电气工程及其自动化专业英语课程论文完整版
电气工程及其自动化专业_外文文献_英文文献_外文翻译_plc方面.

1、外文原文A: Fundamentals of Single-chip MicrocomputerTh e si ng le -c hi p m ic ro co mp ut er i s t he c ul mi na ti on of both t h e de ve lo pm en t of the dig it al com pu te r an d th e in te gr at ed c i rc ui t arg ua bl y t h e tow m os t s ig ni f ic an t i nv en ti on s o f t he 20th c e nt ur y [1].Th es e tow type s of arch it ec tu re are foun d in sin g le -ch i p m i cr oc om pu te r. Som e empl oy the spli t prog ra m/da ta me mo ry of the H a rv ar d ar ch it ect u re , sh ow n in Fig.3-5A -1, oth ers fo ll ow the p h il os op hy , wi del y ada pt ed for gen er al -p ur po se com pu te rs and m i cr op ro ce ss o r s, o f ma ki ng no log i ca l di st in ct ion be tw ee n p r og ra m and dat a me mo ry as in the Pr in ce to n arch ite c tu re , show n i n Fig.3-5A-2.In gen er al ter ms a sin gl e -chi p mic ro co mp ut er i sc h ar ac te ri zed b y t he i nc or po ra ti on of a ll t he un it s of a co mp uter i n to a sin gl e d ev i ce , as sho wn inFi g3-5A -3.Fig.3-5A-1 A Harvard typeFig.3-5A-2. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM.R OM is usua ll y for the pe rm an ent,n o n-vo la ti le stor a ge of an app lic a ti on s pr og ra m .M an ym i cr oc om pu te rs and m are inte nd e d for high -v ol um e ap pl ic at ions a n d he nc e t h e eco n om ic al man uf act u re of th e de vic e s re qu ir es t h at t he cont en t s o f t he prog ra m me m or y be co mm it t ed perm a ne ntly d u ri ng the man ufa c tu re of ch ip s .Cl ea rl y, thi s im pl ie s a r i go ro us app ro ach to ROM cod e deve l op me nt sin ce cha ng es can not b e mad e afte r manu f a c tu re .Th is dev e lo pm en t proc ess may invo lv e e m ul at io n us in g aso ph is ti ca te d de ve lo pm en t sy ste m wit h a h a rd wa re emu la tio n cap ab il it y as w el l as the use o f po we rf ul s o ft wa re too ls.So me man uf act u re rs pro vi de add it io na l RO M opt i on s by i n cl ud in g in their ra n ge dev ic es wit h (or int en de d fo r use wit h u s er pro gr am ma ble me mo ry. Th e sim p le st of th es e is usu al ly d e vi ce whi ch can op er at e in a micro p ro ce ssor mod e by usi ng som e o f the inp ut /outp u t li ne s as an ad dr es s an d da ta b us fora c ce ss in g ex te rna l mem or y. Thi s t y pe of de vi ce can beh av ef u nc ti on al ly as th e sing le chip mi cr oc om pu te r from whi ch it is d e ri ve d al be it wit h re st ri ct ed I/O and a mod if ied ex te rn al c i rc ui t. The use of thes e d ev ic es is com mo n eve n in prod uc ti on c i rc ui ts wher e t he vo lu me does no tj us ti f y t h e d ev el o pm en t c osts o f c us to m o n -ch i p R OM [2];t he re c a n s ti ll bea s ignif i ca nt saving i n I /O and o th er c h ip s com pa re d to a conv en ti on al mi c ro pr oc es sor b a se d ci rc ui t. Mor e ex ac t re pl ace m en t fo r RO M dev i ce s ca n be o b ta in ed in th e fo rm of va ri an ts w it h 'p ig gy -b ack 'E P RO M(Er as ab le pro gr am ma bl e ROM s oc ke ts or dev ic e s with EPROM i n st ea d o f RO M 。
电气工程及其自动化专业英语作文范文

电气工程及其自动化专业英语作文范文Electrical Engineering and Automation: An Integral Part of Modern SocietyIntroductionElectrical Engineering and Automation, a discipline that has evolved significantly over the past few decades, has become an integral part of modern society. Its widespread applications in industry, agriculture, national defense, and various other fields have propelled it to a pivotal position in the global economy.Historical PerspectiveThe field of Electrical Engineering and Automation was first established approximately forty years ago. As a relatively new discipline, it has quickly grown to encompass a wide range of subfields and applications. From the design of switches for aerospace aircraft to the development of complex automated systems, its influence is pervasive.Core ComponentsThe core of Electrical Engineering and Automation lies in its ability to integrate electricity, machines, and intelligent systems to automate various tasks. This integration enables efficiency, precision, and safety in a wide range of applications.•Electricity and Machines: Electricity provides the power that drives machines and systems. Understanding the behavior ofelectrical circuits, voltage sources, current sources, andvarious network elements is crucial for the effective designand operation of automated systems.•Automation: Automation refers to the use of technology to control and monitor processes and machines with minimal humanintervention. It relies on sensors, actuators, and intelligentcontrollers to achieve desired outcomes.Challenges and OpportunitiesWhile Electrical Engineering and Automation offers immense opportunities for growth and development, it also poses significantchallenges. The complexity of modern systems requires a high level of technical knowledge and expertise. Additionally, the rapid pace of technological advancement requires constant updating of skills and knowledge.However, these challenges also present opportunities for innovation and growth. As new technologies emerge, there is a need for engineers and technicians who can understand and apply them effectively. This creates opportunities for those with a passion for learning and a willingness to adapt to new challenges.ConclusionIn conclusion, Electrical Engineering and Automation is a dynamic and exciting field that offers immense opportunities for growth and development. Its applications are pervasive, and its influence on society is profound. As we continue to push the boundaries of technology, Electrical Engineering and Automation will play an increasingly important role in shaping our future.。
3-电气工程及其自动化专业 外文文献 英文文献 外文翻译 plc方面

1、外文原文(复印件)A: Fundamentals of Single-chip MicrocomputerTh e si ng le-ch i p mi cr oc om pu ter is t he c ul mi nat i on o f bo th t h e d ev el op me nt o f th e d ig it al com p ut er an d t he int e gr at ed ci rc ui ta r gu ab ly th e t ow m os t s i gn if ic ant i nv en ti on s o f t h e 20t h c en tu ry[1].Th es e to w typ e s of a rc hi te ctu r e ar e fo un d i n s in gl e-ch ip m i cr oc om pu te r. So m e em pl oy t he sp l it p ro gr am/d ata me mo ry o f th e H a rv ar d ar ch it ect u re, sh ow n in Fi g.3-5A-1, o th ers fo ll ow t hep h il os op hy, wi del y a da pt ed f or ge n er al-p ur po se co m pu te rs a ndm i cr op ro ce ss or s, of ma ki ng no lo gi c al di st in ct io n be tw ee n p ro gr am a n d da ta m em or y a s i n th e Pr in cet o n ar ch it ec tu re,sh ow n inF i g.3-5A-2.In g en er al te r ms a s in gl e-chi p m ic ro co mp ut er i sc h ar ac te ri zed b y the i nc or po ra tio n of al l t he uni t s o f a co mp ut er i n to a s in gl e dev i ce, as s ho wn in Fi g3-5A-3.Fig.3-5A-1 A Harvard typeFig.3-5A-2. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).R OM i s u su al ly f or th e p er ma ne nt,n o n-vo la ti le s tor a ge o f an a pp lic a ti on s pr og ra m .M an ym i cr oc om pu te rs an d mi cr oc on tr ol le r s a re in t en de d fo r h ig h-v ol ume a p pl ic at io ns a nd h en ce t he e co nom i ca l ma nu fa ct ure of t he d ev ic es r e qu ir es t ha t the co nt en ts o f the pr og ra m me mo ry b e co mm it te dp e rm an en tl y d ur in g th e m an uf ac tu re o f c hi ps . Cl ear l y, th is im pl ie sa ri g or ou s a pp roa c h t o R OM co de d e ve lo pm en t s in ce c ha ng es ca nn otb e m ad e af te r man u fa ct ur e .T hi s d e ve lo pm en t pr oce s s ma y in vo lv e e m ul at io n us in g a s op hi st ic at ed deve lo pm en t sy st em w i th a ha rd wa re e m ul at io n ca pa bil i ty a s we ll a s th e u se of po we rf ul so ft wa re t oo ls.So me m an uf act u re rs p ro vi de ad d it io na l RO M opt i on s byi n cl ud in g i n th ei r ra ng e de vi ce s wi th (or i nt en de d fo r us e wi th) u s er pr og ra mm ab le m em or y. Th e s im p le st of th es e i s us ua ll y d ev ice w h ic h ca n op er ate in a m ic ro pr oce s so r mo de b y usi n g so me o f th e i n pu t/ou tp ut li ne s as a n ad dr es s an d da ta b us f or acc e ss in g e x t er na l m e mo ry. T hi s t ype o f d ev ic e c an b e ha ve fu nc ti on al l y a s t he si ng le c h ip mi cr oc om pu te r fr om wh ic h i t i s de ri ve d a lb eit w it h r es tr ic ted I/O an d a mo di fie d e xt er na l ci rcu i t. T he u se o f t h es e RO Ml es sd e vi ce s is c om mo n e ve n in p ro du ct io n c ir cu it s wh er e t h e v ol um e do es n o t ju st if y th e d e ve lo pm en t co sts of c us to m on-ch i p RO M[2];t he re c a n st il l b e a si g ni fi ca nt s a vi ng in I/O a nd ot he r c hi ps co mp ar ed t o a c on ve nt io nal mi cr op ro ce ss or b as ed c ir cu it. M o re e xa ctr e pl ac em en t fo r RO M d ev ic es c an b e o bt ai ne d in t he f o rm o f va ri an ts w i th 'pi gg y-ba ck'EP RO M(Er as ab le p ro gr am ma bl e ROM)s oc ke ts o rd e vi ce s w it h EP ROM i ns te ad o f R OM 。
(完整word版)电气工程及其自动化专业外语作文

(完整word版)电气工程及其自动化专业外语作文A s a student, you will learn to apply related subjects such as computer technology,industrial electronics, instrumentation,electrical machines, robotics,power electronics,and automated control systems.作为一名学生,你将学会运用相关学科,如计算机技术,工业电子,仪器仪表,电器机械,机器人技术,电力电子和自动化控制系统。
Y ou will be able to understand written and oral instructions,as well as design, install, test,modify, troubleshoot,and repair electrical systems.您将能够理解书面和口头说明,以及设计,安装,测试,修改,故障排除和修复电力系统.U pon graduation,students of the Electrical Engineering Technology –Process Automation program can approach industrial electrical and electronic systems from the viewpoint of analysis,technical evaluation, design, and development。
The six—semester program concentrates on the in-depth study of electrical and electronic principles as they apply to automated systems using programmable logic controllers。
电气自动化英文短篇作文

电气自动化英文短篇作文1. Electrical automation is a field that involves using electrical and electronic devices to control and automate industrial processes. It is a crucial aspect of modern manufacturing and production, as it allows for greater efficiency and precision in the production process.Electrical automation systems can be used to control everything from simple machines to complex assembly lines, and they are essential for ensuring that products are manufactured to the highest standards of quality and safety.2. One of the key benefits of electrical automation is that it allows for greater control over the production process. By using sensors and feedback mechanisms,electrical automation systems can monitor the performanceof machines and adjust their settings in real-time to optimize performance. This helps to reduce waste, improve productivity, and minimize downtime, all of which arecritical factors in modern manufacturing.3. Another important aspect of electrical automation is its ability to improve safety in the workplace. By automating dangerous or hazardous processes, electrical automation systems can reduce the risk of accidents and injuries. They can also be used to monitor and control environmental factors such as temperature, humidity, andair quality, which can have a significant impact on worker health and safety.4. In addition to improving efficiency and safety, electrical automation can also help to reduce costs in the manufacturing process. By automating repetitive tasks and reducing the need for manual labor, companies can save money on labor costs and increase their overall profitability. They can also reduce the amount of waste generated by the production process, which can have a positive impact on the environment.5. Overall, electrical automation is a critical aspect of modern manufacturing and production. It allows for greater efficiency, precision, and safety in the production process, and can help companies to reduce costs andincrease profitability. As technology continues to advance, we can expect to see even more sophisticated electrical automation systems that will further revolutionize the manufacturing industry.。
电气自动化英文论文

Power Supply and Distribution SystemABSTRACT: The basic function of the electric power system is to transport the electric power towardscustomers..The l0kV electric distribution net is a key point that connects the power supply with the electricityusing on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWORDS:power supply and distribution, power distribution reliability,reactive compensation, load distributionThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electricknowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and the way has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding and adopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modesabout l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con-struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electricdistribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net.References[1] Wencheng Su. Factories power supply [M]. Machinery Industry Publishing House. 1999.9[2] Jiecai Liu. Factories power supply design guidance [M]. Machinery Industry Publishing House.1999.12[3] Power supply and distribution system design specifications[S].China plans Press. 1996[4] Low-voltage distribution design specifications [S].China plans Press. 1996.6Relay protection development present situationInstitution:Tianjin Electric Power Association[Abstract]reviewed our country electrical power system relay protec tion technological development process,has outlined the microcomputer re lay protection technology achievement,proposed the future relay prote ction technological development tendency will be: Computerizes, networked, protects, the control, the survey, the data comm unication integration and the artificial intellectualization.