原不等式的解集为:(﹣∞,2)∪(3a,+∞);当a 32=时,原不等式的解集为:(﹣∞,2)∪(2,+∞);当a 32>时,原不等式的解集为:(﹣∞,3a)∪(2,+∞)20.已知函数()2()(2)4f x x a x a R =-++∈.(1)若关于x 的不等式()0f x <的解集为()1,b ,求a 和b 的值;(2)若对14x ∀≤≤,()1f x a ≥--恒成立,求实数a 的取值范围.【答案】(1)34a b =⎧⎨=⎩;(2)4a ≤【解析】【详解】解:(1)关于x 的不等式()0f x <的解集为()1,b ,即1x =,x b =为方程2(2)40x a x -++=的两解,所以124b a b +=+⎧⎨=⎩解得34a b =⎧⎨=⎩(2)对任意的[]1,4x ∈,()1f x a ≥--恒成立,即2(2)50x a x a -+++≥对任意的[]1,4x ∈恒成立,即()2251x x a x -+≥-恒成立,①当1x =时,不等式04≤恒成立,此时a R∈②当(]1,4x ∈时,2254111x x a x x x -+≤=-+--,因为14x <≤,所以013x <-≤,所以4141x x -+≥=-当且仅当411x x -=-时,即12x -=,即3x =时取等号,所以4a ≤,综上4a ≤21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为()m x .(1)设总造价y (元)表示为长度()m x 的函数;(2)当()m x 取何值时,总造价最低,并求出最低总造价.【答案】(1)20018400400y x x ⎛⎫=++ ⎪⎝⎭,(4,50)x ∈;(2)当x =时,总造价最低为18400+元.【解析】【详解】(1)由矩形的长为()m x ,则矩形的宽为200(m)x,则中间区域的长为()4m x -,宽为2004(m)x-,则定义域为(4,50)x ∈,则200200100(4)4200200(4)4y x x x x ⎡⎤⎡⎤⎛⎫⎛⎫=⨯--+-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,整理得20018400400y x x ⎛⎫=++⎪⎝⎭,(4,50)x ∈.(2)200x x +≥=,当且仅当200x x =时取等号,即(4,50)x =,所以当x =时,总造价最低为18400+元.22.已知()f x 是二次函数,且满足(0)2f =,(1)()23f x f x x +-=+.(1)求函数()f x 的解析式;(2)设()()2h x f x tx =-,当[]1,3x ∈时,求函数()h x 的最小值.【答案】(1)2()22f x x x =++(2)见解析.【解析】【详解】(1)设2()f x ax bx c =++,(0)2f c \==,(1)()23f x f x x +-=+ ,()()()221123a x b x c ax bx c x \++++-++=+,即223ax a b x ++=+,223a a b ì=ï\í+=ïî,1,2a b ∴==,2()22f x x x ∴=++;(2)由(1)知()[]2()222,1,3h x x t x x =+-+Î,()h x ∴的对称轴为1x t =-,当11t -≤,即2t ≤时,()h x 在[1,3]单调递增,()min ()152h x h t \==-,当113t <-<,即24t <<时,()h x 在()1,1t -递减,在()1,3t -递增,()2min ()121h x h t t t \=-=-++,当13t -³,即4t ≥时,()h x 在[1,3]单调递减,()min ()3176h x h t \==-,综上:当2t ≤时,min ()52h x t =-;当24t <<时,2min ()21h x t t =-++;当4t ≥时,min ()176h x t =-.。
高一上册数学第一次月考试卷及答案

