同济第六版《高等数学》教案WORD版-第02章导数与微分
同济大学高等数学《导数及其应用》word教案

同济大学高等数学《导数及其应用》w o r d教案(总35页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第 9 次课 2 学时第二章 导数与微分导数和微分是高等数学中的重要内容之一,也是今后讨论一切问题的基础。
导数数大体上变化多少,它从根本上反映了函数的变化情况。
本章主要学习和讨论导数和微分的概念以及它们的计算方法,以后将陆续的介绍它们的用途。
§2、1 导数的概念 一、 引例 1、切线问题:切线的概念在中学已见过。
从几何上看,在某点的切线就是一直线,它在该点和曲线相切。
准确地说,曲线在其上某点P 的切线是割线PQ 当Q 沿该曲线无限地接近于P 点的极限位置。
设曲线方程为)(x f y =,设P 点的坐标为),(00y x p ,动点Q 的坐标为),(y x Q ,要求出曲线在P 点的切线,只须求出P 点切线的斜率k 。
由上知,k 恰好为割线PQ 的斜率的极限。
我们不难求得PQ 的斜率为:0)()(x x x f x f --;因此,当Q P →时,其极限存在的话,其值就是k ,即00)()(limx x x f x f k x x --=→。
若设α为切线的倾角,则有αtan =k 。
2、速度问题:设在直线上运动的一质点的位置方程为)(t s s =(t 表示时刻),又设当t 为0t 时刻时,位置在)(0t s s =处,问:质点在0t t =时刻的瞬时速度是多少?为此,可取0t 近邻的时刻t ,0t t >,也可取0t t <,在由0t 到t 这一段时间内,质点的平均速度为00)()(t t t s t s --,显然当t 与0t 越近,用00)()(t t t s t s --代替0t 的瞬时速度的效果越佳,特别地,当0t t →时,00)()(t t t s t s --→某常值0v ,那么0v 必为0t 点的瞬时速度,此时,00)()(lim 0t t t s t s v t t --=→二、 导数的定义综合上两个问题,它们均归纳为这一极限00)()(limx x x f x f x x --→(其中0x x -为自变量x在0x 的增量,)()(0x f x f -为相应的因变量的增量),若该极限存在,它就是所要讲的导数。
同济大学高等数学《导数及其应用》word教案

第9次课2学时第二章导数与微分导数和微分是高等数学中的重要内容之一,也是今后讨论一切问题的基础。
导数反映出函数相对于自变量的变化快慢的程度,而微分则指明当自变量有微小变化时函数大体上变化多少,它从根本上反映了函数的变化情况。
本章主要学习和讨论导数和微分的概念以及它们的计算方法,以后将陆续的介绍它们的用途。
§2、1导数的概念一、 引例1、 切线问题:切线的概念在中学已见过。
从几何上看,在某点的切线就是一直线,它在该点和曲线相切。
准确地说,曲线在其上某点P 的切线是割线PQ 当Q 沿该曲线无限地接近于P 点的极限位置。
设曲线方程为)(x f y =,设P 点的坐标为),(00y x p ,动点Q 的坐标为),(y x Q ,要求出曲线在P 点的切线,只须求出P 点切线的斜率k 。
由上知,k 恰好为割线PQ 的斜率的极限。
我们不难求得PQ 的斜率为:0)()(x x x f x f --;因此,当Q P →时,其极限存在的话,其值就是k ,即0)()(limx x x f x f k x x --=→。
若设α为切线的倾角,则有αtan =k 。
2、速度问题:设在直线上运动的一质点的位置方程为)(t s s=(t 表示时刻),又设当t 为0t 时刻时,位置在)(0t s s =处,问:质点在0t t =时刻的瞬时速度是多少?为此,可取0t 近邻的时刻t ,0t t >,也可取0t t <,在由0t 到t 这一段时间内,质点的平均速度为00)()(t t t s t s --,显然当t 与0t 越近,用00)()(t t t s t s --代替0t 的瞬时速度的效果越佳,特别地,当0t t →时,0)()(t t t s t s --→某常值0v ,那么0v 必为0t 点的瞬时速度,此时,二、导数的定义综合上两个问题,它们均归纳为这一极限00)()(limx x x f x f x x --→(其中0x x -为自变量x 在0x 的增量,)()(0x f x f -为相应的因变量的增量),若该极限存在,它就是所要讲的导数。
第六版高数上教学(同济)D2习题课

13、若f(x)是奇函数,且f
’(0)=8,求lim
������→0
������(������) ������
14、设函数f(x)=(x-a) φ x ,已知φ(x)在x=a处连续,求f’(a)
目录 上页 下页 返回 结束
处的连续性及可导性. 解:
所以
在
处连续.
