数学模型实验报告二

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模实验报告2

数学建模实验报告2

aij >0,

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数学模型实验报告

数学模型实验报告

福建农林大学计算机与信息学院(数学类课程)实验报告课程名称:数学模型姓名:系:信息与计算科学专业:信息与计算科学年级:2007级学号:071152035指导教师:姜永职称:副教授2009年12月18日实验项目列表1.实验项目名称:数学规划模型建立及其软件求解 2.实验目的和要求:了解数学规划的的基本理论和方法,并用于建立实际问题的数学规划模型;会用LINDO 和LINGO 软件解数学规划问题并对结果加以分析应用。

3.实验使用的主要仪器设备和软件:惠普微机;1.6LINDO 和0.9LINGO 版本4.实验的基本理论和方法:数学规划模型的一般形式为mi x g t s x f z Min i x,,2,1,0)(..)( =≤=其中)(x f 表示目标函数,),,2,1(0)(m i x g i =≤为约束条件。

LINDO/LINGO 是美国LINDO 系统公司开发的一套专门用于求解最优化问题的软件包。

LINDO 用于求解线性规划和二次规划问题,LINGO 除了具有LINDO 的全部功能外,还可以用于求解非线性规划问题,也可以用于一些线性和非线性方程(组)的求解,等等。

LINDO/LINGO 软件的最大特色在于可以允许优化模型中的决策变量是整数,而且执行速度很快。

线性优化求解程序通常使用单纯形算法,对LINDO/LINGO 软件,为了能解大规模问题,也可以使用内点算法。

非线性优化求解程序采用的是顺序线性规划法,即通过迭代求解一系列线性规划来达到求解非线性规划的目的。

5.实验内容与步骤: 题一:问题阐述:某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A ,B ),按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A ,B .已知原料甲,乙,丙的含硫量分别是3%,1%,2%,进货价格分别为6千元/ t ,16千元/ t ,10千元/t ,产品A ,B 的含硫量分别不能超过2.5%,1.5%,售价分别为9千元/t ,15千元/t ,根据市场信息,原料甲、乙、丙的供应量都不能超过500t ;产品A ,B 的最大市场需求量分别为100t ,200t .(1) 应如何安排生产?(2) 如果产品A 的最大市场需求量增长为600t ,应如何安排生产? (3) 如果乙的进货价格下降为13千元/t ,应如何安排生产?分别、对(1)、(2)两种情况进行讨论. 建立模型:(1)设A 中含甲乙原料混合物1y 吨,含丙原料1z 吨;B 中含甲乙原料混合物2y 吨,含丙原料2z 吨;甲乙原料混合物中,甲原料占比例为1x ,乙原料占比例为2x (即121=+x x )。

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。

2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。

二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。

设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。

2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。

所以选择采用计算机模拟的方法, 求得近似结果。

(2)通过增加试验次数, 使近似解越来越接近真实情况。

3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。

而每行中1的个数代表在该楼层下的乘客的人数。

再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。

例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。

数学模型实习报告

数学模型实习报告

数学模型实习报告一实习目的《数学模型》是信息与计算科学专业的一门专业选修课,理论性较强,强调实践能力的培养。

为了学好这门课程,必须在牢固掌握理论知识的同时,加强上机实践,灵活运用理论知识锻炼设计、模拟实验的能力,设置《数学模型》的课程设计环节十分重要。

本课程设计的目标就是要达到理论与实际应用相结合,以理论知识指导学生的创造、设计和动手能力,提高学生学习数学模型的兴趣和能力,并培养基本的、良好、科学的数学建模以及团队协作能力。

二实习要求本课程主要介绍计算方法、优化方法、统计方法的基本理论和基本算法,并要求掌握数学建模方法和MATLAB软件的使用。

本课程是以实用为最终目的。

要求学生能综合运用数学基础知识,进行数据的分析和处理、并利用MATLAB软件进行计算机求解。

课程的实践性比较强,强调培养学生的动手动脑能力、开创与创新意识以及解决实际问题的能力。

设计中要求综合运用所学知识,上机解决一些与实际应用结合紧密的、规模较大的问题,通过数据分析、处理等各环节的训练,使学生深刻理解、牢固掌握数据建模的方法,掌握分析、解决实际问题的能力。

三实习内容教师薪金的确定(一),问题的提出某地人事部门为研究中学教师的薪金与他们的资历、性别。

教育程度及培训情况等因素之间的关系,要建立一个数学模型,分析人事策略的合理性,特别是考察女教师是否受到不公正的待遇,以及她们的婚姻状况是否会影响收入。

为此,从当地教师中随机选了3414位进行观察,然后从中保留了90个观察对象,得到了下表给出的相关数据。

尽管这些数据具有一定的代表性,但是仍有统计分析的必要。

现将表中数据的符号介绍如下:Z ~月薪(元);1X~工作时间(月);2X=1~男性,2X=0~女性,3X=1~男性或单身女性,3X=0~已婚女性;4X~学历(取值0~6,值越大表示学历越高);5X=1~受雇于重点中学,5X =0~其它;6X =1~受过培训的毕业生,6X =0~为受过培训的毕业生或受过培训的肄业生;7X =1~已两年一上未从事教学工作,7X =0~其它。

