教学大纲_实变函数与泛函分析

合集下载

《实变函数与泛函分析》教学大纲

《实变函数与泛函分析》教学大纲

《实变函数与泛函分析》教学大纲《实变函数与泛函分析》教学大纲课程编码:110840课程名称:实变函数与泛函分析学时/学分:72/4先修课程:《数学分析》、《复变函数》适用专业:信息与计算科学开课教研室:分析与程教研室一、课程性质与任务1.课程性质:《实变函数与泛函分析》是大学数学系的重要专业方向课之一,它是数学分析的延续和发展。

2.课程任务:通过这门课程的教学应使学生掌握近代抽象分析的基本思想,培养学生综合运用分析数学的几何观点和方法,理解和研究分析数学中的许多问题,为进一步学习现代数学理论和理解现代科学技术提供必要的基础。

二、课程教学基本要求实变函数与泛函分析包括两部分内容:“实变函数”与“泛函分析”。

“实变函数”主要学习测度论、可测函数论、积分论、微分与不定积分;“泛函分析”是通过在集合中引入各种结构,包括代数结构,拓扑结构、测度结构、序结构以及这些基本结构的各种复合,形成了各种各样的抽象空间,本课程主要研究这些抽象空间中的距离空间,赋范线性空间,内积空间的性质及其映射(线性算子和线性泛函)性质。

三、课程教学内容第一章集合1.教学基本要求通过本章的系统学习,使学生熟悉集合列的上极限集、下极限集、极限集的定义与交、并运算表示,集合的对等、基数概念;掌握有限集、可数集、不可数集的概念,可数集是最小的无限集的结论以及可数集的基本运算性质,自然数集、整数集、有理数集等的可数性,有理数集在实数轴上的稠密性。

2.要求学生掌握的基本概念、理论通过本章教学使学生熟悉集合列的上、下极限集、极限集的定义与交、并运算表示;掌握单调集合列{Ak}的概念及其极限集的求法。

熟悉集合的对等概念,熟悉对等是一个等价关系;熟悉集合对等的Cantor-Bernstein定理; 掌握集合对等的夹挤定理。

熟悉集合的基数概念;掌握有限集、可数集、不可数集的概念;掌握可数集是最小的无限集的结论以及可数集的基本运算性质; 掌握自然数集、整数集、有理数集等的可数性;掌握有理数集在实数轴上的稠密性;熟悉无理数集、实数集、区间点集等的不可数性。

教学大纲_实变函数与泛函分析

教学大纲_实变函数与泛函分析

《实变函数与泛函分析》教学大纲课程编号:120233B课程类型:□通识教育必修课□通识教育选修课□专业必修课□专业选修课□√学科基础课总学时:48 讲课学时:48 实验(上机)学时:0学分:3适用对象:经济统计学先修课程:数学分析、高等代数、空间解析几何毕业要求:1.应用专业知识,解决数据分析问题2.可以建立统计模型,获得有效结论3.掌握统计软件及常用数据库工具的使用4.关注国际统计应用的新进展5.基于数据结论,提出决策咨询建议6.具有不断学习的意识一、课程的教学目标本课程以实变函数与泛函分析基本理论为基础,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。

本课程就其实质来说是方法性的,但对于应用学科的学生来说,作为授课的目的,则是知识性的,故在教学方法和内容的选择上来说,只能让学生了解那些体现实变函数与泛函分析基本特征的思想内容,冗难的证明过程应尽量避免。