高一上册数学第一次月考试卷及答案2016高一上册数学第一次月考试卷及答案为方便学生和老师进行查找,店铺为大家带来了2016高一上册数学第一次月考的试卷及答案,希望对大家有帮助,更多内容欢迎关注应届毕业生网!一、选择题(每小题5分,共60分)1. 在① ;② ;③ ; ④ ≠ 上述四个关系中,错误的个数是( )A. 1个B. 2个C. 3个D. 4个2. 已知全集,集合,,那么集合 ( )A. B. C. D.3. 已知集合,,则 ( )A. B. C. D.4. 函数在上为减函数,则实数的取值范围是( )A. B. C. D.5. 集合各有两个元素,中有一个元素,若集合同时满足:(1) ,(2) ,则满足条件的个数为 ( )A. B. C. D.6. 函数的递减区间是 ( )A. B.C. D.7. 设是两个非空集合,定义与的差集为 ,则等于( )A. B. C. D.8. 若函数的定义域是,则函数的定义域是 ( )A. B. C. D.9. 不等式的解集是空集,则实数的范围为( )A. B. C. D.10.若函数在上为增函数,则实数的取值范围为( )A. B. C. D.11. 设集合,,且都是集合的子集合,如果把叫做集合的“长度”,那么集合的“长度”的最小值是( )A. B. C. D.12. 对实数和,定义运算“ ”:设函数,,若函数的`图象与轴恰有两个公共点,则实数的取值范围是( )A. B.C. D.二、填空题(每小题5分,共20分)13.函数若,则 .14.已知集合,集合,若,则实数 = .15.某果园现有100棵果树,平均每一棵树结600个果子.根据经验估计,每多种一颗树,平均每棵树就会少结5个果子.设果园增种棵果树,果园果子总个数为个,则果园里增种棵果树,果子总个数最多.[来源:学科网ZXXK]16.定义在上的函数满足,则.三、解答题(共70分)17.(本题满分10分)设 , .(Ⅰ) 求的值,并写出集合的所有子集;(Ⅱ) 已知,设全集,求 .18.(本题满分12分)已知集合,(I)若,,求实数的取值范围;(II)若,,求实数的取值范围.19.(本题满分12分)已知函数 .(I)计算,,及的值;(II)由(I)的结果猜想一个普遍的结论,并加以证明;(III)求值: .20.(本题满分12分)已知函数 .(I)当时,求函数的值域;(II)若集合,求实数的取值范围.21.(本题满分12分)已知定义在区间上的函数满足,且当时, .(I)求的值;(II)判断的单调性并予以证明;(III)若解不等式 .22.(本题满分12分)已知函数,,对于,恒成立.(Ⅰ)求函数的解析式;(Ⅱ)设函数 .①证明:函数在区间在上是增函数;②是否存在正实数 ,当时函数的值域为 .若存在,求出的值,若不存在,则说明理由.高一数学试卷参考答案1-5:BCAAD 6-10:DBCBA 11-12:DB13. 0 14. 1 15. 10 16. 617.解:(1),解得,A=={2, }A的子集为,{2},{ },{2, } ---------------5分(2) ={2, ,-5}={ ,-5} ---------------10分18.解:解不等式,得,即(1)①当时,则,即,符合题意;②当时,则有解得:综上:(2)要使,则,所以有解得:19.解:(1)解得,,,(2)猜想:,证明如下。
高一数学第一次月考试卷及答案

高一数学第一次月考试卷及答案上学期第一次考试高一数学试卷一、选择题(每小题5分;共60分)1.在下列四个关系中,错误的个数是()A。
1个 B。
2个 C。
3个 D。
4个2.已知全集U=R;集合A={x|y=-x};B={y|y=1-x^2};那么集合(C U A)B=()A。
(-∞,0] B。
(0,1) C。
(0,1] D。
[0,1)3.已知集合M={x|x=2kπ,k∈Z};N={x|x=2kπ+π,k∈Z};则(M ∩ N)'=()A。
M' ∪ N' B。
M' ∩ N' C。
(M ∪ N)' D。
(M ∩ N)'4.函数f(x)=x+(3a+1)x+2a在(-∞,4)上为减函数;则实数a 的取值范围是()A。
a≤-3 B。
a≤3 C。
a≤5 D。
a=-3/55.集合A,B各有两个元素;AB中有一个元素;若集合C 同时满足:(1) C∩(AB)={}。
(2) C⊊(AB);则满足条件C的个数为()A。
1 B。
2 C。
3 D。
46.函数y=-|x-5||x|的递减区间是()A。
(5,+∞) B。
(-∞,0) U (5,+∞) C。
(-∞,0) U (0,5) D。
(-∞,0) U (0,5)7.设M,P是两个非空集合;定义M与P的差集为M-P={x|x∈M且x∉P};则(M- (M-P))'=()A。
P' B。
M' C。
M ∩ P D。
M ∪ P8.若函数y=f(x)的定义域是[0,2];则函数g(x)=f((x-1)/2)的定义域是()A。
[0,1) U (1,2] B。
[0,1) U (1,4] C。
[0,1) D。
(1,4]9.不等式(a-4)x+(a+2)x-1≥0的解集是空集;则实数a的范围为()A。