[ Key word ] relay protection present situation developme nt,relay protections future development1 relay protection development present situationThe electrical power system rapid development to the relay protection proposed unceasingly the new request, the electr onic technology, computer technology and the communication rapid development unceasingly has poured into the new vigor for the relay protection technology development, therefore, the relay protection technology is advantageous, has completed the development 4 historical stage in more than 40 years time.After the founding of the nation, our country relay prot ection discipline, the relay protection design, the relay man ufacture industry and the relay protection technical team gro ws out of nothing, has passed through the path in about 10 years which advanced countries half century passes through. The 50's, our country engineers and technicians creatively absorption, the digestion, have grasped the overseas advanced relay protection equipment performance and the movement tech nology , completed to have the deep relay protection theory attainments and the rich movement experience relay protectio n technical team, and grew the instruction function to the national relay protection technical team's establishment. The acheng relay factory introduction has digested at that time the overseas advanced relay manufacture technology, has establ ished our country relay manufacturing industry. Thus our coun try has completed the relay protection research, the design, the manufacture, the movement and the teaching complete sys tem in the 60's. This is a time which the mechanical and electrical relay protection prospers, was our country relay p rotection technology development has laid the solid foundation .From the end of the 50's, the transistor relay protectio n was starting to study. In the 60's to the 80's in arethe times which the transistor relay protection vigorous deve lopment and widely uses. Tianjin University and the Nanjing electric power automation plant cooperation research 500kv tra nsistor direction high frequency protection the transistor hig h frequency block system which develops with the Nanjing ele ctric power automation research institute is away from the p rotection, moves on the Gezhou Dam 500 kv line , finished the 500kv line protection to depend upon completely from the overseas import time.From the 70's, started based on the integration operation al amplifier integrated circuit protection to study. Has form ed the complete series to at the end of 80's integrated ci rcuit protection,substitutes for the transistor protection grad ually. The development, the production, the application the i ntegrated circuit protects which to the beginning of the 90' s still were in the dominant position, this was the integrated circuit protection ti me. The integrated electricity road work frequency conversion quantity direction develops which in this aspect Nanjing el ectric power automation research institute high frequency prot ected the vital role , the Tianjin University and the Nanji ng electric power automation plant cooperation development int egrated circuit phase voltage compensated the type direction high frequency protection also moves in multi- strip 220kv a nd on the 500kv line.Our country namely started the computer relay protection research from the end of the 70's , the institutions of hi gher learning and the scientific research courtyard instituteforerunner's function. Huazhong University of Science and Te chnology, southeast the university, the North China electric power institute, the Xian Jiaotong University, the Tianjin Un iversity, Shanghai Jiaotong University, the Chongqing Universit y and the Nanjing electric power automation research institut e one after another has all developed the different principl e, the different pattern microcomputer protective device. In 1984 the original North China electric power institute develo ped the transmission line microcomputer protective device firs t through the appraisal, and in the system the find applica tion, had opened in our country relay protection history the new page, protected the promotion for the microcomputer to pave the way. In the host equipment protection aspect, the generator which southeast the university and Huazhong Univer sity of Science and Technology develops loses magnetism prote ction, the generator protection and the generator?Bank of tra nsformers protection also one after another in 1989, in 1994 through appraisal, investment movement. The Nanjing electric power automation research institute develops microcomputer li ne protective device also in 1991 through appraisal. The Tia njin University and the Nanjing electric power automation pla nt cooperation development microcomputer phase voltage compensa ted the type direction high frequency protection, the Xian J iaotong University and the Xu Chang relay factory cooperation development positive sequence breakdown component direction h igh frequency protection also one after another in 1993, in 1996 through the appraisal. Heres, the different principle, the different type microcomputer line and the host equipmen t protect unique, provided one batch of new generation ofperformance for the electrical power system fine, the funct ion has been complete, the work reliable relay protection in stallment. Along with the microcomputer protective device rese arch, in microcomputer aspect and so on protection software, algorithm has also yielded the very many theories result. May say started our country relay protection technology from the 90's to enter the time which the microcomputer protect ed.2 relay protections future developmentThe relay protection technology future the tendency will be to computerizes, networked, the intellectualization, will p rotect, the control, the survey and the data communication i ntegration development. 2.1 computerizesAlong with the computer hardware swift and violent develo pment, the microcomputer protection hardware also unceasingly is developing. The original North China electric power instit ute develops the microcomputer line protection hardware has e xperienced 3 development phases: Ispublished from 8 lists cpu structure microcomputer prote ction, does not develop to 5 years time to the multi- cpu structure, latter developed to the main line does not leav e the module the big modular structure, the performance enha nces greatly, obtained the widespread application. Huazhong Un iversity of Science and Technology develops the microcomputer protection also is from 8 cpu, develops to take the labor controlling machine core partially as the foundation 32 mic rocomputers protection.The Nanjing electric power automation research institute f rom the very beginning has developed 16 cpu is the foundati on microcomputer line protection, obtained the big area promo tion, at present also is studying 32 protections hardware sy stem. Southeast the university develops the microcomputer host equipment protects the hardware also passed through improved and the enhancement many times. The Tianjin University from the very beginning is the development take more than 16 c pu as the foundation microcomputer line protection, in 1988 namely started to study take 32 digital signals processor (d sp) as the foundation protection, the control, the survey in tegration microcomputer installment, at present cooperated with the Zhuhai Jin automatic equipment company develops one kin d of function complete 32 big modules, a module was a mini computer. Uses 32 microcomputers chips only to focus by no means on the precision, because of the precision the a/d sw itch resolution limit, is surpassed time 16 all is accepts with difficulty in the conversion rate and the