陶瓷基复合材料增韧技术的研究进展_何柏林
Lanxide陶瓷基复合材料的研究进展

复合材料为 Al2 O3/ Al 复合材料, 所采用的工艺为 敞开自由生长工艺。即将母体金属 Al Si Mg 合金 在氧化气氛下加热至 1150~ 1400 , 在坩埚内壁 涂以 Al2O3 和 CaSO4 混合粉作为阻生剂阻止其向 其他 5 个方向 生长, 而只向上单向生 长。如图 1
硅酸盐通报
图 1 lanxide 复合材料的生长工艺
2 2 合金成分对 Lanxide 复合材料 的制备工艺 的影响 金属合金的杂质成分对熔融金属直接氧化起 着重要的作用[ 12~ 14] 。在铝中添加 Si 和 Mg 能加 速氧化反应的进行, Si 和 Mg 同时添加比单独添 加更有效[ 7] 。 Sindel M 等[ 13] 认为在 高温 氧气氛 下, 当 Mg 的含 量低 于某 一值 ( 1100 时该 值为 0 4% ) 时, Al- Mg 合金液能与 Al2O3 保持平衡 , 一 旦高于该值便出现 MgAl2O4 。由于 Si 有与 Mg 形 成原子团的倾向, Si 的存在可降低 Mg 在熔体中 的活性 , 因而 Si 可使该临界值得以调节。Nagel berg A. S. [ 16] 认 为, Ai Si Mg 合金的 Mg 能在反应 表面形成一层 1 m 厚的 MgO 或 MgAl2O4 薄膜来 控制 通过 Mg 离子的 扩散保护 熔融金属 持续氧 化, 形成非保护性层而不至于使反应终止, 在产物 中的金属相内还有很少量的 Mg, 当合金中的 Mg 量增加 , 超过临界值可导致 MgAl2O4 形成于产物 内部, 其含量随母合金中 Mg 含量的增加而升高。 Si 作为催化剂在铝液中承担传递氧的作用 , 使氧 化反应更容易进行。 2 3 Al2 O3/ Al 复合材料的生长机制 Antolin S. 等[ 15] 用热重分析法测量了试样的
金属间化合物/Al2O3陶瓷基复合材料的研究进展

( 东交通大学 机 电工程学 院 , 西 华 江 南 昌 3 0 1 ) 3 0 3
摘 要 : z 。陶 瓷 的 脆 性 本 质 极 大 的 限 制 了 其 使 用 范 围 。在 提 高 氧 化 铝 陶 瓷 韧 性 的研 究 中 , Alo
利 用金 属 间化 舍物 作 为 第二相 来增韧 氧 化铝 陶瓷 已成 为研 究热 点之 一 。本 文从 金属 间化 合 物
ห้องสมุดไป่ตู้
化 等一 系列 的优异 性 能 , 目前 已广 泛 用 于 许 多 高 新
技 术领 域 , 是 其 陶瓷 材 料 的 脆 性 本 质 在 很 大 程 度 但 上 限制 了它 的发 展 和 应 用 。因 此 , 善 氧 化 铝 陶瓷 改 的韧性 成 为其 得到 进一 步 应用 的核 心 问题 。 近年来 , 提 高氧 化 铝 陶瓷韧 性 的研 究 中 , 用 在 利 金 属 间化合 物 作 为第二 相 来增 韧氧 化 铝 陶瓷 已成 为 研 究 热点 之一 , 取 得 了重 要 的研 究 成 果 。本 文 从 并
中 图 分 类 号 : 3 . ; F 2 . G6 3 8 T 1 5 4 文 献标 识 码 : A 文 章 编 号 :0 6 6 4 ( 0 8 0 — 0 3 一 O 10 — 53 20 )3 0 1 5 P RoG S N I E RE S I NT RM E AL I S A1O E T L C / 2 3 RAM I SB E oMP S TE C C AS D C o I S
化 合 物 ,即 Ni 、 Ni 、Ni 。 。 A1 A1 、Ni 。 和 A1 z A1 Ni 。 。 目前 , — 系金 属 间化 合 物 中研 究 最多 A1 Ⅲ Ni Al
金属间化合物_Al_2O_3陶瓷基复合材料的研究进展