(-∞,-2) U (2,+∞) B。
(-∞,-2] U [2,+∞) C。
[-2,+∞) D。
[-2,+∞) - {2}10.已知函数f(x)=begin{cases}2b-1)x+b-1.& x>\frac{b-1}{2b-1}\\x+(2-b)x。
高一数学月考试题及答案

第一学期10月检测考试高一年级数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:第一大题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试卷上.一.选择题(共12小题,每小题5分,共60分。
在每小题列出的四个选项中,选出符合题目要求的一项)1. 已知{}{}|24,|3A x x B x x =-<<=>,则A B =( )A. {}|24x x -<<B. {}|3x x >C. {}|34x x <<D. {}|23x x -<<2.设集合A 和集合B 都是自然数集N ,映射:f A B →把集合A 中的元素n 映射到集合B 中的元素2n n +,则在映射f 下,B 中的元素20是A 中哪个元素对应过来的( )A.2B.3C.4D.53.满足关系{}1{1,2,3,4}B ⊆⊆的集合B 的个数 ( )A.5个B.6个C.7个D.8个4.方程260x px -+=的解集为M,方程260x x q +-=的解集为N,且M ∩N={2},那么p q +等于( )A.21B.8C.6D.75. 在下列四组函数中,()()f x g x 与表示同一函数的是 ( )A. ()()211,1x f x x g x x -=-=+ B. ()()()01,1f x g x x ==+C. ()(),f x x g x ==D. 4)(,22)(2-=-⋅+=x x g x x x f6. 函数13()f x x =-的定义域是( ) A. [)23, B.()3,+∞ C.[)()233,,+∞ D.()()233,,+∞7. 设0abc>,二次函数2()f x ax bx c=++的图象可能是8.设集合22{2,3,1},{,2,1}M a N a a a=+=++-且{2}M N =,则a值是( )A.1或-2B. 0或1C.0或-2D. 0或1或-29. 设全集,,则下列结论正确的是A.B. C. D.10. 已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是( )A.[1,+∞) B.[0,2] C.(-∞,2] D.[1,2]11. 若()f x是偶函数,且对任意x1,x2∈),0(+∞(x1≠x2),都有f(x2)-f(x1)x2-x1<0,则下列关系式中成立的是()ABC D12.已知函数,1()(32)2,1axf x xa x x⎧-≤-⎪=⎨⎪-+>-⎩,在(—∞,+∞)上为增函数,则实数a的取值范围是( ) A.30,2⎛⎤⎥⎝⎦B.30,2⎛⎫⎪⎝⎭C.31,2⎡⎫⎪⎢⎣⎭D.31,2⎡⎤⎢⎥⎣⎦第Ⅱ卷(共90分)二.填空题(本题共4个小题,每小题5分,共20分)13. 已知集合{(,)|2},{(,)|4},A x y x y N x y x y M N =+==-==则_____________.14. 已知3()4f x ax bx =+-,其中b a ,为常数,若4)3(=-f ,则)3(f =___________.15. 已知函数⎪⎩⎪⎨⎧≥<+=-323)2()(x x x f x f x ,则()=-2f .16.设奇函数()f x 在(0,)+∞上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为___________.三.解答题(本题共6个题,共70分.要求写出必要的文字说明和解题过程.)17.(本题满分10分)已知全集U R =,集合A=}023{2>+-x x x ,集合B=}13{≥-<x x x 或,求A ∪B ,A C U ,()U C A B .18.(本题满分12分) 设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果A B A =,求实数a 的取值范围.19.(本题满分12分)若函数)(x f 是定义在[-1,1]上的减函数,且0)12()1(<---a f a f ,求实数a 的取值范围.20. (本题满分12分)定义域为(-1,1) 证明:(1)函数f (x)是奇函数;(2)若1,a = 试判断并证明f (x)在(-1,1) 上的单调性.21.