cost aspect;32 microcomputers chips have the very high integration rate more importantly, very high operating frequency and computat ion speed, very big addressing space, rich command system an d many inputs outlet. The cpu register, the data bus, the address bus all are 32, has the memory management function, the memory protection function and the duty transformation function, and (cache) and the floating number part all integ rates the high speed buffer in cpu.The electrical power system the request which protects to the microcomputer enhances unceasingly, besides protection ba sic function, but also should have the large capacity breakdown information and the data long-term storage space, the fa st data processing function, the formidable traffic capacity, with other protections, the control device and dispatches t he networking by to share the entire system data, the infor mation and the network resources ability, the higher order l anguage programming and so on. This requests the microcompute r protective device to have is equal to a pc machine funct ion. In the computer protection development initial period, o nce conceived has made the relay protection installment with a minicomputer. At that time because the small machine vol ume big, the cost high, the reliability was bad, this tenta tive plan was not realistic. Now, with the microcomputer pro tective device size similar labor controlling machine function , the speed, the storage capacity greatly has surpassed the same year small machine, therefore, made the relay protecti on with complete set labor controlling machine the opportunit y already to be mature, this will be one of development di rections which the microcomputer protected. The Tianjin Univer sity has developed the relay protection installment which Che ng Yongtong microcomputer protective device structure quite sa me not less than one kind of labor controlling machine perf orms to change artificially becomes. This kind of equipment merit includes: has the 486pc machine complete function, ca n satisfy each kind of function request which will protect to current and the future microcomputer. size and structure and present microcomputer protective device similar, the cra ft excellent, quakeproof, guards against has been hot, guards against electronmagetic interference ability, may move in th e very severe working conditions, the cost may accept. uses the std main line or the pc main line,the hardware modulation, may select the different module wilfully regarding the different protection, the disposition nimble, is easy to expand.Relay protection installment , computerizes is the irrever sible development tendency. How but to satisfies the electric al power system request well, how further enhances the relay protection the reliability, how obtains the bigger economic efficiency and the social efficiency, still must conduct sp ecifically the thorough research. 2.2 networkedThe computer network has become the information age as t he information and the data communication tool the technical prop, caused the human production and the social life appe arance has had the radical change. It profoundly is affectin g each industry domain, also has provided the powerful means of communication for each industry domain. So far, besides the differential motion protection and the vertical associat ion protection, all relay protections installment all only ca n respond the protection installment place electricity spirit. The relay protection function also only is restricted in t he excision breakdown part, reduces the accident to affect t he scope. This mainly is because lacks the powerful data co mmunication method. Overseas already had proposed the system protection concept, this in mainly referred to the safe auto matic device at that time. Because the relay protection func tion not only is restricted in the excision breakdown part and the limit accident affects the scope (this is most impo rtant task), but also must guarantee the entire system thesecurity stable movement. This requests each protection unit all to be able to share the entire system the movement and the breakdown information data, each protection unit and th e superposition brake gear in analyze these information and in the data foundation the synchronized action, guarantees th e system the security stable movement. Obviously, realizes th is kind of system protection basic condition is joins the e ntire system each main equipment protective device with the computer network, that is realization microcomputer protective device networked. This under the current engineering factor is completely possible.Regarding the general non- system protection, the realizat ion protective device computer networking also has the very big advantage. The relay protection equipment can obtain syst em failure information more, then to the breakdown nature, t he breakdown position judgment and the breakdown distance exa mination is more accurate. Passed through the very long time to the auto-adapted protection principle research, also has yielded the certain result, but must realize truly protects to the system movement way and the malfunction auto-adapted , must obtain the more systems movement and the breakdown i nformation, only then realization protection computer networked , can achieve this point.Regarding certain protective device realization computer ne tworkings, also can enhance the protection the reliability. T he Tianjin University in 1993 proposed in view of the futur e Three Gorges hydroelectric power station 500kv ultrahigh vo ltage multi- return routes generatrix one kind of distributional generatrix protection principle, developed successfully thi s kind of equipment initially. Its principle is disperses th e traditional central generatrix protection certain (with to protect generatrix to return way to be same) the generatrix protection unit, the dispersible attire is located in on v arious return routes protection screen, each protection unit joins with the computer network, each protection unit only i nputs this return route the amperage, after transforms it the digital quantity, transmits through the comput er network for other all return routes protection unit, each protection unit acts according to this return route the am perage and other all return routes amperage which obtains fr om the computer network, carries on the generatrix differenti al motion protection the computation, if the computed result proof is the generatrix interior breakdown then only jumps the book size return route circuit breaker, Breakdown gener atrix isolation. When generatrix area breakdown, each protecti on unit all calculates for exterior breakdown does not act. This kind the distributional generatrix protection principle which realizes with the computer network, has the high rel iability compared to the traditional central generatrix protec tion principle. Because if a protection unit receives the di sturbance or the miscalculation when moves by mistake, only can wrongly jump the book size return route, cannot create causes the generatrix entire the malignant accident which exc ises, this regarding looks like the Three Gorges power plant to have the ultrahigh voltage generatrix the system key po sition to be extremely important.By above may know, microcomputer protective device may enhance the protection performance and the reliability greatly , this is the microcomputer protection development inevitable trend. 