本课程基本目标为:能理解、掌握Lebesgue测度和Lebesgue积分,赋范空间和Hilbert空间一些基本概念、基本理论和基本方法。

本课程的难点在于学生初次涉及众多的抽象概念,并且论证的部分很多,教学中应密切结合数学分析中学到的相对来说比较直观的内容讲解,并督促学生下工夫理解。

二、教学基本要求(一)教学内容及要求《实变函数与泛函分析》在理解数学分析思想及基本知识和线性代数的基本知识后将其拓展到实数域上,进而讨论集合,欧氏空间,Lebesgtle测度,Lebesgue 可测函数,Lebesgue积分,测度空间,测度空间上的可测函数和积分,L^p空间,L^2空间,卷积与Fourier变换,Hilbert空间理论,Hilbert空间上的有界线性算子,Banach空间,Banach空间上的有界线算子,Banach空间上的连续线性泛函、共轭空间与共轭算子,Banach空间的收敛性与紧致性。

其中要求同学们:1. 理解和掌握集合间的关系和集与映射间的关系,了解度量空间的相关概念和Lebesgue可测集的有关内容和性质。

实变函数与泛函分析概要

实变函数与泛函分析概要

实变函数与泛函分析概要第一章 集合 基本要求:1、 理解集合的包含、子集、相等的概念和包含的性质。

2、 掌握集合的并集、交集、差集、余集的概念及其运算性质。

3、 会求已知集合的并、交、差、余集。

4、 了解对等的概念及性质。

5、 掌握可数集合的概念和性质。

6、 会判断己知集合是否是可数集。

7、 理解基数、不可数集合不可数集合不可数集合、、连续基数连续基数的概念。

8、了解半序集和Zorn 引理。

第二章 点集 基本要求基本要求:1、 理解n 维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。

2、 掌握内点、聚点的概念、理解外点、界点、孤立点的概念。

掌握聚点的性质。

3、 掌握开核、导集、闭区间的概念及其性质。

4、 会求己知集合的开集和导集。

5、 掌握开核、闭集、完备集的概念及其性质,掌握一批例子。

6、 会判断一个集合是非是开(闭)集,完备集。

7、 了解Peano 曲线概念。

主要知识点主要知识点::一、基本结论:1、 聚点性质§2 中T 1聚点原则:P 0是E 的聚点⇔ P 0的任一邻域内,至少含有一个属于E 而异于P 0的点⇔存在E 中互异的点列{P n },使P n →P 0 (n →∞) 2、 开集、导集、闭集的性质§2 中T2、T3T2:设A ⊂B ,则Aɓ⊂Bɓ, A⊂ B,-A⊂-B。

T3:(A ∪B )′=A ′∪ B ′.3、 开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E ⊂R ⁿ,ö是开集,E ´和―E都是闭集。

(ö称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E 是开集,则CE 是闭集;设E 是闭集,则CE 是开集。

T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。

T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。

T5:(Heine-Borel 有限覆盖定理)设F 是一个有界闭集,ℳ是一开集族{U i }i єI 它覆盖了F (即F с ∪iєIU i ),则ℳ中一定存在有限多个开集U 1,U 2…U m ,它们同样覆盖了F (即F ⊂m∪ U i )(i єI )4、 开(闭)集类、完备集类。

实变函数与泛函分析课程教学大纲

实变函数与泛函分析课程教学大纲

《实变函数与泛函分析》课程教学大纲一、课程基本信息课程代码:110047课程名称:实变函数与泛函分析英文名称:Real variable analysis And Functional analysis课程类别:专业基础课学时:50学分:3适用对象:信息与计算科学专业本科考核方式:考试,平时成绩30%,期末成绩70%先修课程:数学分析和高等代数二、课程简介中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。

它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。

泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。

英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning.三、课程性质与教学目的本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。

泛函分析教学大纲

泛函分析教学大纲

泛函分析教学大纲一、泛函分析课程说明(一) 课程代码 08130013(二) 课程英文名称:Functional Analysis(三) 开课对象: 数学与应用数学专业本科生(四) 课程性质:泛函分析是数学学科的一门基础理论课程。