(本题满分12分)已知定义在R 上的奇函数()f x ,当0x <时2()21f x x x =++.(I )求函数()f x 的表达式;(II )请画出函数()f x 的图象;(Ⅲ)写出函数()f x 的单调区间.22.(本题满分12分)若二次函数满足(1)()2(0)1+-==且.f x f x x f(1) 求()f x的解析式;(2) 若在区间[-1,1]上不等式()2x mf x>+恒成立,求实数m的取值范围.高一年级数学参考答案一、CCDA CCDC BDAC二.13. {}(3,1)- 14.-12 15.11616.(1,0)(0,1)- 三.解答题 17.解:A={}21|}023{2><=>+-x x x x x x 或, 分2∴A ∪B=R , 分4A C U =}21{≤≤x x , 分6B A ⋂={}23|>-<x x x 或 8分 )(B AC U ⋂={}23|≤≤-x x 10分18.解:A={}4,0-,B B A =⋂ A B ⊆∴1o当B=ϕ时,0<∆ ∴[]0)1(4)1(222<--+a a 1-<∴a ---------------------------------------3分 2o当B={}0时,由韦达定理 22(1)0010a a -+=+⎧⎨-=⎩ 得a= -1----------------------------------------------6分 3o当B={}4-时,由韦达定理 ⎩⎨⎧=--=+-018)1(22a a 得到a 无解-------------------------------------------9分 4o当B={}4,0-时,由韦达定理 ⎩⎨⎧=--=+-014)1(22a a 得到a=1 综上所述a 1-≤或者a=1---------------------------------------------------------12分19.解:因为0)12()1(<---a f a f所以)12()1(-<-a f a f ………………………………1分又因为)(x f 是定义在[-1,1]上的减函数………………………………2分所以有⎪⎩⎪⎨⎧≤-≤-≤-≤-->-1121111121a a a a ……………………………………8分 解得⎪⎪⎩⎪⎪⎨⎧<≤≤≤≤321020a a a ……………………………………………………11分 所以320<≤a 即满足条件的a 的取值范围为20<≤a ……………………………………12分 112211(1)((1)(x x x x -<<+∴-()f x ∴-21.解:设20,0,()21x x f x x x >-<∴-=-+则又()f x 是定义在R 上的奇函数,故()()f x f x ∴-=-所以2()21,(0)f x x x x =-+->当0x =时,(0)0f = 所以()f x =2221,00,021,0x x x x x x x ⎧++<⎪=⎨⎪-+->⎩………………………………6分图象………………………10分 递增区间是(1,0),(0,1)-递减区间是(,1),(1,)-∞-+∞………………………………12分 22. 解:(1)设二次函数)0()(2≠++=a c bx ax x f ,则c x b x a x f ++++=+)1()1()1(2 11)0(=∴=c f ……………………………2分又x x f x f 2)()1(=-+∴-++++c x b x a )1()1(2x c bx ax 22=--即x b a ax 22=++⎩⎨⎧=+=∴022b a a 解得1,1-==b a …………………………4分 1)(2+-=∴x x x f …………………………6分(2)不等式()f x >2x+m 化为m x x >+-132在区间[-1,1]上不等式()f x >2x+m 恒成立∴在区间[-1,1]上不等式m x x >+-132恒成立………………………8分只需min 2)13(+-<x x m在区间[-1,1]上,函数45)23(1322--=+-=x x x y 是减函数 ∴ 1)13(min 2-=+-x x ………………………10分所以,1-<m .………………………12分谢谢观看! 欢迎您的下载,资料仅供参考,如有雷同纯属意外。
黑龙江大庆2016中考试题数学卷(解析版)

(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.