2.3 protections, control, survey, data communication integrationsIn realization relay protection computerizing with under the condition, the protective device is in fact a high pe rformance, the multi-purpose computer, is in an entire electr ical power system computer network intelligent terminal. It m ay gain the electrical power system movement and breakdown a ny information and the data from the net, also may protect the part which obtains it any information and the data tr ansfer for the network control center or no matter what a terminal. Therefore, each microcomputer protective device not only may complete the relay protection function, moreover in does not have in the breakdown normal operation situation also to be possible to complete the survey, the control, th e data communication function, that is realization protection, control, survey, data communication integration.At present, in order to survey, the protection and the control need, outdoor transformer substation all equipment, li ke the transformer, the line and so on the secondary voltag e, the electric current all must use the control cable to direct to . Lays the massive control cable not only must m assively invest, moreover makes the secondary circuit to be extremely complex. But if the above protection, the control, the survey, the data communication integration computer inst allation, will install in outdoor transformer substation by t。
电气工程及其自动化专业英语介绍(优秀范文五篇)

电气工程及其自动化专业英语介绍(优秀范文五篇)第一篇:电气工程及其自动化专业英语介绍Electrical Engineering and AutomationElectrical Engineering and Automation was created at forty years ago.AS a new subject, it is relating to many walks of life, small to a switch designed to study aerospace aircraft, has its shadow.Electrical Engineering and Automation of electrical information professional is an emerging field of science, but because of people's daily lives and industrial production is closely related to the extraordinarily rapid development of relatively more mature now.High-tech industry has become an important component of the widely used in industry, agriculture, national defense and other fields, in the national economy is playing an increasingly important role.Worse more, Electrical Engineering and Automation is very hard to learn.The graduate should obtain much knowledge and ability.Such as natural science foundations include more sturdy mathematics, physics, etc, better Humanity, social science basic for sum foreign language for integration capability.Besides the essential technological basic theory knowledge of the originally professional field, mainly include circuit, electric magnetic field theory, electronic technology, information place in system Paying attention to, control theory, computer software and hardware basic theories.And so on.Control theory and electrical network theory is a professional electrical engineering and automation of the base, power electronics technology, computer technology is its main technical means, but also includes a system analysis, system design, system development and system management and decision-making research.There are some characteristics of the profession, that is,combining the strength of power, electrical and electronic technology, software and hardware combined with a cross-disciplinary nature, electricity, electronics, control, computer integrated multi-disciplinary, so that graduates with strong adaptation capacity.Electricity is the most important and convenient energy which the modern society depends on more heavily than ever before.Electric power system, providing electricity to the modern society, has become indispensible components of the industry world.Power system and automation researches on how to produce, transform, transmit, distribute, use, control and manage electricity.It combines the traditional electrotechology with computer science ,power electronics and automation control theory ,with board prospects for development.We quest the principle and structure of power system network in order to improve our system to provide a reliable power supply with acceptable voltages and frequency to the customers.This major contains 3 core curricula--Motor learning, Power system analysis and Relay protection.Motor learning introduces the basic equipments of power system to us such as generators, transformers and motors.It's the basis of the following two curricula.Power system analysis describes the power flow calculation , power system control(one is active power and frequency control the other is reactive power and voltage control)and power system stability(including small disturbance stability and transient sta...电气10-3班魏学军 25号第二篇:电气工程及其自动化专业英语介绍Electrical Engineering and AutomationElectrical Engineering and Automation was created at forty years ago.AS a new subject, it is relating to many walks of life, small to a switch designed to study aerospace aircraft, has itsshadow.Electrical Engineering and Automation of electrical information professional is an emerging field of science, but because of people's daily lives and industrial production is closely related to the extraordinarily rapid development of relatively more mature now.High-tech industry has become an important component of the widely used in industry, agriculture, national defense and other fields, in the national economy is playing an increasingly important role.Worse more, Electrical Engineering and Automation is very hard to learn.The graduate should obtain much knowledge and ability.Such as natural science foundations include more sturdy mathematics, physics, etc, better Humanity, social science basic for sum foreign language for integration capability.Besides the essential technological basic theory knowledge of the originally professional field, mainly include circuit, electric magnetic field theory, electronic technology, information place in system Paying attention to, control theory, computer software andhardware basic theories.And so on.Control theory and electrical network theory is a professional electrical engineering and automation of the base, power electronics technology, computer technology is its main technical means, but also includes a system analysis, system design, system development and system management and decision-making research.There are some characteristics of the profession, that is, combining the strength of power, electrical and electronic technology, software and hardware combined with a cross-disciplinary nature, electricity, electronics, control, computer integrated multi-disciplinary, so that graduates with strong adaptation capacity.