本课程的目的在于运用泛函分析的理论和方法进一步研究无限维空间的结构。

通过教学,使学生了解和掌握这一学科的基本概念,理论,培养学生的理论思维能力,为从事数学学科的教学和研究打下一定的理论基础。

前期课程:《数学分析》《高等代数》《实变函数》(五) 教学目的通过泛函分析的教学,使学生了解和掌握赋泛线性空间,有界线性算子,Hilbert空间,Banach空间的基本概念和基本理论,培养学生理论思维能力,为进一步学习数学的有关学科打下扎实的理论基础(六) 教学内容本课程主要包括度量空间和赋范线性空间,有界线性算子和连续线性泛函,内积空间和Hilbert空间,Banach空间中的基本定理,线性算子的谱等几个部分。

通过教学的各个环节使学生达到各章的基本要求。

习题是重要的教学环节,教师必须高度重视。

(七) 学时、学分数及学时数具体分配教学时数:72学时学分数: 4 学分教学时数具体分配(八) 教学方式以教师讲解为主的课堂教学方式(九) 考核方式和成绩记载说明考核方式为考试。

严格考核学生的出勤情况,达到学籍管理规定的旷课量取消考试资格。

综合成绩根据平时成绩和期末成绩评定。

平时成绩占30%,期末成绩占70%。

二、讲授大纲与各章的基本要求第一章度量空间和赋范线性空间教学要点:1 泛函分析研究的对象是定义在度量空间之间的映射2 度量空间X的子集Y在X中稠密的充分必要条件是Y的闭包等于X3 有理点集是可数稠密集4 任何度量空间X,都存在完备的度量空间教学时数:12学时教学内容第一节度量空间第二节度量空间的极限,稠密集,可分空间第三节连续影射第四节柯西点列和完备度量空间第五节度量空间的完备化第六节压缩映射原理及其应用第七节线性空间第八节赋范线性空间和Banach空间考核要求:第一节度量空间(识记)第二节度量空间的极限,稠密集,可分空间(领会与应用)第三节连续影射(领会与应用)第四节柯西点列和完备度量空间(领会与应用)第五节度量空间的完备化(领会)第六节压缩映射原理及其应用(领会与应用)第七节线性空间(领会与应用)第八节赋范线性空间和Banach空间(领会与应用)第二章有界线性算子和连续线性泛函教学要点:1 掌握赋范线性空间的有界线性映射的概念2 掌握赋范线性空间X到赋范线性空间Y上的线性映射的全体也是一个赋范线性空间3 掌握线性同构的概念教学时数:16学时教学内容第一节有界线性算子和连续线性泛函第二节有界线性算子空间和共轭空间第三节广义函数考核要求:第一节有界线性算子和连续线性泛函(识记、领会、应用)第二节有界线性算子空间和共轭空间(识记、领会、应用)第三节广义函数(领会)第三章内积空间和Hilbert空间教学要点:1 掌握内积与西尔百特空间中的范数之间的关系2 每个Hilbert空间X都有完全规范正交系3 Hilbert空间X可分的充要条件是X存在一个可数的完全规范正交系教学时数:20学时教学内容:第一节内积空间的基本概念第二节投影定理第三节 Hilbert空间中的规范正交系第四节 Hilbert空间上的连续线性泛函第五节自伴算子,酉算子和正常算子考核要求:第一节内积空间的基本概念(识记,领会,应用)第二节投影定理(领会,应用)第三节 Hilbert空间中的规范正交系(领会,应用)第四节 Hilbert空间上的连续线性泛函(领会,应用)第五节自伴算子,酉算子和正常算子(识记,领会,应用)第四章Banach空间中的基本定理教学要点:1理解Banach空间三大基本定理(1)泛函延拓定理(2)一致有界定理(3)逆算子定理2 掌握弱收敛和强收敛的概念3 理解Baie纲定理教学时数:16学时教学内容第一节泛函延拓定理第二节 C[a,b]的共轭空间第三节共轭算子第四节纲定理和一致有界定理第五节强收敛,弱收敛和一致收敛第六节逆算子定理第七节闭图象定理考核要求:第一节泛函延拓定理(领会,应用)第二节 C[a,b]的共轭空间(领会,应用)第三节共轭算子(识记,领会,应用)第四节纲定理和一致有界定理(领会,应用)第五节强收敛,弱收敛和一致收敛(识记,领会,应用)第六节逆算子定理(领会,应用)第七节闭图象定理(领会,应用)第五章线性算子的谱教学要点:1 理解赋范线性空间上的有界线性算子T的谱是有限维线性空间中线性变换的特征值的推广2 赋范线性空间上的有界线性算子T的谱是复平面上的非空有界闭集3 用全连续算自谱分解理论,可解一类具有对称核的积分算子的积分方程教学时数:8学时教学内容第一节谱的概念第二节有界线性算子谱的基本性质第三节紧集和全连续算子第四节自伴全连续算子的谱论第五节具对称核的积分方程考核要求:第一节谱的概念(识记,领会)第二节有界线性算子谱的基本性质(领会,应用)第三节紧集和全连续算子(领会,应用)第四节自伴全连续算子的谱论(领会,应用)第五节具对称核的积分方程(领会,应用)三、推荐教材和参考书目《实变函数与泛函分析》,程其襄等,第二版,高等教育出版社《泛函分析基础》,刘培德,第一版,武汉大学出版社《泛函分析讲义》,张恭庆,第一版,北京大学出版社《实变函数论与泛函分析》,夏道行等,人民教育出版社《实变函数论与泛函分析概要》,王声望, 第二版,高等教育出版社《实变函数论》,江泽坚,吴智泉,第二版,人民教育出版社Introduction to Functioal Analysis,A.B.Tayor,New york Functional Analysis.Walter Rudin,New York:Mcgraw-Hill Book Com。