【答案】(1)①60,②30度,③图形见解析;(2)众数:3小时,中位数:3小时,平均数:2.92小时.
【解析】
(2)众数为:3小时;中位数为:3小时;平均数为: (小时).
考点:1统计图;2频率与频数;3众数;4中位数;5平均数.
A. B. C. D.
【答案】A.
【解析】
试题分析:取x= ,则x2= , ,∵ ,∴ .故选A.
考点:有理数的大小比较.
5.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )
A. B. C. D.
【答案】C.
【解析】
考点:列表法或树状图求概率.
11.函数 的自变量x的取:函数自变量范围.
12.若am=2,an=8,则am+n=.
【答案】16.
【解析】
试题分析:am+n=aman=2×8=16.
考点:同底数幂的乘法.
13.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是(填“甲”或“乙”).
考点:1三角形内角和定理;2角平分线性质.
15.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.
【答案】4n-3.
考点:探索规律.
16.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.
黑龙江省大庆实验中学2020学年高一数学上学期期中试卷(含解析)

黑龙江省大庆实验中学2020学年高一数学上学期期中试卷(含解析)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题1.已知集合,,则A. B. C . D .2.的值为A. B. C. D .3.下列函数中,是偶函数且在上为减函数的是A. B. C. D.4.下列说法正确的有①大庆实验中学所有优秀的学生可以构成集合;②;③集合与集合表示同一集合;④空集是任何集合的真子集.A .1个B .2个 C.3个 D.4个5.已知函数的一个零点在区间内,则实数的取值范围是A . B. C . D.6.已知,,,则A .B . C. D .7.已知函数是幂函数,且其图像与轴没有交点,则实数A.或 B . C . D .8.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为( )A .B .C . D.9.已知,,若,则实数的取值范围是( )A. B. C . D.10.已知在单调递减,则实数的取值范围是A. B . C. D.11.已知,且,若存在,,使得成立,则实数的取值范围是A .B . C. D.12.已知函数在上有且只有一个零点,则正实数的取值范围是A. B.C. D.二、填空题13.已知4510a b==,则12a b+=__________.14124cos4sin-=________.15.若关于的方程的两实根是,则_____.16.已知函数和同时满足以下两个条件:(1)对于任意实数,都有或;(2)总存在,使成立.则实数的取值范围是 __________.三、解答题17.(1)将写成的形式,其中;(2)写出与(1)中角终边相同的角的集合并写出在的角. 18.已知关于的不等式的解集为.(1)求集合;(2)若,求的最大值与最小值.19.已知函数是定义在的增函数,对任意的实数,都有,且.(1)求的值;(2)求的解集.20.已知.(1)求的值;(2)若为第二象限角,且角终边在上,求的值.21.已知二次函数对任意的实数都有成立,且.(1)求函数的解析式;(2)函数在上的最小值为,求实数的值.22.已知定义域为的函数是奇函数.(1)求的值;(2)当时,恒成立,求实数的取值范围.2020学年黑龙江省大庆实验中学高一上学期期中考试数学试题数学答案参考答案1.D【解析】【分析】题干可得到集合A,B再由函数补集的概念得到结果.【详解】集合,,则故答案为:D。
高一数学必修1质量检测试题卷

高一数学必修1质量检测试题(卷)命题:齐宗锁(石油中学) 审题:马晶(区教研室)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部份,第Ⅰ卷1至2页,第Ⅱ卷3至6页. 考试终止后,只将第Ⅱ卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共10小题,每题6分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.已知集合{1},{1,}A B m ==,假设A B A =,那么m =A .0.0或3 C .1.1或32.以下几个图形中,能够表示函数关系()y f x =图像的是.3.