又
即在
处可导 .
f (0) 0
目录 上页 下页 返回 结束
二、 导数和微分的求法
1. 正确使用导数及微分公式和法则 2. 熟练掌握求导方法和技巧
(1) 求分段函数的导数 注意讨论界点处左右导数是否存在和相等
(2) 隐函数求导法 导出 对数微分法 (3) 参数方程求导法 转化 极坐标方程求导 (4) 复合函数求导法 (可利用微分形式不变性)
f (1)
x
1
f (1) (1 1) 1 f (1) 22
目录 上页 下页 返回 结束
例3.设 f (x) 在 x 2处连续,且 lim f (x) 3, 求 f (2) . x2 x 2
解: f (2) lim f (x) lim[(x 2) f (x) ] 0
目录 上页 下页 返回 结束
例2.若
f
(1)
0
且
f
(1)
存在
,
求
lim
x0
f
(sin 2 (ex
x cos 1) tan x
x)
.
解:
原式 =
lim
x0
f
(sin 2
x x2
cos
x)
~x
且
联想到凑导数的定义式
同济大学(高等数学)-第二章-导数与微分

第二篇 一元函数微积分第二章 导数与微分微积分学包含微分学和积分学两部分,而导数和微分是微分学的核心概念.导数反映了函数相对于自变量的变化的快慢程度,微分则指明了当自变量有微小变化时,函数大体上变化了多少,即函数的局部改变量的估值.本章主要讨论导数和微分的概念、性质以及计算方法和简单应用.第1节 导数的概念1.1 导数概念的引入1。
1。
1 质点做变速直线运动的瞬时速度问题现有一质点做变速直线运动,质点的运动路程s 与运动时间t 的函数关系式记为()s s t =,求在0t 时刻时质点的瞬时速度0()v t 为多少?整体来说速度是变化的,但局部来说速度可以近似看成是不变的.设质点从时刻0t 改变到时刻0t t +∆,在时间增量t ∆内,质点经过的路程为00()()s s t t s t ∆=+∆-,在t ∆时间内的平均速度为00()()s t t s t s v t t+∆-∆==∆∆, 当时间增量t ∆越小时,平均速度v 越接近于时刻0t 的瞬时速度0()v t ,于是当0t ∆→时,v 的极限就是质点在时刻0t 时的瞬时速度0()v t ,即00000()()()lim limlim t t t s t t s t sv t v t t∆→∆→∆→+∆-∆===∆∆. 1.1.2 平面曲线的切线斜率问题已知曲线:()C y f x =,求曲线C 上点000(,)M x y 处的切线斜率.欲求曲线C 上点000(,)M x y 的切线斜率,由切线为割线的极限位置,容易想到切线的斜率应是割线斜率的极限.图2—1如图2—1所示,取曲线C 上另外一点00(,)M x x y y +∆+∆,则割线0M M 的斜率为000()()tan M M f x x f x y k x x+∆-∆===∆∆ϕ. 当点M 沿曲线C 趋于0M 时,即当0x ∆→时,0M M 的极限位置就是曲线C 在点0M 的切线0M T ,此时割线的倾斜角ϕ趋于切线的倾斜角α,故切线的斜率为00000()()lim tan limlimx x x f x x f x yk x x∆→∆→∆→+∆-∆===∆∆ϕ. 前面我们讨论了瞬时速度和切线斜率两个问题,虽然实际意义不同,但如果舍弃其实际背景,从数学角度看,却有着相同的数学形式,即当自变量的改变量趋于零时,求函数的改变量与自变量的改变量之比的极限.在自然科学、社会科学和经济领域中,许多问题都可以转化为上述极限形式进行研究,如电流强度、人口增长速度、国内生产总值的增长率、边际成本和边际利润等.因此,我们舍弃这些问题的实际意义,抽象出它们数量关系上的共同本质—-导数.1。
高等数学同济教案

高等数学同济教案教案标题:高等数学同济教案教案目标:1. 理解高等数学的基本概念和原理。
2. 掌握高等数学的基本运算和方法。
3. 培养学生的数学思维和解决问题的能力。
4. 培养学生的数学推理和证明能力。
教案内容:课时一:导数与微分1. 导数的定义和性质2. 导数的计算方法和应用3. 微分的定义和性质4. 微分的计算方法和应用课时二:不定积分与定积分1. 不定积分的定义和性质2. 不定积分的计算方法和应用3. 定积分的定义和性质4. 定积分的计算方法和应用课时三:微分方程1. 微分方程的基本概念和分类2. 一阶常微分方程的解法3. 二阶常微分方程的解法4. 微分方程的应用课时四:级数与数项级数1. 级数的概念和性质2. 数项级数的概念和性质3. 数项级数的收敛性判定4. 数项级数的求和方法教学方法:1. 讲授结合实例:通过具体的例子引入新的概念和原理,帮助学生理解和记忆。