实变函数与泛函分析I课程教学大纲

实变函数与泛函分析I课程教学大纲

实变函数与泛函分析I课程教学大纲(总学时数:48,学分数:3)一、课程的性质、任务和目的实变函数是数学专业必修课之一,是近代分析数学领域的基础。

本课程数学思想与方法密集,是进一步掌握现代数学理论,开展理论和应用研究必不可少的基础课程。

通过本课程的学习,使学生掌握实变函数的基本理论、基本知识与基本方法,为以后进一步的深入学习打下坚实的基础。

二、课程基本内容和要求(一)集合1.集合(1)集合的概念(理解)(2)集合的表示(掌握)(3)集合的运算(掌握)2.对等与基数(1)集合的对等(理解)(2)集合的基数(理解)(3)Bernstein定理(掌握)3.可数集合(1)可数集合的概念(理解)(2)可数集合的性质(掌握)(3)常见的可数集合(掌握)4.不可数集合(1)不可数集合的概念(理解)(2)常见的不可数集合(了解)重点:对等、基数、可数集合、不可数集合难点:对等(二)点集1.度量空间(1)距离的概念(理解)(2)度量空间的概念(理解)(3)邻域及性质(掌握)(4)n维欧氏空间(掌握)2.聚点、内点、界点(1)聚点的概念(理解)(2)内点的概念(理解)(3)界点的概念(理解)3.开集、闭集、完备集(1)开集的概念(理解)(2)闭集的概念(理解)(3)完备集的概念(理解)(4)有限覆盖定理(掌握)4. 直线上开集、闭集及完备集的构造(1)直线上开集的构造(掌握)(2)直线上闭集及完备集的构造(掌握)(3)康托尔三分集(了解)重点:聚点、内点、界点、开集、闭集难点:完备集(三)测度论1.外测度(1)外测度的概念(理解)(2)外测度的性质(掌握)2.可测集(1)可测集的概念(理解)(2)可测集的性质(掌握)3.可测集类重点:外测度、可测集的概念及相关理论难点:不可测集的构造。