第18卷第3期2008年6月 粉末冶金工业POWDER METALL URG Y IN D USTR Y Vol.18No.3J une 2008收稿日期:2007-10-17基金项目:江西省自然科学基金资助项目(550015)作者简介:何柏林(1962-),男(汉),河南安阳人,教授,硕士生导师,研究方向:结构可靠性,表面强化,复合材料的研究。
金属间化合物/Al 2O 3陶瓷基复合材料的研究进展何柏林,熊光耀,缪燕平(华东交通大学机电工程学院,江西 南昌 330013)摘 要:Al 2O 3陶瓷的脆性本质极大的限制了其使用范围。
在提高氧化铝陶瓷韧性的研究中,利用金属间化合物作为第二相来增韧氧化铝陶瓷已成为研究热点之一。
本文从金属间化合物的基本性质出发,综述了金属间化合物/Al 2O 3陶瓷基复合材料的最新进展,在此基础上总结了增韧机理,并提出了今后的发展方向。
关键词:金属间化合物;Al 2O 3陶瓷;复合材料;增韧机理中图分类号:G63318;TF12514 文献标识码:A 文章编号:1006-6543(2008)03-0031-05PRO GRESS IN IN TERM ETALL ICS/Al 2O 3CERAM ICS BASED COM POSITESHE Bo 2lin ,XIONG G u ang 2yao ,MIAO Yan 2ping(School of Mechanical &Electrical Engineering ,East China Jiaotong University ,Nanchang 330013,China )Abstract :The brittleness of alumina ceramic material limit s t he application of t he material re 2markably 1U sing intermetallics as t he secondary p hase is o ne of t he hot topics in t he field of toughening Al 2O 3ceramics 1Progress in Intermetallics/Al 2O 3ceramics based compo sites is re 2viewed 1Toughening mechanisms are summarized ,and t he develop ment tendency is also pres 2ented 1K ey w ords :intermetallics ;Al 2O 3Ceramics ;Composites ;toughening mechanism 氧化铝陶瓷具有耐高温、高耐磨、耐腐蚀、抗氧化等一系列的优异性能,目前已广泛用于许多高新技术领域,但是其陶瓷材料的脆性本质在很大程度上限制了它的发展和应用。
陶瓷基复合材料的强韧化研究进展

的作 用 , 而 抑制 了 主 裂 纹 的 快 速 扩 展 , 高 了 材 从 提 料 的韧性 , 种机 制 称作 微裂纹 增 韧 。 这
l3 残 余 压应 力增 韧 -
化 锆 的 相 变将 促 成 材 料 强 度 的提 高 以及 韧性 的 增
加 。氧化锆的这一特性使它在陶瓷材料中成为一种 非常有效的强化和增韧的添加物 ,由此构成了系列 的 氧化 错增 韧 陶瓷 。 氧化 锆增 韧 陶瓷 的出现 , 为改 善
( 山束省 山水 团经 济逞 行调 控 中心 , 南 2 0 0 ) ( 济 5 3 7 山束 大 学材 耳 学院工 程 陶瓷 蜜验 室 , 南 2 o 6 ) I 济 5 o 1
摘 要 增 韧补 强 对 于脆 性 陶瓷 材料 来 说是 一 个永 恒 的课题 , 料 科 学工 作 者 对 此 材