2. 案例分析:选取一些实际问题,引导学生运用所学知识解决问题,培养学生的应用能力。
3. 互动讨论:鼓励学生在课堂上提问和讨论,促进学生的思维活跃和合作学习。
4. 课堂练习:安排一定数量的练习题,巩固学生的基本运算和方法。
评估方式:1. 课堂表现:学生在课堂上的积极参与和回答问题的能力。
2. 作业完成情况:学生按时完成作业并正确计算和解答问题的能力。
3. 小测验:定期进行小测验,检验学生对所学知识的掌握程度。
4. 期末考试:综合考察学生对整个学期所学内容的理解和应用能力。
教学资源:1. 教材:《高等数学同济版》2. 多媒体教学资源:投影仪、电脑、PPT等3. 额外练习题和习题解析:辅助教材、习题集等教学建议:1. 鼓励学生主动思考和解决问题,培养他们的数学思维和解决问题的能力。
2. 注重理论与实践的结合,通过实际问题的引入,增加学生对数学知识的兴趣和应用意识。
3. 给予学生足够的练习机会,巩固基本运算和方法,提高他们的计算和解题能力。
高等数学-第2章 导数与微分§2.1 导数的概念

第2章 导数与微分本章简介:(2′)微积分可以分为两部分:微分学和积分学。
微分学研究导数、微分及其应用,积分学研究不定积分、定积分及其应用,微分学是积分学的基础。
本章及第3章介绍微分学部分的内容,第4章及第5章介绍积分学部分的内容。
§2.1 导数的概念新课引入:(3′)中学里学过的速度、加速度表述的是在单位时间物体运动所走过的路程及速度变化的快慢程度,其实都是研究函数(运动函数、速度函数)相对于自变量(时间)变化的快慢程度,即研究函数的变化率问题,本节将用上一章学过的极限为工具来研究变化率问题,从实际例子出发介绍导数的概念及其计算方法。
一、变化率问题举例(15′) 1.平面曲线的切线斜率设曲线C 的方程为()y f x =,求曲线C 在点M 处切线的斜率. 为此,需先明确曲线的切线的含义。
如图 2.1,设N 是曲线C 上与点M 邻近的一点,连结点M 和N 的直线M N 称为曲线C 的割线,如果当点N 沿着曲线C 趋近于点M 时,割线M N 绕着点M 转动而趋近于极限位置M T ,则称直线M T 为曲线C 在点M 处的切线。
这里极限位置的含义是:只要弦长||M N 趋近于零,N M T ∠也趋近于零。
斜率表示直线上点的纵坐标相对于横坐标变化的快慢程度,切线M T 的斜率不易直接图2.2图2.1求得,先求割线M N 的斜率。
如图 2.2,设点M 、N 的坐标分别为00(,)x y 、00(,)x x y y +∆+∆,割线M N 的倾角为ϕ,切线M T 的倾角为α,则割线M N 的斜率为00()()tan f x x f x y xxϕ+∆-∆==∆∆。
显然,x ∆越小,即点N 沿曲线C 越趋近于点M ,割线M N 的斜率越趋近于切线M T 的斜率。
当点N 沿曲线C 无限趋近于点M ,即0x ∆→时,若割线M N 的斜率的极限存在,则此极限值就是曲线C 在点M 处切线的斜率,即()()000tan lim tan limlimx x x f x x f x y xxαϕ∆→∆→∆→+∆-∆===∆∆。
《高等数学》第2章导数与微分

2.2.2 反函数的求导法则
定理 如果函数x = f ( y )在区间I y内单调、可导且 f ′( y ) ≠ 0,
内可导, 且有 : 1 dy 1 ( x)] = [f 或 = . f ′( y ) dx dx dy
−1
则它的反函数 y = f −1 ( x)在区间I x = {x | x = f ( x), y ∈ I y } ′
0
引例2 求平面曲线切线的斜率. 导数的几何意义 引例 解析: 解析:
曲线C = f ( x)上一点M ( x0 , y0 ), 其中y0 = f ( x0 ).求曲线C 在点M处的切线斜率. , y ), MN的斜率为 在曲线C上另取一点N ( x 则割线MN的斜率为 : y = f (x ) ∆y f ( x) − f ( x0 ) k MN = tan ϕ = = y ∆x x − x0 N 则上 当点N沿曲线C趋向于点M即x → x0 , M 式极限即为切线斜率 : ∆y f ( x 0 + ∆x ) − f ( x 0 ) α ϕ k = tan α = lim = lim . ∆x →0 ∆x → 0 o x ∆x ∆x
f −′( x0 ) = ∆x → 0 lim
−
+
在闭区间 [a , b ]上可导 .