(四)可测函数1.可测函数及性质(1)可测函数的概念(理解)(2)可测函数的性质(掌握)2.叶果洛夫定理(掌握)3.可测函数的构造(掌握)4.依测度收敛(1)依测度收敛的概念(理解)(2)依测度收敛的性质(掌握)重点:可测函数、依测度收敛难点:可测函数的构造(五)积分论1.非负简单函数的勒贝格积分(1)非负简单函数勒贝格积分的概念(理解)(2)非负简单函数勒贝格积分的性质(掌握)2.非负可测函数的勒贝格积分(1)非负可测函数勒贝格积分的定义(理解)(2)非负可测函数勒贝格积分的性质(掌握)(3)Levi定理(掌握)(4)Foutou引理(掌握)3.可测函数的勒贝格积分(1)可测函数勒贝格积分的概念(理解)(2)可测函数勒贝格积分的性质(掌握)(3)Lebesgue积分的绝对连续性(掌握)(4)Lebesgue控制收敛定理(掌握)重点:非负函数的积分的定义,可积函数的性质难点:一般可积函数的积分定义、性质。

教学大纲_实变函数与泛函分析

教学大纲_实变函数与泛函分析

教学大纲_实变函数与泛函分析实变函数与泛函分析是高级数学中的一门重要课程,主要涉及实变函数的性质及其应用,以及泛函分析中的函数空间与算子的概念和性质。

本教学大纲旨在培养学生对实变函数与泛函分析的基本理论和方法的理解与应用能力。

一、课程目标通过本课程的学习,学生应该能够:1.了解实变函数的定义、性质和基本的分析方法;2.掌握实数的完备性和实变函数的连续性、可微性等基本概念与定理;3.熟悉重要的实变函数序列收敛的理论和方法;4.理解一元多项式空间及其上的内积、范数等概念;5.了解泛函分析的基本概念,如线性算子、单射、满射、闭算子等;6.掌握泛函分析中重要的泛函空间和赋范向量空间的性质与应用。

二、教学内容1.实变函数的性质与基本分析方法(12学时)1.1实数的完备性与实变函数的极限概念1.2实变函数的连续与可导性质1.3实变函数的积分与微分概念与定理2.实变函数的序列收敛理论与方法(16学时)2.1一致收敛性与收敛级数理论2.2函数项级数的收敛理论与方法2.3 Weierstrass逼近定理的证明与应用2.4傅里叶级数的概念、性质及展开方法3.一元多项式空间与泛函分析基础(14学时)3.1一元多项式空间及其上的内积与范数3.2一元多项式空间中的正交多项式与勒让德多项式3.3泛函分析的基本概念与定理4.泛函空间与线性算子(18学时)4.1泛函空间的定义与性质4.2无穷维度空间的收敛性与紧性4.3线性算子的基本性质与分类4.4线性算子的连续性与有界性5.算子的谱理论与泛函方程(20学时)5.1线性算子的谱理论与应用5.2巴拿赫空间的定义与性质5.3泛函方程的基本理论与应用5.4泛函方程的解的存在唯一性定理三、教学方法1.理论教学:通过讲述与讲解基本概念与定理,引导学生掌握基本原理和方法。

2.解题指导:通过典型例题和习题,引导学生独立思考问题,掌握解题方法和技巧。

3.讨论与交流:鼓励学生参与讨论,提问和回答问题,促进学生之间的交流与合作。

泛函分析教学大纲_2

泛函分析教学大纲_2

泛函分析课程教学大纲第一部份前言一、课程基本信息1.课程类别:专业选修课2.开课单位:数学与财经系3.适用专业:数学与应用数学专业4.备选的教材:《实变函数与泛函分析基础(第二版)》,程其襄,张奠宙,魏国强,胡善文,王漱石编,高等教育出版社,2004.二、课程性质和目标本课程性质是数学与应用数学专业的一门专业选修课。

