电 容 器 试 验 报 告(多种实验)
10kV电气试验报告

试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:试验人员: 审核:目录10kV电容器951电流互感器试验报告 (1)10kV电容器951断路器试验报告 (2)10kV电容器951开关柜避雷器试验报告 (3)10kV电容器951零序电流互感器试验报告 (4)10kV电容器952电流互感器试验报告 (5)10kV电容器952断路器试验报告 (6)10kV电容器952开关柜避雷器试验报告 (7)10kV电容器952零序电流互感器试验报告 (8)10kV城厂线953电流互感器试验报告 (9)10kV城厂线953断路器试验报告 (10)10kV城厂线953开关柜避雷器试验报告 (11)10kV城厂线953零序电流互感器试验报告 (12)10kV城花线954电流互感器试验报告 (13)10kV城花线954断路器试验报告 (14)10kV城花线954开关柜避雷器试验报告 (15)10kV城花线954零序电流互感器试验报告 (16)10kV城峡线955电流互感器试验报告 (17)10kV城峡线955断路器试验报告 (18)10kV城峡线955开关柜避雷器试验报告 (19)10kV城峡线955零序电流互感器试验报告 (20)10kV城愉线956电流互感器试验报告 (21)10kV城愉线956断路器试验报告 (22)10kV城愉线956开关柜避雷器试验报告 (23)10kV城愉线956零序电流互感器试验报告 (24)10kV城石线957电流互感器试验报告 (25)10kV城石线957断路器试验报告 (26)10kV城石线957开关柜避雷器试验报告 (27)10kV城石线957零序电流互感器试验报告 (28)10kV城水线958电流互感器试验报告 (29)10kV城水线958断路器试验报告 (30)10kV城水线958开关柜避雷器试验报告 (31)10kV城水线958零序电流互感器试验报告 (32)10kV 1MPT试验报告 (33)10kV 1MPT开关柜避雷器试验报告 (34)。
电力电容器试验

电容器基础知识
电力电容器的分类和用途
电力电容器可分为电力电容器和电力电容器装置两大类, 电力电容器包括: 并联电容器:用于电力系统中无功补偿,补偿负荷的感性电 流,减小线路损耗, 调节无功平衡 交流滤波电容器:与滤波电抗器组成滤波回路,滤除系统系 统谐波。 串联电容器:串联于电力系统中,补偿线路电感,稳定系统 电压,提高输送容量。 耦合电容器:用于电力载波的高频通路。 直流滤波电容器:消除直流输电系统中,整流设备产生的纹 波或谐波。 断路器电容器:并于断路器断口上,均匀断口之间的电压。
电容器损耗
• 电容器的额定电压与其他设备不同,其额定电压不等于系 统额定电压,主要原因是电容器的额定电压与容量和成本 直接有关,额定电压的确定决定于系统的最高运行电压、 串联电抗器的电抗率、系统的谐波水平等。 • 电容器损耗: 电容器内消耗的有功功率,对于单元电容器,由电介 质、内部熔丝、内部放电器件、连接件等产生的损耗。对 于电容器组,由单元、外部熔断器、母线、放电电阻和阻 尼电抗器等产生的损耗。 • 电容器的损耗角正切值 在规定的正弦交流电压和频率下,电容器的等效串联 电阻与容抗之比,这里为电容器的内部介质损耗。
• 的两个出线是通过安装在电容器箱壳顶部的两个对壳绝缘 的套管引出的,而单套管电容器的两个出线只有其中的一 个是通过对壳绝缘的套管引出的,而另一个出线则通过接 壳的方式从箱壳的接线端引出。
电容器的早期损坏
• 电容器的技术性能取决于两个方面:其一是电容 器的绝缘介质,介质的优劣。由于电容器的极间 介质的场强直接决定着电容器的容量的大小,所 以,在所有的电器设备中,电容器的场强是最高 的,所以电容器对制造工艺要求也是最高的。 • 这里要说明的一点是,由于电容器的场强较高, 极间介质较薄,电容器早期少量的损坏应是一种 正常现象。 • 由于国内电容器行业制造设备和工艺的进步,有 力地保证了产品质量的稳定提高。
电路实验报告汇总