若函数 f ( x )在开区间 (a , b )内可导 , 且 f +′(a )及 f −′(b )都存在 , 则 f ( x )
求导步骤
(1)
求增量 ∆y = f ( x + ∆x) − f ( x);
(2)
作比值
能力目标
通过导数与微分的学习,进一步培养学生 通过导数与微分的学习, 对比分析的思考能力. 对比分析的思考能力.
同济大学高等数学第六版上第二章第二节 函数的求导法则

(sin x ) cos x sin x (cos x ) cos
2
x
cos
2
x sin cos
2
2
x
x
1 cos
2
sec x
2
x
即
2 (tan x ) sec x .
同理可得
2 (cot x ) csc x .
一、和、差、积、商的求导法则
定理
如果函数 u( x ), v ( x )在点 x处可导, 则它 们的和、差、积、商 (分母不为零 )在点 x处也 可导, 并且
(1) [ u( x ) v ( x )] u( x ) v ( x ); ( 2) [ u( x ) v ( x )] u( x )v ( x ) u( x )v ( x ); ( 3) [ u( x ) v( x ) ] u( x )v ( x ) u( x )v ( x ) v ( x)
f i( x ) f k ( x );
i 1 k 1 k i
n
n
④
作为(2)的特殊情况
若 v c ,则 ( cu ) c u
或
[Cf ( x )] Cf ( x );
即常数因子可以提到导数符号的外面
[ k i f i ( x ) ]
i 1 n
k i f i( x )
u( x h) u( x ) v( x h) v( x ) h v ( x h )v ( x )
h 0
v ( x ) u( x )
lim
h
h 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。
2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。
4、 会求分段函数的导数。
5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。
教学重点:1、导数和微分的概念与微分的关系;2、导数的四则运算法则和复合函数的求导法则;3、基本初等函数的导数公式;4、高阶导数;6、 隐函数和由参数方程确定的函数的导数。
教学难点:1、复合函数的求导法则;2、分段函数的导数;3、反函数的导数4、隐函数和由参数方程确定的导数。
§2. 1 导数概念 一、引例1.直线运动的速度设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ),求动点在时刻t 0的速度. 考虑比值000)()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取比值00)()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即0)()(lim 0t t t f t f v t t --=→,这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线.设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为000)()(tan x x x f x f x x y y --=--=ϕ, 其中ϕ为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存在, 设为k , 即0)()(lim 0x x x f x f k x x --=→存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线.二、导数的定义1. 函数在一点处的导数与导函数从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限:0)()(limx x x f x f x x --→.令∆x =x -x 0, 则∆y =f (x 0+∆x )-f (x 0)= f (x )-f (x 0), x →x 0相当于∆x →0, 于是00)()(lim 0x x x f x f x x --→成为x yx ∆∆→∆0lim或xx f x x f x ∆-∆+→∆)()(lim 000.定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量∆x (点x 0+∆x 仍在该邻域内)时, 相应地函数y 取得增量∆y =f (x 0+∆x )-f (x 0); 如果∆y 与∆x 之比当∆x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即xx f x x f x yx f x x ∆-∆+=∆∆='→∆→∆)()(lim lim)(00000,也可记为0|x x y =', 0 x x dx dy =或0)(x x dx x df =. 函数f (x )在点x 0处可导有时也说成f (x )在点x 0具有导数或导数存在.导数的定义式也可取不同的形式, 常见的有hx f h x f x f h )()(lim )(0000-+='→,00)()(lim )(0x x x f x f x f x x --='→.在实际中, 需要讨论各种具有不同意义的变量的变化“快慢”问题, 在数学上就是所谓函数的变化率问题. 导数概念就是函数变化率这一概念的精确描述.