电气10-3班魏学军25号第三篇:电气工程及其自动化专业英语induction machine 感应式电机 horseshoe magnet 马蹄形磁铁magnetic field 磁场eddy current 涡流right-hand rule 右手定则left-hand rule 左手定则slip 转差率induction motor 感应电动机rotating magnetic field 旋转磁场 winding 绕组 stator 定子 rotor 转子 induced current 感生电流 time-phase 时间相位 exciting voltage 励磁电压 solt 槽 lamination 叠片 laminated core 叠片铁芯 short-circuiting ring 短路环 squirrel cage 鼠笼 rotor core 转子铁芯 cast-aluminum rotor 铸铝转子 bronze 青铜 horsepower 马力 random-wound 散绕 insulation 绝缘 ac motor 交流环电动机 end ring 端环alloy 合金 coil winding 线圈绕组 form-wound 模绕 performance characteristic 工作特性 frequency 频率revolutions per minute 转/分分motoring 电动机驱动generating 发电 per-unit value 标么值 breakdown torque 极限转矩breakaway force 起步阻力overhauling 检修wind-driven generator 风动发电机 revolutions per second 转/秒秒 number of poles 极数 speed-torque curve 转速力矩特性曲线 plugging 反向制动 synchronous speed 同步转速 percentage 百分数 locked-rotor torque 锁定转子转矩 full-load torque 满载转矩 prime mover 原动机inrush current 涌流magnetizing reacance 磁化电抗line-to-neutral 线与中性点间的 staor winding 定子绕组 leakage reactance 漏磁电抗no-load 空载full load 满载多相(的Polyphase 多相的)iron-loss 铁损 complex impedance 复数阻抗 rotor resistance 转子电阻 leakage flux 漏磁通 locked-rotor 锁定转子 chopper circuit 斩波电路 separately excited 他励的 compounded 复励 dc motor 直流电动机 de machine 直流电机 speed regulation 速度调节 shunt 并励series 串励armature circuit 电枢电路optical fiber 光纤interoffice 局间的wave guide 波导波导管bandwidth 带宽light emitting diode 发光二极管silica 硅石二氧化硅 regeneration 再生后反馈放大再生, coaxial 共轴的同轴的共轴的,同轴的 high-performance 高性能的 carrier 载波 mature 成熟的 Single Side Band(SSB)单边带 coupling capacitor 结合电容 propagate 传导传播 modulator 调制器 demodulator 解调器 line trap 限波器 shunt 分路器 Amplitude Modulation(AM 调幅 Frequency Shift Keying(FSK)移频键控 tuner 调谐器 attenuate 衰减incident 入射的two-way configuration 二线制generator voltage 发电机电压 dc generator 直流发电机 polyphase rectifier 多相整流器boost 增压time constant 时间常数forward transfer function 正向传递函数error signal 误差信号regulator 调节器stabilizing transformer 稳定变压器time delay 延时direct axis transient time constant 直轴瞬变时间常数 transient response 瞬态响应 solid state 固体 buck 补偿 operational calculus 算符演算 gain 增益 pole 极点 feedback signal 反馈信号 dynamic response 动态响应voltage control system 电压控制系统mismatch 失配error detector 误差检测器 excitation system 励磁系统 field current 励磁电流transistor 晶体管high-gain 高增益boost-buck 升压去磁feedback system 反馈系统 reactive power 无功功率 feedback loop 反馈回路 automatic Voltage regulator(AVR)自动电压调整器自动电压调整器 reference Voltage 基准电压 magnetic amplifier 磁放大器amplidyne 微场扩流发电机self-exciting 自励的limiter 限幅器manual control 手动控制 block diagram 方框图 linear zone 线性区potential transformer 电压互感器stabilization network 稳定网络stabilizer 稳定器 air-gap flux 气隙磁通 saturation effect 饱和效应saturation curve 饱和曲线 flux linkage 磁链 per unit value 标么值shunt field 并励磁场 magnetic circuit 磁路 load-saturation curve 负载饱和曲线 air-gap line 气隙磁化线 polyphase rectifier 多相整流器circuit components 电路元件circuit parameters 电路参数electrical device 电气设备 electric energy 电能 primary cell 原生电池电能转换器energy converter 电能转换器conductor 导体heating appliance 电热器 direct-current 直流 time invariant 时不变的 self-inductor 自感 mutual-inductor 互感 the dielectric 电介质storage battery 蓄电池 e.m.f = electromotive force电动势 generator 发电机 gas insulated substation GIS 气体绝缘变电站气体绝缘变电站 turbogenerator 汽轮发电机 neutral point 中性点hydrogenerator 水轮发电机 moving contact 动触头 hydraulic turbine 水轮机fixed contact 静触头steam turbine 汽轮机arc-extinguishing chamber 灭弧室dynamo 直流发电机stray capacitance 杂散电容motor 电动机stray inductance 杂散电感stator 定子sphere gap 球隙rotor 转子bushing tap grounding wire 套管末屏接地线power transformer 电力变压器electrostatic voltmeter 静电电压表 variable transformer 调压变压器 ammeter 电流表 taped transformer 多级变压器 grounding capacitance 对地电容 step up(down)transformer 升(降)压变压器 voltage divider 分压器降压变压器 circuit breaker CB 断路器 surge impedance 波阻抗dead tank oil circuit breaker 多油断路器 Schering bridge 西林电桥live tank oil circuit breaker 少油断路器 Rogowski coil 罗可夫斯基线圈 vacuum circuit breaker 真空断路器 oscilloscope 示波器 sulphur hexafluoride breaker SF6 断路器 peak voltmeter 峰值电压表峰值电压表potential transformer PT 电压互感器conductor 导线current transformer CT 电流互感器 cascade transformer 串级变压器disconnector 隔离开关coupling capacitor 耦合电容earthing switch 接地开关 test object 被试品 synchronous generator 同步发电机 detection impedance 检测阻抗 asynchronous machine 异步电机 substation 变电站 Insulator 绝缘子 hydro power station 水力发电站 lightning arrester 避雷器 thermal power station 火力发电站metal oxide arrester MOA 氧化锌避雷器 nuclear power station 核电站bus bar 母线oil-filled power cable 充油电力电缆overhead line 架空线mixed divider(阻容混合分压器阻容)混合分压器阻容transmission line 传输线XLPE cable 交链聚乙烯电缆(coaxial)cable(同轴电缆 relay 继电器同轴)电缆同轴 iron core 铁芯tuned circuit 调谐电路 winding 绕组 suspension insulator 悬式绝缘子bushing 套管porcelain insulator 陶瓷绝缘子波头(尾电阻front(tail)resistance 波头尾)电阻glass insulator 玻璃绝缘子inverter station 换流站 flash counter 雷电计数器 steel-reinforced aluminum conductor 充电(阻尼阻尼)电阻钢芯铝绞线charging(damping)resistor 充电阻尼电阻 tank 箱体 point plane gap 针板间隙 earth(ground)wire 接地线 exciting winding 激磁绕组grading ring 均压环trigger electrode 触发电极highvoltage engineering 高电压工程glow discharge 辉光放电highvoltage testing technology 高电压试验技术harmonic 谐波Power electronics 电力电子Automatic control 自动控制Principles of electric circuits 电路原理 Digital signal processing 数字信号处理电气工程专业英语词汇表2 power system 电力系统impulse current 冲击电流 power network 电力网络 impulse flashover 冲击闪络 insulation 绝缘 inhomogenous field 不均匀场 overvoltage 过电压insulation coordination 绝缘配合aging 老化internal discharge 内部放电 alternating current 交流电 lightning stroke 雷电波 AC transmission system 交流输电系统 lightning overvoltage 雷电过电压介质)损耗角 arc discharge 电弧放电 loss angle(介质损耗角介质attachment coefficient 附着系数magnetic field 磁场attenuation factor 衰减系数mean free path平均自由行程anode(cathode)阳极阴极mean molecular velocity平均分子速度阳极(阴极阴极)breakdown(电)击穿negative ions 负离子电击穿bubble breakdown 气泡击穿 non-destructive testing 非破坏性试验cathode ray oscilloscope 阴极射线示波器 non-uniform field 不均匀场 cavity 空穴腔 partial discharge 局部放电空穴,腔 corona 电晕peak reverse voltage 反向峰值电压 composite insulation 组合绝缘photoelectric emission 光电发射 critical breakdown voltage 临界击穿电压 photon 光子 Discharge 放电 phase-to-phase voltage 线电压 Dielectric 电介质绝缘体 polarity effect 极性效应电介质,绝缘体 dielectric constant 介质常数 power capacitor 电力电容 dielectric loss 介质损耗quasi-uniform field 稍不均匀场direct current 直流电radio interference 无线干扰divider ratio 分压器分压比rating of equipment 设备额定值grounding 接地routing testing 常规试验electric field 电场 residual capacitance 残余电容 electrochemical deterioration 电化学腐蚀 shielding 屏蔽 electron avalanche 电子崩short circuit testing 短路试验electronegative gas 电负性气体space charge 空间电荷 epoxy resin 环氧树脂 streamer breakdown 流注击穿expulsion gap 灭弧间隙surface breakdown 表面击穿field strength 场强 sustained discharge 自持放电 field stress 电场力switching overvoltage 操作过电压field distortion 场畸变thermal breakdown 热击穿 field gradient 场梯度 treeing 树枝放电field emission 场致发射 uniform field 均匀场 flashover 闪络 wave front(tail)波头尾)波头(尾gaseous insulation 气体绝缘withstand voltage 耐受电压Prime mover 原动机Power factor 功率因数Torque 力矩Distribution automation system 配电网自动化系统Servomechanism 伺服系统Automatic meter reading 自动抄表Boiler 锅炉Armature 电枢Internal combustion engine 内燃机Brush 电刷Deenergize 断电 Commutator 换向器 Underground cable 地下电缆Counter emf 反电势电气工程专业英语词汇表3 退磁,去磁Loop system 环网系统Demagnetization 退磁去磁Distribution system 配电系统 Relay panel 继电器屏 Trip circuit 跳闸电路 Tertiary winding 第三绕组 Switchboard 配电盘开关屏 Eddy current 涡流配电盘,开关屏Instrument transducer 测量互感器Copper loss 铜损Oil-impregnated paper 油浸纸绝缘 Iron loss 铁损 Bare conductor 裸导线 Leakage flux 漏磁通 Reclosing 重合闸 Autotransformer 自耦变压器 Distribution dispatch center 配电调度中心 Zero sequence current 零序电流 Pulverizer 磨煤机 Series(shunt)compensation 串(并)联补偿并联补偿汽包,炉筒 