本课程的教学目的是通过泛函分析的教学,使学生了解和掌握赋范线性空间,有界线性算子,Hilbert空间,Banach空间的基本概念和基本理论,培养学生理论思维能力,为进一步学习数学的有关学科和从事数学学科的教学打下一定的理论基础。

三、课程学时与学分教学时数: 64 学时学分数: 4 学分教学时数具体分配:第二部份教学内容及其要求第七章度量空间和赋范线性空间1.教学目标:要求学生理解度量空间、稠密集、可分空间、连续映射、赋范线性空间等概念,并掌握压缩映射原理。

2..教学重点:压缩映照原理、度量空间、线性赋范空间3.教学难点:稠密集、可分空间4.教学时数5.教学内容纲要第一节度量空间的进一步例子第二节度量空间的极限,稠密集,可分空间一、度量空间中的点列二、某些具体空间中收敛点列三、稠密集与可分空间第三节连续映射一、连续映射的定义二、连续映射的性质第四节柯西点列和完备度量空间一、柯西点列二、完备度量空间第五节度量空间的完备化第六节压缩映射原理及其应用一、压缩映射定理二、压缩映射定理应用第七节线性空间第八节赋范线性空间和Banach空间一、赋范线性空间二、Banach空间6. 课程资源(1)程其襄,张奠宙等. 实变函数与泛函分析基础, 高等教育出版社,2004.(2)郭大钧等.实变函数与泛函分析,山东大学出版社,1986.(3)胡适耕. 泛函分析,高等教育出版社,2001。

(4)江泽坚,吴智泉. 实变函数论,高等教育出版社,1994。

(5)W. Rudin, Functional Analysis. Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991.(6)江泽坚,孙善利. 泛函分析,高等教育出版社,1994。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《实变函数与泛函分析》教学大纲课程编号:120233B课程类型:□通识教育必修课□通识教育选修课□专业必修课□专业选修课□√学科基础课总学时:48 讲课学时:48 实验(上机)学时:0学分:3适用对象:经济统计学先修课程:数学分析、高等代数、空间解析几何毕业要求:1.应用专业知识,解决数据分析问题2.可以建立统计模型,获得有效结论3.掌握统计软件及常用数据库工具的使用4.关注国际统计应用的新进展5.基于数据结论,提出决策咨询建议6.具有不断学习的意识一、课程的教学目标本课程以实变函数与泛函分析基本理论为基础,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。

本课程就其实质来说是方法性的,但对于应用学科的学生来说,作为授课的目的,则是知识性的,故在教学方法和内容的选择上来说,只能让学生了解那些体现实变函数与泛函分析基本特征的思想内容,冗难的证明过程应尽量避免。

本课程基本目标为:能理解、掌握Lebesgue测度和Lebesgue积分,赋范空间和Hilbert空间一些基本概念、基本理论和基本方法。

本课程的难点在于学生初次涉及众多的抽象概念,并且论证的部分很多,教学中应密切结合数学分析中学到的相对来说比较直观的内容讲解,并督促学生下工夫理解。

二、教学基本要求(一)教学内容及要求《实变函数与泛函分析》在理解数学分析思想及基本知识和线性代数的基本知识后将其拓展到实数域上,进而讨论集合,欧氏空间,Lebesgtle测度,Lebesgue 可测函数,Lebesgue积分,测度空间,测度空间上的可测函数和积分,L^p空间,L^2空间,卷积与Fourier变换,Hilbert空间理论,Hilbert空间上的有界线性算子,Banach空间,Banach空间上的有界线算子,Banach空间上的连续线性泛函、共轭空间与共轭算子,Banach空间的收敛性与紧致性。