如果极限xx f x x f x ∆-∆+→∆)()(lim 000不存在, 就说函数y =f (x )在点x 0处不可导.如果不可导的原因是由于∞=∆-∆+→∆xx f x x f x )()(lim000, 也往往说函数y =f (x )在点x 0处的导数为无穷大.如果函数y =f (x )在开区间I 内的每点处都可导, 就称函数f (x )在开区间I 内可导, 这时, 对于任一x ∈I , 都对应着f (x )的一个确定的导数值. 这样就构成了一个新的函数, 这个函数叫做原来函数y =f (x )的导函数, 记作y ',)(x f ', dx dy , 或dxx df )(.导函数的定义式:x x f x x f y x ∆-∆+='→∆)()(lim 0=hx f h x f h )()(lim 0-+→.f '(x 0)与f '(x )之间的关系:函数f (x )在点x 0处的导数f '(x )就是导函数f '(x )在点x =x 0处的函数值, 即 0)()(0x x x f x f ='='.导函数f '(x )简称导数, 而f '(x 0)是f (x )在x 0处的导数或导数f '(x )在x 0处的值. 左右导数: 所列极限存在, 则定义f (x )在0x 的左导数:hx f h x f x f h )()(lim )(0000-+='-→-;f (x )在0x 的右导数:hx f h x f x f h )()(lim )(0000-+='+→+.如果极限hx f h x f h )()(lim 000-+-→存在, 则称此极限值为函数在x 0的左导数.如果极限x f h x f h )()(lim 000-++→存在, 则称此极限值为函数在x 0的右导数.导数与左右导数的关系 2.求导数举例例1.求函数f (x )=C (C 为常数)的导数.解: hx f h x f x f h )()(lim)(0-+='→0lim 0=-=→h C C h . 即 (C ) '=0.例2. 求xx f 1)(=的导数.解: h x h x h x f h x f x f h h 11lim )()(lim )(00-+=-+='→→ 2001)(1lim )(lim x x h x x h x h h h h -=+-=+-=→→. 例3. 求x x f =)(的导数.解: h x h x h x f h x f x f h h -+=-+='→→00lim )()(lim)( xx h x x h x h h h h 211lim )(lim 00=++=++=→→.例2.求函数f (x )=x n (n 为正整数)在x =a 处的导数.解: f '(a )a x a f x f a x --=→)()(lima x a x n n a x --=→lim ax →=lim (x n -1+ax n -2+ ⋅ ⋅ ⋅ +a n -1)=na n -1. 把以上结果中的a 换成x 得 f '(x )=nx n -1, 即 (x n )'=nx n -1.(C )'=0, 21)1(x x -=', xx 21)(=', 1)(-⋅='μμμx x .更一般地, 有(x μ)'=μx μ-1 , 其中μ为常数. 例3.求函数f (x )=sin x 的导数.解: f '(x )hx f h x f h )()(lim 0-+=→h x h x h sin )sin(lim 0-+=→ 2sin )2cos(21lim 0hh x h h +⋅=→x h hh x h cos 22sin )2cos(lim 0=⋅+=→.即 (sin x )'=cos x .用类似的方法, 可求得 (cos x )'=-sin x .例4.求函数f (x )= a x (a >0, a ≠1) 的导数.解: f '(x )h x f h x f h )()(lim0-+=→ha a x h x h -=+→0lim h a a h h x 1lim 0-=→t a h =-1令)1(log lim 0t t a a t x +→ a a ea x a x ln log 1==.特别地有(e x )=e x .例5.求函数f (x )=log a x (a >0, a ≠1) 的导数.解: hx h x h x f h x f x f a a h h log )(log lim )()(lim )(00-+=-+='→→h xa h a h a h xh x x h h x x x h x h )1(log lim 1)1(log lim 1)(log 1lim 000+=+=+=→→→ ax e x a ln 1log 1==.解:h xh x x f a a h log )(log lim)(0-+='→)1(log 1lim 0xh h a h +=→ h xa h x h x )1(log lim 10+=→ax e x a ln 1log 1==.即 a x x a ln 1)(log =' . :特殊地 xx 1)(ln ='.a x x a ln 1)(log =', xx 1)(ln ='.3.单侧导数:极限h x f h x f h )()(lim 0-+→存在的充分必要条件是hx f h x f h )()(lim 0-+-→及h x f h x f h )()(lim 0-++→都存在且相等.f (x )在0x 处的左导数:hx f h x f x f h )()(lim )(00-+='-→-,f (x )在0x 处的右导数:hx f h x f x f h )()(lim )(00-+='+→+.+-[a , b ]上可导.例6.