气 孔 和 夹 杂 物 等 极 细 微 的缺 陷都 很 敏 感 的脆 性 材 料 。在 改 善 和提 高 韧 性 的过 程 中 , 料 工作 者 们 向 材 陶 瓷基 体 内添 加 各 种 陶瓷 颗 粒 、 维 及 晶须 或 它 们 纤 的复合物 , 备 出各种陶瓷及复合材料 , 制 并且 成 功
生微 小的裂 纹 , 这是 材料 韧性 增 加 的表现 。因此 , 氧
纹, 这些尺寸很小的微裂纹在主裂纹尖端扩展过程
中会 导致 主裂 纹 分叉 或 改 变 方 向 , 加 了 主裂 纹 扩 增
展 过程 中 的有 效 表 面 能 , 外 裂 纹 尖 端 应力 集 中 区 此 内微 裂 纹 本 身 的 扩 展 也 起 着 分 散 主裂 纹 尖 端 能 量
地 应 用于 实 际工 业 生 产 中 , 得 了可 喜 的 成果 。本 取
文 综 述 陶 瓷基 复 合 材 料 的增 韧 补 强 的 方法 和 相 关
碳纤维增韧陶瓷基复合材料的研究进展

耐磨损、抗氧化和机械性能良好的优点,还具有抗热震、抗烧蚀、抗疲劳和抗蠕变等特性,在空天飞行器的热防护系统、航空发动机、火箭发动机、高性能制动以及先进核能等高温热结构部件上具有良好的应用前景。
本文介绍了该复合材料在碳纤维、陶瓷基体、复合材料制备方法及应用等方面的研究进展,以便更好地了解目前该研究领域在国内外的研究热点。
陶瓷基体;复合材料;制备方法1前言随着航空航天技术的不断发展,高超声速飞行器已经成为各军事强国倾力开发的重要突防手段。
高超声速飞行器是指飞行速度在5倍声速以上,即马赫数大于5的空天飞行器。
与传统的飞行器相比,高超声速飞行器可有效地减少防御响应时间,提高飞行器自身生存的能力,具有机动性能好、突防和反防御能力强、可以实现远程精确打击等特性[1]。
但是,随着飞行器飞行速度的不断提高,以及受飞行环境复杂多变等条件的影响,高超声速飞行器在进行高超声速飞行时会产生强烈的气动加热,使得飞行器表面某些部位的温度高达2000℃。
由于飞行器所面临的服役环境越来越恶劣,飞行器热防护系统对于飞行器的安全作用也就越来越重要。
所以,探索应用在高温环境下的热防护材料,对高超声速飞行器的发展具有重要意义。
目前,常用的耐高温材料有难熔金属及其合金、改性的抗烧蚀Cf/C 复合材料、超高温陶瓷及其复合材料等。
其中,碳纤维增韧陶瓷基复合材料因其高温强度高、韧性好以及耐腐蚀性能好等优点,成为目前最有发展前景的耐高温材料之一,在国防和航空航天等领域具有广阔的应用前景[2、4]。
2碳纤维的发展及应用苏纯兰1,周长灵2,徐鸿照2,杨芳红2,姜凯2,刘福田1(1.济南大学材料科学与工程学院,济南250022;2.山东工业陶瓷研究设计院有限公司,淄博255031)(1993~),女,山东济南,硕士研究生。
碳纤维是由有机纤维经过一系列热处理转化而成,是含碳量在90%以上的无机高性能纤维[5]。
碳纤维的力学性能优异,其抗拉强度是钢的4~5倍,比强度是钢的10倍,密度是钢的1/4。
连续纤维增韧陶瓷基复合材料的研究与应用

嬲年复合材料学术年会
O.4
035
03
025
0.2
0.1501
005
O
0204060
囤8几种典型高温材料在氯一乙炔焰中的烧佳失壁对比
圈9cvI.CMC-SiC复合材抖的显镟结构
A:纤维柬的拔出
图10sic/sic的斯口彤貌
8
歌箭渊C
B:纤维的拔出
连续纤维增韧陶瓷基复合材料的研究与应用
作者:张立同, 成来飞, 徐永东
作者单位:西北工业大学超高温复合材料实验室
被引用次数:1次
本文读者也读过(6条)
1.张立同.成来飞连续纤维增韧碳化硅陶瓷基复合材料[会议论文]-2002
2.张立同.成来飞连续纤维增韧陶瓷基复合材料可持续发展战略探讨[会议论文]-2006
3.张立同.成来飞.ZHANG Litong.CHENG Laifei连续纤维增韧陶瓷基复合材料可持续发展战略探讨[期刊论文]-复合材料学报2007,24(2)