数学模型实验报告2

数学模型实验报告2

教师签名:
实验小结: 本次试验主要让我们掌握线性方程组建模,利用 MATLAB 来计算线性方程,从而解决 实际问题,是一个非常实用的解决实际问题的方法。十分值得学习。
教师评语: 1. 实验结果及解释: ( 准确合理、 较准确、 不合理 ) ; 2. 实验步骤的完整度: ( 完整、 中等、 不完整 ) ; 3. 实验程序的正确性: ( 很好、 较好、 中等、 较差、 很差 ) ; 4. 卷面整洁度: ( 很好、 评定等级: ( ) 较好、 中等、 较差、 很差 ) ; 日期:
X4-X11+X12=500
X5+X8=310
Байду номын сангаас
X5-X6+X10=400
(2)使用 MATLAB 求线性方程组:
实验目的: 掌握线性方程组建模,并会用它解决一些实际问题;熟悉科学计算软件 MATLAB 求 线性方程组的命令。 实验仪器: 1、支持 Intel Pentium Ⅲ及其以上 CPU,内存 256MB 以上、硬盘 1GB 以上容量的 微机; 软件配有 Windows98/2000/XP 操作系统及 MATLAB 软件等。 2、了解 MATLAB 等软件的特点及系统组成,在电脑上操作 MATLAB 等软件。 实验内容、步骤及程序: 实验内容 问题一:某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路 每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和 离开的车数相等, 整个图中进入和离开的车数相等 。
31 31
左上方框里填写学号后两位,学习委员按此顺号(报告展开排序)交给老师
数学模型实验报告
专业 姓名 实验时间 实验名称 信息与计算科学 史博强 2017 年 9 班级 同组人 月 23 日 初等模型 实验地点 k7-403 1班 组别 指导教师 许小芳