其中要求同学们:1. 理解和掌握集合间的关系和集与映射间的关系,了解度量空间的相关概念和Lebesgue可测集的有关内容和性质。

2. 了解可测函数的概念,构造,以及函数列的收敛性质。

3. 了解Lebesgue积分的概念,掌握收敛定理。

4. 理解赋范线性空间和内积空间的相关知识点。

5. 理解线性算子理论和有界线性泛函理论,了解三个基本定理。

(二)教学方法和教学手段在课堂教学中,以启发式教学为主进行课堂讲授,板书教学和多媒体教学结合。

课堂上加强与学生的互动,引导学生探索讨论,激发学生的学习兴趣,调动学生的学习主动性,提高课堂学习效率。

(三)实践教学环节本课程的实践教学环节以习题评析、实例讨论和应用研究为主,使学生能够理论联系实际,学以致用,从而逐步提高学生的知识运用能力和应用创新能力。

(四)学习要求学生需要做好课前预习、课堂学习、课后复习、做作业等学习环节,以掌握本课程所学内容。

(五)考核方式本课程采用闭卷考试的方式进行考核。

考核成绩包括平时成绩与期末考试成绩。

平时成绩(包括作业、考勤、课堂表现及期中考试)占40%,期末考试成绩占60%。

三、各教学环节学时分配教学课时分配四、教学内容第一章集合与运算第一节集合及其运算1、集合及其运算2、上极限与下极限第二节映射1、映射2、势第三节 n维欧氏空间R^n1、n维欧氏空间R^n2、闭集、开集和Borel集3、开集的结构,连续性4、n维点集连续性的基本定理本章重点和难点:映射及其性质,集的对等,可数集合,了解集族的交并关系,理解映射,集的对等,可数集合,会求上下极限,利用上下极限求解问题。

课程考核要求:掌握集合的运算,上下极限的运算,理解映射和势的概念(包括了有关概念),了解直线上点集的构造区间,熟悉Cantor三分集。

复习思考题:P13,1,2,3,4,5,8,10,11,12;P25,1-6,9,10,11,15,18,20,21,22,23;P42,1-7,10,12,15,18,20,22,23,25.第二章Lebesgue测度第一节 Lebesgue外测度和可测集1、外测度2、Lebesgue可测集3、测度空间第二节 Lebesgue可测函数的性质1、Lebesgue可测函数2、可测函数的基本性质3、测度空间上可测函数的性质第三节可测函数列的收敛性1、可测函数列的几乎一致收敛与处处收敛性2、可测函数列的依测度收敛性3、可测函数与连续函数4、测度空间上可测函数的收敛性本章重点和难点:简单函数和可测函数,可测函数的性质和构造,可测函数列的极限。

课程考核要求:了解Lebesgue测度和测度空间的概念,了解可测函数的性质,运算,和构造,理解Lusin定理,了解三个定理和依测度收敛的概念。

复习思考题:P60,1-7,9,10,11,14,15,19,20,24,25,28,29,33,36;P74,1,2,3,4,6,9,12,13,16,18,20,23;P87,1-24.第三章Lebesgue积分第一节Lebesgue可测函数的积分1、非负可测函数的积分2、一般可测函数的积分3、黎曼积分与Lebesgue 积分的关系4、测度空间上可测函数的积分 第二节 Lebesgue 积分的极限定理1、 Lebesgue 积分与极限运算的交换定理2、 黎曼可积性的刻画3、 L (X ,F ,u )中积分的极限定理 第二节 重积分与累次积分1、Fubini 定理2、测度空间上的重积分与累次积分本章重点和难点: Lebesgue 积分的概念与性质,积分收敛定理,Lebesgue 积分与Riemann 积分的关系,积分与微分, Fubini 定理。