在同一坐标系中,函数3log y x =与13log y x =的图像之间的关系是A .关于y 轴对称B .关于原点对称C .关于x 轴对称D .关于直线y x =对称4.函数3()ln f x x x=-的零点所在的大致区间是 A .(1,2) B .(2,3)C .(3,4)D .(3,)+∞ 5.已知0.32a -=,0.22b -=,121log 3c =,那么a ,b ,c 的大小关系是 A .c b a >> B .c a b >> C. a b c >> D .b a c >> 6.已知幂函数22(1)()(33)mm f x m m x --=-+的图像不通过原点,那么m = A .3B .1或2C .2D .1 7.已知1)1(+=+x x f ,那么函数的解析式为 A.2)(x x f =B. )1(1)(2≥+=x x x fC. )1(22)(2≥+-=x x x x fD.)1(2)(2≥-=x x x x f8.一种放射性元素,每一年的衰减率是8%,那么a 千克的这种物质的半衰期(剩余 量为原先的一半所需的时刻)t 等于O O O O h v h v h v hv A .0.5lg 0.92 B .0.92lg 0.5 C .lg 0.5lg 0.92 D .lg 0.92lg 0.59.若是一个函数)(x f 知足:(1)概念域为,x x R ∈;(2)任意12,x x R ∈,假设120x x +=,那么12()()0f x f x +=;(3)任意x R ∈,假设0t >,总有)()(x f t x f >+.则)(x f 能够是A .y x =-B .3y x =C .x y 3=D .3log y x =10.一个高为H ,水量为V 的鱼缸的轴截面如图,其底部有一个洞,满缸水从洞中流出,若是水深为h 时水的体积为v ,那么函数()v f h =的大致图像是A. B. C. D.二、填空题:本大题共5小题,每题6分,共30分.把答案填在第Ⅱ卷对应横线上.11. 计算:233128log 27log 4++= .12.已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则 .13.设:f A B →是从集合A 到B 的映射,{}R y R x y x B A ∈∈==,),(,:(,)(,)f x y kx y b →+,假设B 中元素(6,2)在映射f 下的原像是(3,1),那么A 中元素(5,8)在f 下的像为 .14.已知3(10)()(5)(10)x x f x f x x -≥⎧=⎨+<⎩,则(6)f = . 15.已知关于x 的方程3log (1)0x k --=在区间[2,10]上有实数根,那么k 的取值范围是 .高一数学必修1质量检测试题(卷) 题号二 三 总分 总分人 16 17 18 19 得分 复核人第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每题6分,共30分. 把答案填在题中横线上.11. . 12. . 13. . 14. . 15. .三、解答题:本大题共4小题,每题15分,共60分.解许诺写出文字说明、证明进程或演算步骤.16.已知全集U R =,集合{|22}A x x =-<≤,{|1}B x x =>,{|}C x x c =≤.(1)求A B ,()U A B ,()U A B ; (2)假设AC ≠∅,求c 的取值范围.17.函数()22()x x f x x R -=-∈.(1)证明函数()f x 在R 上为单调增函数;(2)判定并证明函数()f x 的奇偶性.18.某市一家庭今年八月份、九月份和十月份天然气用量和支付费用如下表所示:该市天然气收费的方式是:天然气费=大体费+逾额费+保险费.假设每一个月用气量不超过最低额度(8)A A >立方米时,只付大体费16元和每户每一个月定额保险费)50(≤<C C 元;假设用气量超过A 立方米时,超过部份每立方米付B 元.(1)依照上面的表格求C B A ,,的值;(2)记用户十一月份用气量为x 立方米,求他应交的天然气费y (元).19.已知函数2()41f x ax x =--.(1)假设2a =,当[0,3]x ∈时,求函数()f x 的值域;(2)假设2a =,当(0,1)x ∈时,(1)(21)0f m f m ---<恒成立,求m 的取值范围;(3)假设a 为非负数,且函数()f x 是区间[0,3]上的单调函数,求a 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年黑龙江省大庆实验中学高一12月月考数学
一、选择题:共12题
1.=
A. B. C. D.
【答案】D
【解析】本题主要考查特殊角的三角函数值和诱导公式的应用.