4.张立同.成来飞.徐永东.刘永胜.曾庆丰.董宁.栾新刚自愈合碳化硅陶瓷基复合材料研究及应用进展[会议论文]-2006
5.陈照峰.张立同.成来飞.徐永东.肖鹏硅溶胶强化辅助制备C纤维增韧氧化铝结合莫来石陶瓷基复合材料[期刊论文]-航空材料学报2001,21(4)
6.肖鹏.徐永东.张立同.成来飞C布增韧SiC基复合材料制备新工艺及其微观结构[会议论文]-2000
本文链接:/Conference_5616656.aspx。
《粉末冶金材料科学与工程》2007年第12卷1-6期总目次

氧化铁 的制各方法及其应用…………………… ………………………………一 郑雅杰, 昭成(0 7 1() 1724 刘 ……一 ……… ………………………宋 畋 , 肖代红 , 华(0 7 1()2923 陈康 2 0 ,25:5 .6 )
锰在粉 末冶金材料 中的应用…………………………………一 罗述东 , 李祖德 , 赵慕岳 , 易健宏(0 7 1()3 1 2 1 20 ,26 :2 . 9 3
T. 1 i 金属间化合物脆性 问题 的研 究进展 A
… … … … … … … … … … … … … … … … … … … …
陶辉锦 , 彭
峰(0 7 l()2 52 0 2 0 ,24 :0 .1)
妍(0 7 1()2 2 5 2 0 ,24: 1-1) 1
咏, 刘祖铭, 何世文 , 占涛(0 7 l ( : 1.2) 李 2 0 ,24 2 62 0 )
热等静压 C -i r 靶材 的特性及微结构研 究 S
… … … … … … … … … … … … … … … …
张世贤 , 谭中雄 , 李世钦 , 黄信二 , 何信弘 , 薄慧 ̄(0 7 1()(7.8) 20 ,25: 72 3 2
维普资讯
第 l 卷 第 6期 2
V 11 b 2N o6 .
粉末冶金材料科学与工程
M a e i l ce c n g n e i go wd rM e a l r y t r a sS i n e a d En i e r n f Po e t l g u
材料 设计 中的结构层次理论及跨 尺度 关联问题 ………………………………一 陶辉 锦, 尹 纳米 SO 复合材料研 究进展… ………………………………………… i2 江 健(0 7 1()242 1 2 0 ,25:6 .71
陶瓷基复合材料力学行为研究进展

陶瓷基复合材料力学行为研究进展陶瓷基复合材料(Ceramic Matrix Composites, CMC)具有高比模量、高比强度以及良好的耐高温、耐腐蚀等特点,在航空航天领域具有广阔的发展前景。
根据增韧方式的不同,陶瓷基复合材料可以分为颗粒、晶须、层状和连续纤维增韧陶瓷基复合材料;根据复合材料基体不同,可以分为玻璃基、氧化物基和非氧化物基复合材料[1];其中连续纤维增韧非氧化物陶瓷基复合材料具有最为广阔的应用前景。
C/SiC和SiC/SiC复合材料由于具有稳定的高强度C、SiC纤维,又具有高模量和抗氧化性能优良的CVI-SiC基体,再加上纤维与基体之间的热解碳界面层可以保证材料在多重损伤机制下表现出良好的韧性破坏,使其成为了最典型的连续纤维增韧非氧化物陶瓷基复合材料的代表。
此材料体系主要应用于航空发动机燃烧室、导向叶片、尾喷管和航天发动机燃烧室、喷管等高温结构部件。
连续纤维增韧陶瓷基复合材料的制造方法主要包括化学气相渗透(Chemical Vapor Infiltration,CVI)、先驱体转化法、先驱体浸渍裂解(PIP)等。
在国内,西北工业大学利用CVI工艺,以T300编织物为预制体,成功制备出了2D、2.5D和3D C/SiC复合材料;其中,2D平纹编织C/SiC复合材料的轴向拉伸模量达到了100GPa,拉伸强度达到了350MPa[2]。