课程考核要求:了解积分的定义,了解积分的性质,掌握计算可测函数的积分,理解四个定理的作用,了解L 及其上的测度,了解重积分和交换积分次序的Fubini 定理。

复习思考题:P110,1-8,11,14,16,17,18,21,22;P129,1-14,17-24;28-30;P148,1-10,12-15,17-20.第四章L^P 空间 第一节 L^P 空间1、L^p 空间的定义2、L^p 空间的性质3、L^p 空间的完备性4、L^p 空间的可分性 第二节 L^2空间1、L^2空间的内积2、L^2空间的性质 第三节 卷积与Fourier 变换2()R1、卷积2、L^2(R^n)上的Fourier变换本章重点和难点:L^p空间的各有关知识和概念,包括收敛性,完备性,列紧性,不动点定理和拓扑空间简介;课程考核要求:L^P空间定义,性质,完备性和可分性,理解线性空间的范数,距离,掌握Hölder不等式和Minkowski不等式,理解卷积和Fourier变换,掌握Fourier变换和数学分析中所学Fourier变换的不同。

复习思考题:P168,1-6,9,11,13-18,23;P185,1-12,16,19,20,2125,29;P206,1-7,9,10,11,14,17,18,19。

第五章 Hilbert空间第一节距离空间1、距离空间定义和完备化2、列紧性与可分性3、连续映射与压缩影射原理第二节 Hilbert空间理论1、定义2、正交性3、Riesz表示定理第三节 Hilbert空间上的算子1、线性算子的连续性和有界性2、共轭算子3、投影算子第四节 Hilbert空间上的紧算子1、紧算子定义2、Fredholm理论,紧算子的谱3、Hilbert-Schmidt理论本章重点和难点:内积空间与Hilbert空间,正交与正交补,正交分解定理,内积空间中的Fourier级数。

课程考核要求:理解距离空间的定义,理解列紧性和可分性,了解几个常见Hilbert空间,了解常见Hilbert空间,正交性和子空间的正交补,掌握Riesz引理,了解算子的性质,掌握共轭算子和投影算子,了解正交化方法和Fourier级数。

复习思考题:P222,1-8,10-14,17-28;P239,1-25;P255,1-6,7-17,20-25;P273,1-7,10-15,17-19.第六章 Banach空间第一节 Banach空间1、Banach空间定义2、线性赋范空间上的模等价3、有界线性算子第二节 Banach空间上的有界线性算子1、逆算子定理2、闭图像定理3、共鸣定理4、应用第三节 Banach空间上的连续线性泛函1、连续线性泛函的存在性2、共轭空间以及它的表示3、共轭算子第四节 Banach空间的收敛性和紧致性1、弱收敛与*弱收敛2、弱列紧性与*弱列紧性本章重点和难点:Banach空间的有界线性算子,泛函三大定理,共轭空间与共轭算子以及几种收敛性。

课程考核要求:理解Banach空间,线性算子和线性泛函的概念,理解三大定理的内容,理解共轭空间,共轭算子,Riesz表示定理,Hilbert空间的共轭算子,理解强收敛性,弱收敛性,泛函序列的收敛性。

复习思考题:P286,1-10,12-19;P297,1-7,10,11,13,15-23;P312,1-14,16-26;P323,1-11,13,14,16,17.五、其它本课程总学时为48学时(主要为讲课与习题),在执行时可以根据学生的掌握情况适当调整教学大纲。

六、主要参考书教材:郭懋正编著,实变函数与泛函分析,北京大学出版社,2007。

教学参考资源:[1]程其襄等,实变函数论与泛函分析基础,高等教育出版社,1983。

[2]郭大钧等,实变函数与泛函分析,山东大学出版社,1986。

[3]胡适耕,实变函数,高等教育出版社,1999。

[4]胡适耕,泛函分析,高等教育出版社,2001。

[5]江泽坚,吴智泉,实变函数论,高等教育出版社,1994。

[6]江泽坚,孙善利,泛函分析,高等教育出版社,1994。

[7]夏道行等,实变函数论与泛函分析,高等教育出版社,1987。

[8]郑维行,王声望,实变函数与泛函分析概要,高等教育出版社,1989。

执笔人:范林元教研室主任:系教学主任审核签名:。

相关文档
最新文档