求函数f (x )=|x |在x =0处的导数.解: 1||lim )0()0(lim )0(00-==-+='--→→-h h h f h f f h h , 1||lim )0()0(lim )0(00==-+='++→→+h h hf h f f h h , 因为f '-(0)≠ f '+(0), 所以函数f (x )=|x |在x =0处不可导.四、导数的几何意义函数y =f (x f '(x 0)在几何上表示曲线y =f (x )在点M (x 0, f (x 0))处的切线的斜率, 即其中α 如果y =f (x )在点x 0处的导数为无穷大, 这时曲线y =f (x )的割线以垂直于x 轴的直线x =x 0为极限位置, 即曲线y =f (x )在点M (x 0, f (x 0))处具有垂直于x 轴的切线x =x 0. :, 可知曲线y =f (x )在点M (x 0, y 0)处的切线方程为00y =f (x )在点M 处的法线如果 f '(x 0)≠0, 法线的斜率为)(10x f '-, 从而法线方程为)()(1000x x x f y y -'-=-.例8. 求等边双曲线xy 1=在点)2 ,21(处的切线的斜率, 并写出在该点处的切线方程和法线方程.解: 21xy -=', 所求切线及法线的斜率分别为4)1(2121-=-==x x k , 41112=-=k k .所求切线方程为)21(42--=-x y , 即4x +y -4=0.所求法线方程为)21(412-=-x y , 即2x -8y +15=0.例9 求曲线x x y =的通过点(0, -4)的切线方程.解 设切点的横坐标为x 0, 则切线的斜率为0212302323)()(0x x x x f x x =='='=. 于是所求切线的方程可设为)(230000x x x x x y -=-. 根据题目要求, 点(0, -4)在切线上, 因此)0(2340000x x x x -=--, 解之得x 0=4. 于是所求切线的方程为)4(42344-=-x y , 即3x -y -4=0.四、函数的可导性与连续性的关系设函数y =f (x )在点x 0 处可导, 即)(lim00x f xyx '=∆∆→∆存在. 则00)(lim lim limlim 00000=⋅'=∆⋅∆∆=∆⋅∆∆=∆→∆→∆→∆→∆x f x x y x x y y x x x x .这就是说, 函数y =f (x )在点x 0 处是连续的. 所以, 如果函数y =f (x )在点x 处可导, 则函数在该点必连续. 另一方面, 一个函数在某点连续却不一定在该点处可导.例7. 函数3)(x x f =在区间(-∞, +∞)内连续, 但在点x =0处不可导. 这是因为函数在点x =0处导数为无穷大hf h f h )0()0(lim0-+→+∞=-=→h h h 0lim 30.§2. 2 函数的求导法则一、函数的和、差、积、商的求导法则定理1 如果函数u =u (x )及v =v (x )在点x)都在点x 具有导数, 并且[u (x ) ±v (x )]'=u '(x ) ±v '(x ) ;[u (x )⋅v (x )]'=u '(x )v (x )+u (x )v '(x );)()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡. 证明 (1)hx v x u h x v h x u x v x u h )]()([)]()([lim ])()([0±-+±+='±→⎥⎦⎤⎢⎣⎡-+±-+=→h x v h x v h x u h x u h )()()()(lim 0=u '(x )±v '(x ). 法则(1)可简单地表示为 (u ±v )'=u '±v ' .(2)hx v x u h x v h x u x v x u h )()()()(lim ])()([0-++='⋅→)]()()()()()()()([1lim 0x v x u h x v x u h x v x u h x v h x u hh -+++-++=→⎥⎦⎤-+++⎢⎣⎡-+=→h x v h x v x u h x v h x u h x u h )()()()()()(lim 0 hx v h x v x u h x v h x u h x u h h h )()(lim )()(lim )()(lim 000-+⋅++⋅-+=→→→=u '(x )v (x )+u (x )v '(x ),其中0lim →h v (x +h )=v (x )是由于v '(x )存在, 故v (x )在点x 连续.法则(2)可简单地表示为 (uv )'=u 'v +uv '.(3) h x v h x v h x v x u x v h x u h x v x u h x v h x u x v x u h h )()()()()()(lim )()()()(lim )()(00++-+=-++='⎥⎦⎤⎢⎣⎡→→hx v h x v x v h x v x u x v x u h x u h )()()]()()[()()]()([lim 0+-+--+=→)()()()()()()()(lim 0x v h x v h x v h x v x u x v h x u h x u h +-+--+=→)()()()()(2x v x v x u x v x u '-'=.法则(3)可简单地表示为2)(v v u v u v u '-'='.(u ±v )'=u '±v ', (uv )'=u 'v +uv ', 2)(v v u v u v u '-'='.