国防科技大学通过10周期的浸渍-裂解方法成功制备了三维编织碳纤维增强碳化硅复合材料[3]。
本文主要介绍采用CVI工艺制备的连续纤维增韧碳化硅陶瓷基复合材料(CMC-SiC)的性能表征与评价、性能预测、本构关系以及失效判据的研究进展情况。
陶瓷基复合材料的力学性能表征和评价根据材料自身及其工程应用的特点,陶瓷基复合材料力学性能表征及评价主要包括材料在常温、高温环境下的弹性性能、承载强度以及损伤失效进程的描述和判断。
1 基本力学性能表征依据结构使用设计需要,陶瓷基复合材料的基本力学性能表征参量包括弹性模量和强度两大类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19卷第4期2009年8月 粉末冶金工业POWDER MET ALLURGY INDUST RY Vo l .19No .4A ug .2009收稿日期:2009-03-23基金项目:江西省教育厅科研基金项目(编号:赣教技字[2007]426号)作者简介:何柏林(1962-),男(汉),河南安阳人,教授,硕士生导师,主要从事复合材料表面强化研究。
陶瓷基复合材料增韧技术的研究进展何柏林,孙 佳(华东交通大学载运工具与装备省部共建教育部重点实验室,江西南昌 330013)摘 要:本文综述了陶瓷基复合材料的纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷增韧补强的方法、增韧效果及相关的增韧机理。
最后,指出了陶瓷基复合材料增韧技术的研究现状和今后的发展方向。
关键词:陶瓷基复合材料;增韧机理;研究进展中图分类号:TQ174.1 文献标识码:A 文章编号:1006-6543(2009)04-0048-06PROGRESS IN CERAM IC M AT RIX COM POSITE TOUGH ENING TECH NOLOGYHE Bo -lin ,SUN Jia(K ey L abo ra to ry of Convey ance and Equipment ,M inistry o f Education ,East China JiaotongU niver sity ,Nanchang ,Jiang xi 330013,China )Abstract :Several methods of toughening ce ramic co mposite such as fibe r to ug hening ,w hisker toughening ,phase transform ation to ug hening ,pa rticle toughening ,ceramic nano -composites toughening and self -toughening are review ed .The related toughening effects and mechanisms are also discussed .Finally ,the research status and direction are pointed out .Key words :ceramic m atrix composite ;toughening m echanism ;research status 现代陶瓷材料具有耐高温、硬度高、耐磨损、而腐蚀及相对密度轻等许多优良的性能。
但它同时也具有致命的弱点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。
因此,陶瓷材料的强韧化问题便成了研究的一个重点问题。
陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面需要吸收表面能以外,几乎没有其它吸收能量的机制,这就是陶瓷脆性的本质原因。