实验一 元件特性的示波测量法一、实验目的1、学习用示波器测量正弦信号的相位差。
2、学习用示波器测量电压、电流、磁链、电荷等电路的基本变量3、掌握元件特性的示波测量法,加深对元件特性的理解。
二、实验任务1、 用直接测量法和李萨如图形法测量RC 移相器的相移ϕ∆即uC u sϕϕ-实验原理图如图5-6示。
2、 图5-3接线,测量下列电阻元件的电流、电压波形及相应的伏安特性曲线(电源频率在100Hz~1000Hz 内): (1)线性电阻元件(阻值自选)(2)给定非线性电阻元件(测量电压范围由指导教师给定)电路如图5-7 3、按图5-4接线,测量电容元件的库伏特性曲线。
4、测量线性电感线圈的韦安特性曲线,电路如图5-55、测量非线性电感线圈的韦安特性曲线,电源通过电源变压器供给,电路如图5-8所示。
图 5-7 图 5-8这里,电源变压器的副边没有保护接地,示波器的公共点可以选图示接地点,以减少误差。
三、思考题1、元件的特性曲线在示波器荧光屏上是如何形成的,试以线性电阻为例加以说明。
答:利用示波器的X-Y方式,此时锯齿波信号被切断,X轴输入电阻的电流信号,经放大后加至水平偏转板。
Y轴输入电阻两端的电压信号经放大后加至垂直偏转板,荧屏上呈现的是u x,u Y的合成的图形。
即电流电压的伏安特性曲线。
3、为什么用示波器测量电路中电流要加取样电阻r,说明对r的阻值有何要求?答:因为示波器不识别电流信号,只识别电压信号。
所以要把电流信号转化为电压信号,而电阻上的电流、电压信号是同相的,只相差r倍。
r的阻值尽可能小,减少对电路的影响。
一般取1-9Ω。
四、实验结果1.电阻元件输入输出波形及伏安特性2.二极管元件输入输出波形及伏安特性实验二 基尔霍夫定律、叠加定理的验证 和线性有源一端口网络等效参数的测定一、实验目的1、加深对基尔霍夫定律、叠加定理和戴维南定理的内容和使用范围的理解。
2、学习线性有源一端口网络等效电路参数的测量方法3、学习自拟实验方案,合理设计电路和正确选用元件、设备、提高分析问题和解决问题的能力 二、实验原理 1、基尔霍夫定律:基尔霍夫定律是电路普遍适用的基本定律。
电力电容器交接试验记录

电力电容器交接试验报告一、铭牌及安装位置:
二、试验日期及天气情况:
三、电容量及绝缘电阻测量:
四、备注:
电力电容器交接试验报告
一、铭牌及安装位置:
二、试验日期及天气情况:
三、电容量及绝缘电阻测量:
四、备注:
电力电容器交接试验报告一、铭牌及安装位置:
二、试验日期及天气情况:
三、电容量及绝缘电阻测量:
四、备注:
电力电容器交接试验报告一、铭牌及安装位置:
二、试验日期及天气情况:
三、电容量及绝缘电阻测量:
四、备注:
电力电容器交接试验报告一、铭牌及安装位置:
二、试验日期及天气情况:
三、电容量及绝缘电阻测量:
四、备注:
电力电容器交接试验报告一、铭牌及安装位置:
二、试验日期及天气情况:
三、电容量及绝缘电阻测量:
四、备注:
电力电容器交接试验报告一、铭牌及安装位置:
二、试验日期及天气情况:
三、电容量及绝缘电阻测量:
四、备注:
电力电容器交接试验报告一、铭牌及安装位置:
二、试验日期及天气情况:
三、电容量及绝缘电阻测量:
四、备注:。
实验二超级电容器的组装及性能测试实验指导书