数学建模实验报告

数学建模实验报告

数学建模实验报告实验报告:数学建模引言:数学建模是一门独特且灵活的学科,它将现实问题转化为数学模型,并利用数学工具和方法来分析和解决这些问题。

通过实践和研究,我们可以发现数学建模在各个领域都有广泛的应用,如物理学、生物学、经济学等。

本实验报告旨在介绍数学建模的基本理论与方法,并展示一个实际问题的建模与求解过程。

一、数学建模的基本理论与方法1.1模型的建立数学建模的第一步是建立数学模型。

一个好的模型应具备以下要素:准确描述问题的前提条件,明确问题的目标,确定可变参数和约束条件,考虑问题的实际需求。

1.2模型的求解模型的求解是数学建模的核心环节。

根据模型的形式和要求,我们可以选择适合的求解方法,如数值方法(如微积分、线性代数等)和符号计算方法(如差分方程、偏微分方程等)等。

1.3模型的分析与验证在模型求解的基础上,我们需要对模型进行分析和验证。

分析主要是从数学角度研究模型的性质和规律,验证则是将模型的结果与实际数据进行比对,以评估模型的准确性和可靠性。

二、实际问题的建模与求解考虑以下实际问题:公司准备推出一款新产品,为了提高产品的市场竞争力,他们决定在一部分商品上采用价格优惠的策略。

为了确定优惠的程度,他们需要建立一个数学模型来分析不同优惠方案的效果,并选择最优的方案。

2.1模型的建立首先,我们需要明确问题的前提条件和目标。

假设该产品的市场价格为P,成本价格为C,单位销售量为Q。

我们的目标是最大化销售利润。

于是,我们可以建立以下数学模型:利润函数:利润=销售额-成本利润=(P-D)*Q-C其中D为优惠的价格折扣。

2.2模型的求解为了确定最优的优惠方案,我们需要将问题转化为一个数学优化问题。

我们可以选用辅助函数法或拉格朗日乘子法来求解最优值。

在这里,我们选择辅助函数法。

我们将利润函数分别对P和D求偏导数,并令其等于0,得到以下方程组:d(利润)/dP=Q-2D=0d(利润)/dD=P-C=0解这个方程组可以求得最优解P=C,D=Q/22.3模型的分析与验证在分析这个模型之前,我们需要验证模型的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C:增广矩阵的最简形
【模型建立】根据上图和上述假设,在各个路口的进出数量分别满足: x1+x3==230+220; x1-x2+x5=300; x2-x7=160; x3+x4=210; x4+x5-x6=400; -x6+x7=180;
【模型求解】 使用 MATLAB 求线性方程组; A=[1,0,1,0,0,0,0;1,-1,0,0,1,0,0;0,1,0,0,0,0,-1;0,0,1,1,0,0,0;0,0,0,1,1, -1,0;0,0,0,0,0,-1,1]; b=[450;300;160;210;400;180];W=[A,b]; i=rank(A),j=rank(W) i = 5 j = 5 系数矩阵和增广矩阵的秩相等
C1 = 1 0 0 0 1 0 -1 460 0 1 0 0 0 0 -1 160 0 0 1 0 -1 0 1 -10 0 0 0 1 1 0 -1 220 0 0 0 0 0 1 -1 -180
去掉系数矩阵任何一行得到的最简形矩阵都相同,故六个路口去掉任何一个都 可以,但为了统计较少的数据提高效率,故去掉 230 和 220 即可。 (4) 由第二问可知 x5 和 x7 是自由未知量,故添加 x5 和 x7 的流量统计即可唯一确
x =1.0e+05 *
1.9966
1.8415
0.5835
可见煤矿要生产 1.9966*10^5 元的煤,电厂要生产 1.8415*10^5 元的电恰好满足。
问题二:某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值 1 元钱的煤需消耗 0.3 元的 电; 为了把这 1 元钱的煤运出去需花费 0.2 元的运费; 每生产 1 元的电需 0.6 元的煤作燃料; 为了运行电厂的 辅助设备需消耗本身 0.1 元的电, 还需要花费 0.1 元的运费; 作为铁路局, 每提供 1 元运费的运输需消耗 0.5 元的煤, 辅助设备要消耗 0.1 元的电. 现煤矿接到外地 6 万元煤的订货, 电厂有 10 万元电的外地需求, 问: 煤 矿和电厂各生产多少才能满足需求
运 0.2 0.1 0 z
0.2x+0.1y
0
实验小结:本次实验掌握了线性方程组建模,并会用它解决一些实际问题;熟悉科 学计算软件 MATLA 准确合理、 较准确、 不合理 );
2. 实验步骤的完整度:( 完整、 中等、 不完整 );
3. 实验程序的正确性:( 很好、 较好、 中等、 较差、 很差 );
过程: (1) 建立确定的线性方程组; (2) 使用 MATLAB 求线性方程组;
【模型假设】:假设不考虑价格变动等因素
【模型建立】:设煤矿,电厂,铁路分别产出 x 元,y 元,z 元刚好满足需求,则有
产出 1 元
产出
消耗
订单
煤电运
消 煤 0 0.6 0.5 x
0.6y+0.5z 60000
耗 电 0.3 0.1 0.1 y 0.3x+0.1y+0.1z 100000
320
(1)建立确定每条道路流量的线性方程组; (2)使用 MATLAB 求线性方程组; (3)分析哪些流量数据是多余的; (4)为了唯一确定未知流量, 需要增添哪几条道路的流量统计; 【模型假设】:每条道路都是单行线;每个交叉路口进入和离开的车辆数目相等。
【符号说明】: A:系数矩阵 b:右边常数系数向量 W:增广矩阵
08
左上方框里填写学号后两位,学习委员按此顺号(报告展开排序)交给老师
数学模型实验报告
专业 信息与计算科学 班级 一 组别
指导教师 许小芳
姓名
同组人
实验时间 2020 年 10 月 3 日
实验地点 K7-403
实验名称 初等模型
实验目的:
掌握线性方程组建模,并会用它解决一些实际问题;熟悉科学计算软件 MATLAB 求
x5,x7 为自由未知量
x5
1
0
0
x6
0
-1
-180
x7
0
1
0
(3)A1=[1,-1,0,0,1,0,0;0,1,0,0,0,0,-1;0,0,1,1,0,0,0;0,0,0,1,1,-1,0;0,0,0
,0,0,-1,1];b1=[300;160;210;400;180]; W1=[A1,b1]; C1=rref(W)
定未知流量
x-(0.6y+0.5z)=60000
x-0.6y-0.5z=60000
y-(0.3x+0.1y+0.1z)=100000 即 -0.3x+0.9y-0.1z=100000
z-(0.2x+0.1y)=0
-0.2x-0.1y+z=0
A=[1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1];b=[60000;100000;0]; x=A\b
实验内容、步骤及程序:
问题一:某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中 的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相 等.
220
300
120
x1
x2
230
280
x3
x5
x7
x4
x6
110
140
100
400
4. 卷面整洁度:( 很好、 较好、 中等、 较差、 很差 );
评定等级:( )
教师签名:
日期:
C=rref(W)
C= 100 010 001 000 000 000
此时方程的通解为:
01 00 0 -1 11 00 00
0 -1 460 0 -1 160 0 1 -10 0 -1 220 1 -1 -180 000
x1
1
-1
460
x2
0
-1
160
x3
-1
1
-10
x4 = x5 1 + x7 -1 = 220
线性方程组的命令。
实验仪器:
1、支持 Intel Pentium Ⅲ及其以上 CPU,内存 256MB 以上、硬盘 1GB 以上容量的
微机; 软件配有 Windows98/2000/XP 操作系统及 MATLAB 软件等。
2、了解 MATLAB 等软件的特点及系统组成,在电脑上操作 MATLAB 等软件。
相关文档
最新文档