人们经过多年努力,已探索出若干韧化陶瓷的途径,包括纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷等。
这些增韧方法的实施,使陶瓷材料的韧性得到了较大的提高,使陶瓷材料在高温结构材料领域显示出强劲的竞争潜力。
1 陶瓷基复合材料增韧技术1.1 纤维增韧为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。
任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。
对于脆性基体和纤维来说,允许的变形很小,因此变形吸收的断裂能也很少。
为了提高这类材料的吸能,只能是增加断裂表面,即增加裂纹的扩展路径。
纤维的引入不仅提高了陶瓷材料的韧性,更重要的是使陶瓷材料的断裂行为发生了根本性变化,由原来的脆性断裂变成了非脆性断裂。
纤维增强陶瓷基复合材料的增韧机制包括基体预压缩应力、裂纹扩展受阻、纤维拔出、纤维桥联、裂纹偏转、相变增韧等[1,2]。
能用于增强陶瓷基复合材料的纤维种类较多,包括氧化铝系列(包括莫来石)、碳化硅系列、氮化硅系列、碳纤维等,除了上述系列纤维外,目前正在开发的还有BN、TiC、B4C等复相纤维[3]。
韩桂芳等[4]用浆料法结合真空浸渗工艺,制备了二维(2D)石英纤维增强多孔Si3N4-SiO2基复合材料,增加浸渗次数虽不能有效提高复合材料强度,但却使裂纹偏转因子变小,断裂模式由韧性断裂向脆性断裂转变,断口形貌由纤维成束拔出变为多级拔出。
尹洪峰等[5]利用LPCV I技术制备了三维连续纤维增韧碳化硅基复合材料,实验表明当复合材料界面相厚度为0.19μm时,体积密度为2.01~2.05g/cm3时,用碳纤维T300增韧后的复合材料的弯曲强度为459M Pa,断裂韧性为20.0MPa·m1/2,断裂功为25170J·m-2。
国外学者[6,7]也研究了纤维增强陶瓷材料,并显著的提高了其断裂韧性。
纤维拔出是纤维复合材料的主要增韧机制,通过纤维拔出过程的摩擦耗能,使复合材料的断裂功增大,纤维拔出过程的耗能取决于纤维拔出长度和脱粘面的滑移阻力,滑移阻力过大,纤维拔出长度较短,增韧效果不好,如果滑移阻力过小,尽管纤维拔出较长,但摩擦做功较小,增韧效果也不好,反而强度较低。
纤维拔出长度取决于纤维强度分布、界面滑移阻力。
因此,在构组纤维增韧陶瓷基复合材料时,应该考虑:纤维的强度和模量高于基体,同时要求纤维强度具有一定的Weibull分布;纤维与基体之间具有良好的化学相容性和物理性能匹配;界面结合强度适中,既能保证载荷传递,又能在裂纹扩展中适当解离,又能有较长的纤维拔出,达到理想的增韧效果。
1.2 晶须增韧陶瓷晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体[8]。
陶瓷晶须目前常用的有SiC晶须,Si3N4晶须和A l2O3晶须。
基体常用的有ZrO2,Si3N4,SiO2,Al2O3和莫来石等。
黄政人等[9]采用30%(体积分数)β-SiC晶须增强莫来石,在SPS烧结条件下材料强度比热压高10%左右,为570MPa,断裂韧性为4.5M Pa·m1/2比纯莫来石提高100%以上。
王双喜等[10]研究发现,在2%(摩尔分数)Y2O3-超细料中加入30%(体积分数)的SiC晶须,可以细化2Y-ZrO2材料的晶粒,并且使材料的断裂方式由沿晶断裂为主变为穿晶断裂为主的混合断裂,从而显著提高了复合材料的刚度和韧性。
晶须增韧陶瓷基复合材料的主要增韧机制包括晶须拔出、裂纹偏转、晶须桥联、其增韧机理与纤维增韧陶瓷基复合材料相类似。
晶须增韧效果不随温度而变化,因此,晶须增韧被认为是高温结构陶瓷复合材料的主要增韧方式。