实验二超级电容器的组装及性能测试实验名称:超级电容器的组装及性能测试所涉及课程:工程化学打算学时:4学时一、实验目的1.把握超级电容器的大体原理及特点;2.把握电极片的制备及电容器的组装;3.把握电容器的测试方式及充放电进程特点。
二、实验原理1.电容器的分类电容器是一种电荷存储器件,按其贮存电荷的原理可分为三种:传统静电电容器,双电层电容器和法拉第准电容器。
传统静电电容器主若是通过电介质的极化来贮存电荷,它的载流子为电子。
双电层电容器和法拉第准电容贮存电荷主若是通过电解质离子在电极/溶液界面的聚集或发生氧化还原反映,它们具有比传统静电电容器大得多的比电容量,载流子为电子和离子,因此它们二者都被称为超级电容器,也称为电化学电容器。
2.双电层电容器双电层理论由19世纪末Helmhotz等提出。
Helmhotz模型以为金属表面上的净电荷将从溶液中吸收部份不规那么的分派离子,使它们在电极/溶液界面的溶液一侧,离电极必然距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。
于是,在电极上和溶液中就形成了两个电荷层,即双电层。
双电层电容器的大体组成如图1,它是由一对可极化电极和电解液组成。
双电层由一对理想极化电极组成,即在所施加的电位范围内并非产生法拉第反映,所有聚集的电荷均用来在电极的溶液界面成立双电层。
那个地址极化进程包括两种:(1)电荷传递极化(2)欧姆电阻极化。
当在两个电极上施加电场后,溶液中的阴、阳离子别离向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳固,在正负极间产生相对稳固的电位差。
当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这即是双电层电容的充放电原理。
(a )非充电状态下的电位 (b )充电状态下的电位 (c )超级电容器的内部结构图1 双电层电容器工作原理及结构示用意3.法拉第准电容器关于法拉第准电容器而言,其贮存电荷的进程不仅包括双电层上的存储,还包括电解液中离子在电极活性物质中由于氧化还原反映而将电荷贮存于电极中。
电容参数测试实验报告(3篇)

第1篇一、实验目的1. 了解电容器的参数及其测试方法;2. 掌握使用示波器、万用表等仪器进行电容器参数测试的操作技巧;3. 熟悉电容器参数对电路性能的影响。
二、实验原理电容器是一种储存电荷的电子元件,其参数主要包括电容量、耐压值、损耗角正切等。
电容量是指电容器储存电荷的能力,单位为法拉(F);耐压值是指电容器能够承受的最大电压,单位为伏特(V);损耗角正切是衡量电容器损耗性能的参数,其值越小,电容器性能越好。
电容器参数测试实验主要通过测量电容量、耐压值和损耗角正切等参数,来评估电容器的性能。
三、实验仪器与材料1. 实验仪器:(1)示波器:用于观察电容器充放电波形;(2)万用表:用于测量电容器的电容量、耐压值和损耗角正切;(3)信号发生器:用于提供测试信号;(4)电容器:待测试的电容元件。
2. 实验材料:(1)测试电路板;(2)连接线;(3)电源。
四、实验步骤1. 连接电路:按照实验电路图连接测试电路,包括信号发生器、电容器、示波器、万用表等。
2. 测量电容量:(1)打开电源,调节信号发生器输出频率为1kHz,输出电压为5V;(2)使用万用表测量电容器的电容量,记录数据。
3. 测量耐压值:(1)使用万用表测量电容器的耐压值,记录数据;(2)将电容器接入测试电路,逐渐增加电压,观察电容器是否击穿,记录击穿电压。
4. 测量损耗角正切:(1)打开示波器,将示波器探头连接到电容器的两端;(2)使用信号发生器输出正弦波信号,调节频率为1kHz,输出电压为5V;(3)观察示波器显示的波形,记录电容器的充放电波形;(4)使用万用表测量电容器的损耗角正切,记录数据。
5. 数据处理与分析:(1)根据测量数据,计算电容器的电容量、耐压值和损耗角正切;(2)分析电容器的性能,比较不同电容器的参数差异。
五、实验结果与分析1. 电容量:根据实验数据,电容器A的电容量为10μF,电容器B的电容量为15μF。
2. 耐压值:电容器A的耐压值为50V,电容器B的耐压值为60V。
器件仿真实验报告