定理1中的法则(1)、(2)可推广到任意有限个可导函数的情形. 例如, 设u =u (x )、v =v (x )、w =w (x )均可导, 则有(u +v -w )'=u '+v '-w '.(uvw )'=[(uv )w]'=(uv )'w +(uv )w '=(u 'v +uv ')w +uvw '=u 'vw +uv 'w +uvw '. 即 (uvw )' =u 'vw +uv 'w +uvw '.在法则(2)中, 如果v =C (C 为常数), 则有 (Cu )'=Cu '.例1.y =2x 3-5x 2+3x -7, 求y '解: y '=(2x 3-5x 2+3x -7)'= (2x 3)'-(5x 2)'+(3x )'-(7)'= 2 (x 3)'- 5( x 2)'+ 3( x )' =2⋅3x 2-5⋅2x +3=6x 2-10x +3.例2. 2 sin cos 4)(3π-+=x x x f , 求f '(x )及)2(πf '.解: x x x x x f sin 43)2(sin )cos 4()()(23-='-'+'='π,443)2 (2-='ππf .例3.y =e x (sin x +cos x ), 求y '.解: y '=(e x )'(sin x +cos x )+ e x (sin x +cos x )' = e x (sin x +cos x )+ e x (cos x -sin x ) =2e x cos x .例4.y =tan x , 求y '.解: x x x x x x x x y 2cos )(cos sin cos )(sin )cos sin ()(tan '-'='='='x xx x x 22222sec cos 1cos sin cos ==+=.即 (tan x )'=sec 2x . 例5.y =sec x , 求y '.解: x x x x x y 2cos )(cos 1cos )1()cos 1()(sec '⋅-'='='='xx2cos sin ==sec x tan x .即 (sec x )'=sec x tan x .用类似方法, 还可求得余切函数及余割函数的导数公式: (cot x )'=-csc 2x ,(csc x )'=-csc x cot x .二、反函数的求导法则定理2 如果函数x =f (y )在某区间I y 内单调、可导且f '(y )≠0, 那么它的反函数y =f -1(x )在对应区间I x ={x |x =f (y ), y ∈I y }内也可导, 并且)(1])([1y f x f '='-. 或dy dx dx dy1=.简要证明: 由于x =f (y )在I y 内单调、可导(从而连续), 所以x =f (y )的反函数y =f -1(x )存在, 且f -1(x )在I x 内也单调、连续.任取x ∈I x , 给x 以增量∆x (∆x ≠0, x +∆x ∈I x ), 由y =f -1(x )的单调性可知 ∆y =f -1(x +∆x )-f -1(x )≠0, 于是y xx y ∆∆=∆∆1. 因为y =f -1(x )连续, 故 0lim 0=∆→y x从而)(11lim lim])([001y f yx x yx f y x '=∆∆=∆∆='→∆→∆-.上述结论可简单地说成: 反函数的导数等于直接函数导数的倒数.例6.设x =sin y , ]2 ,2 [ππ-∈y 为直接函数, 则y =arcsin x 是它的反函数. 函数x =sin y 在开区间)2,2 (ππ-内单调、可导, 且(sin y )'=cos y >0.因此, 由反函数的求导法则, 在对应区间I x =(-1, 1)内有2211sin 11cos 1)(sin 1)(arcsin x y y y x -=-=='='.类似地有: 211)(arccos x x --='. 例7.设x =tan y , )2 ,2 (ππ-∈y 为直接函数, 则y =arctan x 是它的反函数. 函数x =tan y 在区间)2,2 (ππ-内单调、可导, 且(tan y )'=sec 2 y ≠0.因此, 由反函数的求导法则, 在对应区间I x =(-∞, +∞)内有22211tan 11sec 1)(tan 1)(arctan x y y y x +=+=='='. 类似地有: 211)cot arc (x x +-='.例8设x =a y (a >0, a ≠1)为直接函数, 则y =log a x 是它的反函数. 函数x =a y 在区间I y =(-∞, +∞)内单调、可导, 且(a y )'=a y ln a ≠0.因此, 由反函数的求导法则, 在对应区间I x =(0, +∞)内有 ax a a a x y y a ln 1ln 1)(1)(log =='='. 到目前为止, 所基本初等函数的导数我们都求出来了, 那么由基本初等函数构成的较复杂的初等函数的导数如可求呢?如函数lntan x 、3x e 、的导数怎样求?三、复合函数的求导法则定理3 如果u =g (x )在点x 可导, 函数y =f (u )在点u =g (x )可导, 则复合函数y =f [g (x )]在点x 可导, 且其导数为)()(x g u f dxdy'⋅'=或dx du du dy dx dy ⋅=.证明: 当u =g (x )在x 的某邻域内为常数时, y =f [ϕ(x )]也是常数, 此时导数为零, 结论自然成立. 