,
故选D.
2.函数的最小正周期是
A. B. C. D.
【答案】A
【解析】本题主要考查正切函数的周期性.
根据正切函数的周期公式可得,故选A.
3.单位圆中弧长为1的弧所对圆心角的正弧度数是
A. B.1 C. D.不能确定
【答案】B
【解析】本题主要考查弧长公式的应用.
根据弧长公式可得,故选B.
4.函数的图像的一条对称轴方程是
A. B. C. D.
【答案】A
【解析】本题主要考查三角函数的对称性.
根据题意,令,解得,
当k=0时,,
故选A.
5.函数在区间上的最小值为
A. B.0 C. D.
【答案】C
【解析】本题主要考查三角函数的最值.考查数形结合的数学思想.
根据正弦函数的图象可知,当时,y=sin x单调递增,
故,,
故最小值为1,
故选C.
6.把函数的图像向左平移个单位长度,得到的图像所表示的函数是A. B. C. D.
【答案】B
【解析】本题主要三角函数图象的变换.
根据题意,把函数的图像向左平移个单位,
可得,
故选B.
7.下列关系中正确的是
A. B.
C. D.
【答案】B
【解析】本题主要考查利用三角函数的诱导公式和单调性比较大小.
,y=sin x在上单调递增,
.
即,
故选B.
8.若函数是奇函数,则的值可能是
A. B. C. D.
【答案】D
【解析】本题主要考查三角函数的奇偶性和三角函数的图象.
由于函数是奇函数,故,
当k=1时,,
故选D.
9.已知函数为定义在上的奇函数,且在上单调递增,若,则的取值范围是
A. B. C. D.
【答案】D
【解析】本题主要考查函数的奇偶性和单调性的应用.
为定义在上的奇函数,在上单调递增,
故在R上为增函数,
,
解得,
故选D.
10.使在区间至少出现2次最大值,则的最小值为
A. B. C. D.
【答案】A
【解析】本题主要考查正弦函数的图象.属基础题.
要使在区间至少出现2次最大值,
只需要满足,
,
,
的最小值为,
故选A.
11.已知函数是上的增函数,则的取值范围是A. B.
C. D.
【答案】D
【解析】本题考查函数的单调性,考查学生解决问题的能力,属中档题.
要使函数在R上为增函数,须有在上递增,在上递增,且,所以有,
解得,
故a的取值范围为[-3,-2].
故选D.
12.设是定义在上的偶函数, 对任意的,都有
,且当时, , 若在区间
内关于的方程恰有个不同的实数
根, 则实数的取值范围是
A. B. C. D.
【答案】D
【解析】本题主要考查函数零点的个数判断,利用函数和方程之间的关系
转化为两个函数的交点个数问题,利用分段函数的表达式,作出函数
的图象是解决本题的关键.综合性较强,难度较大.
由,即函数的周期为4,
∵当,时,,
∴若,,则,,
则,
∵是偶函数,
∴,即 ,
由得,
作出函数的图象如图:当时,
要使方程恰有3个不同的实数根,则等价为函数与有3个不同的交点,则满足,即,解得,
故选D.
-
二、填空题:共4题
13.已知角的终边过点,则= .
【答案】
【解析】本题主要考查任意角的三角函数的定义.
根据任意角三角函数的定义可得, 故答案为.
14.函数的定义域是 .
【答案】
【解析】本题主要考查函数的定义域.
要使得函数有意义,则,解得,
故答案为.