Drum 汽包炉筒 Restriking 电弧重燃Superheater 过热器 Automatic oscillograph 自动录波仪 Peak-load 峰荷 Tidal current 潮流 Prime grid substation 主网变电站 Trip coil 跳闸线圈 Reactive power` 无功功率 Synchronous condenser 同步调相机 Active power 有功功率 Main and transfer busbar 单母线带旁路 Shunt reactor 并联电抗器 Feeder 馈电线 Blackout 断电、停电Skin effect 集肤效应断电、Extra-high voltage(EHV)超高压Potential stress 电位应力电场强度电位应力(电场强度电场强度)Ultra-high voltage(UHV)特高压Capacitor bank 电容器组Domestic load 民用电crusher 碎煤机Reserve capacity 备用容量pulverizer 磨煤机 Fossil-fired power plant 火电厂 baghouse 集尘室 Combustion turbine 燃气轮机 Stationary(moving)blade 固定可动叶片固定(可动可动)叶片Right-of-way 线路走廊Shaft 转轴Rectifier 整流器Kinetic(potential)energy 动(势)能Inductive(Capacitive)电势能感的(电容的电容的)感的电容的Pumped storage power station 抽水蓄能电站Reactance(impedance)电抗阻抗Synchronous condenser 同步调相机电抗(阻抗阻抗)Reactor 电抗器 Light(boiling)-water reactor 轻(沸)水反应堆沸水反应堆电抗的,无功的Reactive 电抗的无功的Stator(rotor)定(转)子Phase displacement(shift)相移转子Armature 电枢Surge 冲击过电压Salient-pole 凸极冲击,过电压Retaining ring 护环Slip ring 滑环Carbon brush 炭刷Arc suppression coil 消弧线圈Short-circuit ratio 短路比Primary(backup)relaying 主(后备继电保护后备)继电保护后备Induction 感应 Phase shifter 移相器 Autotransformer 自藕变压器Power line carrier(PLC)电力线载波器)电力线载波(器 Bushing 套管Line trap 线路限波器 Turn(turn ratio)匝(匝比变比 Uninterruptible power supply 不间断电源匝比,变比匝比变比)Power factor 功率因数 Spot power price 实时电价分时(电价电价)Tap 分接头 Time-of-use(tariff)分时电价Recovery voltage 恢复电压 XLPE(Cross Linked Polyethylene)交联聚乙烯(电缆电缆)交联聚乙烯电缆Arc reignition 电弧重燃Rms(root mean square)均方根值 Operationmechanism 操动机构 RF(radio frequency)射频电气工程专业英语词汇表4 Pneumatic(hydraulic)气动(液压)Rpm(revolution per minute)转/ 分Nameplate 铭牌LAN(local area network)局域网Independent pole operation 分相操作 LED(light emitting diode)发光二极管 Malfunction 失灵 Single(dual, ring)bus 单(双,环形母线环形)母线双环形 Shield wire 避雷线 IC(integrated circuit)集成电路Creep distance 爬电距离 FFT(fast Fourier transform)快速傅立叶变换 Silicon rubber 硅橡胶 Telemeter 遥测 Composite insulator 合成绝缘子Load shedding 甩负荷Converter(inverter)换流器逆变器Lateral 支线换流器(逆变器逆变器)Bus tie breaker 母联断路器Power-flow current 工频续流Protective relaying 继电保护sparkover 放电 Transfer switching 倒闸操作 Silicon carbide 碳化硅Outgoing(incoming)line 出(进)线 Zinc oxide 氧化锌进线相位超前(滞后滞后)Phase Lead(lag)相位超前滞后 Withstand test 耐压试验Static var compensation(SVC)静止无功补偿Dispatcher 调度员Flexible AC transmission system(FACTS)灵活交流输电系统Supervisory control and data acquisition(SCADA)监控与数据采集EMC(electromagnetic compatibility)电磁兼容ISO(international standardization organization)国际标准化组织GIS(gas insulated substation, geographic information system)气体绝缘变电站地理信息系统 IEC(international Electrotechnical Commission)国际电工(技术技术)委员会国际电工技术委员会 IEEE(Institute of Electrical and Electronic Engineers)电气与电子工程师学会(美)美IEE(Institution of Electrical Engineers)电气工程师学会(英电气工程师学会英)scale 刻度量程 calibrate校准刻度,量程 rated 额定的 terminal 接线端子保险丝,熔丝 fuse 保险丝熔丝 humidity 湿度 resonance 谐振共振 moisture 潮湿湿气谐振,共振潮湿,湿气 analytical 解析的 operation amplifier 运算放大器numerical 数字的amplitude modulation(AM)调幅frequency-domain 频域frequency modulation(FM)调频time-domain 时域binary 二进制 operation amplifier 运算放大器 octal 八进制 active filter 有源滤波器decimal 十进制passive filter 无源滤波器hexadecimal 十第四篇:电气工程及其自动化专业英语电气工程及其自动化专业英语老师:学生:专业:电气工程及其自动化学院:学号:Automatic Control system自动控制系统When a specific systemis proposed for a given application,it mustsatisfy certain requirements.This may involve the system response or optimization of the system in a specified way.These requirements that a control system must meet are generally called performance specifications.当一个精细的系统被推引入一个给定的应用程序的时候,它必须满足这个特定的要求。
电气自动化英语作文

电气自动化英语作文With the rapid development of technology and the increasing demand for automation, electrical automation has become an essential part of various industries. In this article, we will explore the importance of electrical automation and its impact on different sectors.Electrical automation refers to the use of electrical systems, devices, and technology to control and monitor various processes and operations. It plays a crucial role in improving efficiency, reducing human error, and enhancing safety in industrial settings.One of the key benefits of electrical automation is increased productivity. By automating repetitive tasks, machines can perform them faster and more accurately than humans. This leads to higher production rates and improved overall efficiency. For example, in manufacturing plants, automated assembly lines can produce goods at a much higher speed and with fewer defects compared to manual labor.Moreover, electrical automation helps to minimize human error. Machines are not prone to fatigue, distractions, or emotions, which can affect the accuracy and consistency of manual work. By relying on automation, industries can reduce the risk of errors and ensure consistent quality in their products or services.In addition to productivity and error reduction, electrical automation enhances workplace safety. Certain tasks in industries can be hazardous for humans, such as working with heavy machinery or in environments with high temperatures or toxic substances. By automating these tasks, the risk of accidents and injuries can be significantly reduced. Furthermore, automation allows remote monitoring and control of operations, enabling operators to work in a safer environment away from potential hazards.The impact of electrical automation is not limited to manufacturing industries. It has also revolutionized sectors such as transportation, energy, and healthcare. In transportation, automated systems are used for traffic control, railway signaling, and airport operations, ensuring smooth and efficient movement of people and goods. In theenergy sector, automation plays a vital role in power generation, distribution, and management, optimizing energy usage and reducing costs. In healthcare, automated medical devices and systems contribute to accurate diagnostics, precise surgeries, and efficient patient care.Despite the numerous advantages, electrical automation also presents challenges. The initial investment required for automation can be significant, including the cost of equipment, software, and training. Additionally, the integration of automation systems with existing infrastructure and processes may require careful planning and coordination. Moreover, the reliance on automation can lead to job displacement, as some tasks previously performed by humans are now automated. However, it is important to note that automation also creates new job opportunities, such as the need for skilled technicians to operate and maintain automated systems.In conclusion, electrical automation has become indispensable in various industries, offering increased productivity, reduced errors, and improved safety. Its impact extends beyond manufacturing, transforming sectors such as transportation, energy, and healthcare. While challenges exist, the benefits of automation outweigh the drawbacks. As technology continues to advance, electrical automation will continue to play a crucial role in shaping the future of industries.