晶须增韧陶瓷复合材料主要有2种方法[11]:(1)外加晶须法:即通过晶须分散、晶须与基体混合、成形、再经煅烧制得增韧陶瓷。
如加入到氧化物、碳化物、氮化物等基体中得到增韧陶瓷复合材料,此法目前较为普遍;(2)原位生长晶须法:将陶瓷基体粉末和晶须生长助剂等直接混合成形,在一定的条件下原位合成晶须,同时制备出含有该晶须的陶瓷复合材料,这种方法尚未成熟,有待进一步探索。
晶须增韧陶瓷基复合材料与很多因素有关,首先晶须与基体应选择得当,二者的物理、化学相容性要匹配才能使陶瓷复合材料在韧性上得到提高。
其次晶须的含量存在临界含量和最佳含量。
Be-cher[12]研究表明:复合材料的断裂韧性随晶须含量Vf(Vf是晶须的体积含量)的增加而增大。
但是,随着晶须含量的增加,由于晶须的桥联作用,使复合材料的烧结致密化困难。
邓建新等[13]从Al2O3与SiCw热膨胀失配分析入手,得出了晶须的极限含量为43%(体积分数),通过实验证明:当晶须含量为20%~30%时,Al2O3-SiCw陶瓷材料能获得最佳增韧补强效果。
再者,加入陶瓷基体中的晶须必须有一定的长径比,这样才能通过剪切作用把载荷由基体传递到晶须上,其临界长径比经验值为15~30[14]。
宋桂明等[15]系统研究了晶须的长度、半径和长径比对材料韧性的影响,研究表明:晶须尺寸对增韧影响仅用长径比来表征是不够的,应采用长度、半径和长径比中的2个指标来衡量。
晶须在基体中的排布方向对增韧效果影响很大。
Wang Chang an[16]等对SiC晶须的氮化硅基复合材料中晶须取向的研究表明,当晶须方向基本一致且晶须与基体界面弱连接时,此方向中的断裂韧性具有极大值,抗弯强度和断裂韧性分别为1038MPa和10.7M Pa·m1/2。
此外,抗弯强度和断裂韧性还与晶须的强度、界面的性质等有关。
·49·第4期 何柏林等:陶瓷基复合材料增韧技术的研究进展1.3 相变增韧相变增韧ZrO2陶瓷是一种极有发展前途的新型结构陶瓷,其主要是利用ZrO2相变特性来提高陶瓷材料的断裂韧性和抗弯强度,使其具有优良的力学性能,低的导热系数和良好的抗热震性。
它还可以用来显著提高脆性材料的韧性和强度,是复合材料和复合陶瓷中重要的增韧剂。
近十年来,具有各种性能的ZrO2陶瓷和以ZrO2为相变增韧物质的复合陶瓷迅速发展,在工业和科学技术的许多领域获得了日益广泛的应用[17]。
ZrO2在常压及不同的温度下,具有立方(c-ZrO2)、四方(t-ZrO2)及单斜(m-ZrO2)等3种不同的晶体结构[18]。
当ZrO2从高温冷却到室温时,要经历c※t※m 的同质异构转变,其中t※m会产生3%~5%的体积膨胀和7%~8%的剪切应变,由于ZrO2自身马氏体转变的这个特点,引起显著裂纹韧化和残余应力韧化,可使韧性得到显著提高。
ZrO2的增韧机制一般认为有应力诱导相变增韧、微裂纹增韧、压缩表面韧化[19]。
在实际材料中究竟何种增韧机制起主导作用,在很大程度上取决于四方相向单斜相马氏体相变的程度高低及相变在材料中发生的部位。
(1)应力诱导相变ZrO2在室温下为单斜晶系,温度达到1170℃时转化为亚稳态四方晶型,在应力作用下可诱发相变重新回到单斜晶,此时伴随体积膨胀,导致微裂纹闭合,从而韧化陶瓷,或者说在裂纹尖端应力场的作用下ZrO2粒子发生四方-单斜相变而吸收了能量,即外力做了功,从而提高了断裂韧性。
这就是应力诱导相变。
(2)微裂纹增韧不同基体中室温下ZrO2颗粒保持四方相的临界尺寸不同,当某颗粒大于临界尺寸时,室温四方相已转变为单斜相并在其周围的基体中形成微裂纹。
当主裂纹扩展到ZrO2颗粒时,这种均匀分布的微裂纹可以缓和主裂纹尖端的应力集中或使主裂纹分叉而吸收能量,这就是ZrO2的微裂纹增韧。
(3)压缩表面韧化研磨相变韧化ZrO2的表面,可以使表面层的四方相ZrO2颗粒转变为单斜相,并产生体积膨胀,形成压缩表面层,从而强化陶瓷。