15.已知,为第三象限角,则= . 【答案】
【解析】此题考查了诱导公式的作用,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键.
,为第三象限角,
则原式
.
故答案为.
16.已知函数+,则+++
的值是 .
【答案】9
【解析】本题考查了函数求值问题,求出f(x)+f(-x)=2是解题的关键,本
题是一道基础题.
∵,
∴
,而,
故+++
,
故答案为9.
三、解答题:共6题
17.若函数是定义域为R的奇函数,且当x>0时,.
(1)求;
(2)当x<0时,求的解析式.
【答案】(1)
(2)当时因为奇函数,
所以即.
【解析】本题考查了函数的奇偶性问题,考查求函数的解析式,是一道基础题.
(1)根据函数是R上的奇函数,得到;
(2)设,则,求出函数在时的解析式即可.
18.已知,,
(1)求的值;
(2)求的值.
【答案】(1)原式化简:,平方得=
,因为,
所以.
因为,所以
(2)根据(1)中可得,,可得,
,
原式化简得
.
【解析】本题主要考查同角三角函数基本关系和三角函数诱导公式的应用.
(1)对已知条件利用诱导公式进行化简,结合同角三角函数基本关系,可得的值;
(2)根据(1)分别求出,可得,对原式利用诱导公式进行化简,利用同角三角函数基本关系化为关于的式子,再代入求值即可.
19.已知集合
(1)若,求实数的值;
(2)若,求实数的取值范围.
【答案】,
(1)由于,则,∴;
(2)或,
∵,∴或,
∴或,
∴的取值范围是或
【解析】本题主要考查集合的基本运算,以及利用集合关系求参数问题,考查学生分析问题的能力.
(1)先化简集合A,再根据,即可求得m的值.
(2)先求,再根据,即可求得m的取值范围.
20.已知函数的部分图象如图所示.
(1)求函数的解析式;
(2)求函数的定义域.
【答案】(1)由已知所以
(2)
所以定义域为
【解析】本题考查了由的部分图象确定解析式,以及对数函数的定义域问题,是基础题目.
(1)由函数的部分图象得出的值,即可写出的解析式;
(2)根据对数函数的定义,得出,再利用三角函数的图象与性质求出x的取值范围.
21.已知函数,图像上任意两条相邻对称轴间的距离为.
(1)求函数的单调区间,对称中心;
(2)若关于的方程在上有实数解,求实数的取值范围. 【答案】(1)
单调递增区间调递减区间
对称中心
(2)令则在上有解
令任取有因此在上单调递减,因此
所以m范围
【解析】本题主要考查三角函数解析式以及三角函数性质的考查,利用三角函数的图象和性质是解决本题的关键.
(1)根据图像上任意两条相邻对称轴间的距离为,可得,再根据余弦函数图象和性质求出单调区间和对称中心.
(2) 利用参数分离法转化为求三角函数的取值范围即可.
22.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数
.
(1)当时,求函数的值域,并判断对任意函数是否为有界函数,请说明理由;
(2)若对任意函数是以4为上界的有界函数,求实数的取值范围.
【答案】(1)令,,所以得值域为
所以存在使得,则为有界函数。
(2令,)若为以4为上界函数,则
必有可得,此时函数的对称轴,
当时,
因此若对任意函数是以4为上界的有界函数,实数的取值范围为.
【解析】本题主要考查情境题的解法,在解决中要通过给出的条件转化为
已有的知识和方法去解决,本题主要体现了定义法,恒成立和最值等问题,
综合性强,要求学生在学习中要有恒心和毅力.
(1)利用换元法得到函数的表示式,根据二次函数的性质得到函数的值域,从值域上观察不存在正数M,即函数在x∈(0,+∞)上不是有界函数
(2)根据函数f(x)在(-∞,0]上是以4为上界的函数,得到|1+a2x+4x|≤3,换元以后得到关于t的不等式,根据二次函数的性质写出对称轴,求出a的范围。