器件仿真实验报告电力电子仿真仿真实验报告目录实验一:常用电力电子器件特性测试................................................................................... 3 (一)实验目的:................................................................................................ .. (3)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; (3)掌握各器件的参数设置方法,以及对触发信号的要求。
(3)(二)实验原理.................................................................................................... (3)(三)实验内容.................................................................................................... (3)(四)实验过程与结果分析 (3)1.仿真系统.................................................................................................... (3)2.仿真参数.................................................................................................... .. (4)3.仿真波形与分析.................................................................................................... .. (4)4.结论.................................................................................................... .. (10)实验二:可控整流电路.................................................................................................... .. (11)(一)实验目的.................................................................................................... . (11)(二)实验原理.................................................................................................... . (11)(三)实验内容.................................................................................................... . (11)(四)实验过程与结果分析 (12)1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例.................................................................................................... .. (12)2.仿真参数.................................................................................................... (12)3.仿真波形与分析.................................................................................................... (14)实验三:交流-交流变换电路................................................................................................19(一)实验目的.................................................................................................... . (19)(三)实验过程与结果分析 (19)1)晶闸管单相交流调压电路 (19)实验四:逆变电路.................................................................................................... . (26)(一)实验目的.................................................................................................... . (26)(二)实验内容.................................................................................................... . (26)实验五:单相有源功率校正电路 (38)(一)实验目的.................................................................................................... . (38)(二)实验内容.................................................................................................... . (38)个性化作业:................................................................................................ . (40)(一)实验目的:................................................................................................ . (40)(二)实验原理:................................................................................................ . (40)(三)实验内容.................................................................................................... . (40)(四)结果分析:................................................................................................ . (44)(五)实验总结:................................................................................................ . (45)实验一:常用电力电子器件特性测试(一)实验目的:掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;掌握各器件的参数设置方法,以及对触发信号的要求。
数字式电容测试仪实验预报告

摘要本设计是基于555定时器,连接构成多谐振荡器以及单稳态触发器而测量电容的。
单稳态触发器中所涉及的电容,即是被测量的电容C。
其脉冲输入信号x是555定时器构成的多谐振荡器所产生。
信号的频率可以根据所选的电阻,电容的参数而调节。
这样便可以定量的确定被测电容的容值范围。
因为单稳态触发器的输出脉宽是根据电容C值的不同而不同的,所以脉宽即是对应的电容值,其x精确度可以达到0.1%。
设计方案:利用单稳态触发器或电容器充放电规律等,可以把被测电容的大小转换成脉冲的宽窄,即控制脉冲宽度 Tx严格与 Cx成正比.只要把此脉冲与频率固定不变的方波即时钟脉冲相与,便可得到计数脉冲,把计数脉冲送给计数器计数,然后再送给显示器显示.如果时钟脉冲的频率等参数合适,数字显示器显示的数字 N便是 Cx的大小。
之所以选择该方案是考虑到这个方案不仅设计比较容易实现,而且必要时还可以扩展量程,更重要的是该方案设计出来的数字测试仪测量的结果比较精确。
单稳态触发器输出电压脉宽T X=RC X ln3≈1.1RC X电路产生的脉冲可以从几微秒到数分钟。
当R固定时,则T X为正比于电容。
C越大,则Tw时间内通过与门的时钟脉冲就越多,则计数电路实现T与C正比。
单稳态触发器产生脉冲宽度T W与电容C成正比的特点,将被测电容C转换为宽度为T W的脉冲总电路图:设计要求:1.被测电容的容量在10μF至100μF范围内2.用数码管显示测量结果,测量误差小于20%。
当被测电容CX接入电路后,由于电容充放电效应,单稳态触发器会产生一个脉宽与被测电容大小成正比的闸门信号(如图3中第三个信号),同时多谐振荡器会产生脉冲信号CP(如图3中第二个信号),闸门信号与脉冲信号CP同时经过与门运算,得到一个新的脉冲信号(图3中第一个信号),再将此信号送入计数器进行计数。
单稳态触发器由555定时器接成,4端为异步清零端,当置0时,无论输入如何均输出低电平,当置1时,555定时器工作。