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气工程及其自动化专业英语课程论文Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】重庆邮电大学移通学院《电气工程及其自动化专业英语》课程论文年级 2012专业电气工程与自动化姓名孙猜胜学号Three-phase asynchronous motorAbstract:The three-phase asynchronous motor is motor's one with single phase asynchronous motor, three-phase asynchronous motor operating performance is good, and can save various the structure to be simple, the manufacture is easy, firm durable, the service is convenient,cost inexpensive ,drag the ability is good,and so on a series of merits. thus becomes in each kind of electrical machinery the outputto be biggest utilizes the broadest one kind of electric motor.Key words:Moror Motor starting Star delta StartingThree-phase asynchronous motor principle:When the stator winding through into the three-phase ac three-phase symmetric arises when a synchronous speed n1 along the stator and rotor round for space in a clockwise rotation magnetic field. Because of a rotating magnetic field rotating speed to n1, rotor conductor of the static beginning, so the rotor conductor will cutthe stator and produce a rotating magnetic field induction emf (induction emf direction DingZe judge with the right hand). Because the child is short circuit loop ends conductor short meet, in therole of the induced emf, will produce the rotor conductor with induction emf direction basic consistent induced current. The rotor current-carrying conductor at stator magnetic field is the role ofthe electromagnetic force (the direction of the force with the left hand DingZe judge). The electromagnetic force of the rotor axis electromagnetic torque, drive along the rotor rotating magnetic field rotation direction.[1]Through the above analysis can be summed up the motor principle: when the three-phase motor stator winding (eachdiffer 120 KWH Angle), ventilation with three-phase ac, will producea rotating magnetic field, the rotating magnetic field cutting rotor winding, and thus to the rotor winding induced current (rotor windingis closed access), load flow of rotor stator conductor under the action of a rotating magnetic field will produce the electromagnetic force, thus in the motor shaft formed on the electromagnetic torque, driving motor rotation, and motor rotation direction and the rotating magnetic field in the same direction.Thestructureofthree-phaseasynchronousmotor:Types of three-phase asynchronous motor, but all kinds of three-phase asynchronous motor is the same basic structure, they are the stator and rotor of these two basic components, the stator and rotor has a certain air gap between. In addition, end caps, bearings, cable boxes, rings and other accessories,1).StatorpartStator is used to generate the rotating magnetic Three-phase motors generally shell, stator core, stator windings and other parts.a.Shell?Three-phase motor casing including base,end caps,bearingcaps,rings,such as junction boxes and comp onentsb. Stator CoreInduction motor stator core is part of the motor circuit from ~ thick coated with a thin insulating paint from silicon,c.ThestatorwindingsThree-phase motor stator windings are part of the circuit,there are three-phase three-phase motor windings,summetrical three-phase current access,it will have a rotating magnetic winding consists of three separate components of the winding, and each has a number of coil windings a phase of each winding, each winding in the space angle difference between the 120 ° electrical[2].2). Rotor parta. Rotor CoreWith mm thick steel from, set in the shaft, the role and the same stator core, on the one hand, as part of the motor magnetic circuit, on the one hand to place the rotor windings.b. Rotor windingsThe rotor winding induction motor winding is divided into two kinds of cage-shaped and which is divided into winding rotor asynchronous motor with cage induction motor.3). Other parts ofOther parts including the cover, fans, etc.Induction motor starting methods:There are several general methods of starting induction motors: full voltage, reduced voltage,wyes-delta,and part winding reduced voltage type can include solid state starters, adjustable frequency drives, and following is the most common method.1).Full voltageThe full voltage starting method, also known as across the line starting, is the easiest method to employ, has the lowest equipment costs, and is the most reliable. This method utilizes a control to close a contactor and apply full line voltage to the motor terminals. This method will allow the motor to generate its highest starting torque and provide the shortest acceleration method also puts the highest strain on the power system due to the high starting currents that can be typically six to seven times the normal full load current of the motor.2).AutotransformerThe motor leads are connected to the lower voltage side of the transformer. The most common taps that are used are 80%, 65%, and 50%. At 50% voltage the current on the primary is 25% of the full voltage locked rotor amps. The motor is started with this reduced voltage,and then after a pre-set condition is reached the connection is switched to line voltage. This condition could be a preset time, current level, bus volts, or motor speed. The change over can be done in either a closed circuit transition, or an open circuit transition method. In the open circuit method the connection to the voltage is severed as it is changed from the reduced voltage to the line level. Care should be used to make sure that there will not be problems from transients due to the switching. This potential problem can be eliminated by using the closed circuit transition. With the closed circuit method there is a continuous Voltage applied to the motor. Another benefit with the autotransformer starting is in possiblelower vibration and noise levels during starting.3).Star delta StartingThis approach started with the induction motor,the structure of each phase of the terminal are placed in the motor teminal box ,This allows the motor star connection in the initial start up,and then re-connected into a triangle run..The initial start time when the voltage is reduced to the original star connection,the startingcurrent and starting torque by 2/3. Depending on the applicationon,the motor switch to the triangle in the rotational speed of between 50% and the maximum be noted that the sameproblems,including the previously mentioned switch method ,if theopen circuit method,the transition may be a transient method isoften used in lesst than 600V motor,the rated voltage and higher are not suitable for star delta motor start method.[3]4).Series Resistor or Reactor StartingThis method is to use a series resistance or place in the motor loop the motor is started, a resistor to limit current and make the motor at the input voltage drop. Therefore plays a role of limitingcurrent at the small motor series resistor startup mode used more frequentlyConclusion:There are many ways asynchronous motor starting, each method hasits own benefits, according to the constraints of powersystems,equipment costs, load the boot device to select the best method.References:[1] Tang Tianhao Fundamentals of Electrical Machines and Drives [M] BeijingChina Machine Press 118-137[2] Wang Liming English for Electrical Engineering and Automation [M] BeijingTsinghua University Press 61-64[3] Stephen Electromechanics [M] America Electronic IndustryPress 340-370。