当u =g (x )在x 的某邻域内不等于常数时, ∆u ≠0, 此时有xx g x x g x g x x g x g f x x g f x x g f x x g f x y ∆-∆+⋅-∆+-∆+=∆-∆+=∆∆)()()()()]([)]([)]([)]([ xx g x x g u u f u u f ∆-∆+⋅∆-∆+=)()()()(,xx g x x g u u f u u f x y dx dy x u x ∆-∆+⋅∆-∆+=∆∆=→∆→∆→∆)()(lim )()(lim lim 000= f '(u )⋅g '(x ).简要证明:x u u y x y dx dy x x ∆∆⋅∆∆=∆∆=→∆→∆00lim lim)()(lim lim 00x g u f xu u yx u ''=∆∆⋅∆∆=→∆→∆. 例9 3x e y =, 求dxdy.解 函数3x e y =可看作是由y =e u , u =x 3复合而成的, 因此32233x u e x x e dxdudu dy dx dy =⋅=⋅=.例10 212sin x x y +=, 求dx dy.解 函数212sin x x y +=是由y =sin u , 212x xu +=复合而成的, 因此 2222222212cos )1()1(2)1()2()1(2cos x x x x x x x u dx du du dy dx dy +⋅+-=+-+⋅=⋅=. 对复合函数的导数比较熟练后, 就不必再写出中间变量,例11.lnsin x , 求dxdy.解: )(sin sin 1)sin (ln '⋅='=x x x dx dy x x xcot cos sin 1=⋅=.例12.3221x y -=, 求dx dy.解: )21()21(31])21[(2322312'-⋅-='-=-x x x dx dy 322)21(34x x --=.复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y =f (u ), u =ϕ(v ), v =ψ(x ), 则dxdv dv du du dy dx du du dy dx dy ⋅⋅=⋅=.例13.y =lncos(e x ), 求dxdy . 解: ])[cos()cos(1])cos([ln '⋅='=x x x e e e dx dy)tan()()]sin([)cos(1x x x x x e e e e e -='⋅-⋅=. 例14.x e y 1sin=, 求dxdy .解: )1(1cos )1(sin )(1sin 1sin 1sin '⋅⋅='⋅='=x x e x e e dx dy x x xxe x x 1cos 11sin2⋅⋅-=. 例15设x >0, 证明幂函数的导数公式 (x μ)'=μ x μ-1.解 因为x μ=(e ln x )μ=e μ ln x , 所以(x μ)'=(e μ ln x )'= e μ ln x ⋅(μ ln x )'= e μ ln x ⋅μ x -1=μ x μ-1. 四、基本求导法则与导数公式1.基本初等函数的导数: (1)(C )'=0, (2)(x μ)'=μ x μ-1, (3)(sin x )'=cos x , (4)(cos x )'=-sin x , (5)(tan x )'=sec 2x , (6)(cot x )'=-csc 2x , (7)(sec x )'=sec x ⋅tan x , (8)(csc x )'=-csc x ⋅cot x , (9)(a x )'=a x ln a , (10)(e x )'=e x ,(11) a x x a ln 1)(log =',(12) xx 1)(ln =',(13) 211)(arcsin x x -=',(14) 211)(arccos x x --='.(15) 211)(arctan xx +=',(16) 211)cot arc (x x +-='.2.函数的和、差、积、商的求导法则 设u =u (x ), v =v (x )都可导, 则 (1)(u ±v )'=u '±v ', (2)(C u )'=C u ', (3)(u v )'=u '⋅v +u ⋅v ',(4)2)(v v u v u v u '-'='.3.反函数的求导法则设x =f (y )在区间I y 内单调、可导且f '(y )≠0, 则它的反函数y =f -1(x )在I x =f (I y )内也可导, 并且)(1])([1y f x f '='-. 或dy dx dx dy1=.4.复合函数的求导法则设y =f (x ), 而u =g (x )且f (u )及g (x )都可导, 则复合函数y =f [g (x )]的导数为dxdudu dy dx dy ⋅=或y '(x )=f '(u )⋅g '(x ).例16. 求双曲正弦sh x 的导数. 解: 因为)(21sh x x e e x --=, 所以x e e e e x x x x x ch )(21)(21)sh (=+='-='--,即 (sh x )'=ch x . 类似地, 有(ch x )'=sh x .例17. 求双曲正切th x 的导数. 解: 因为x x x ch sh th =, 所以xx x x 222ch sh ch )(th -='x 2ch 1=.例18. 求反双曲正弦arsh x 的导数. 解: 因为)1ln(arsh 2x x x ++=, 所以22211)11(11)arsh (x x x x x x +=++⋅++='. 由)1ln(arch 2-+=x x x , 可得11)arch (2-='x x .由x x x -+=11ln 21arth , 可得211)arth (xx -='.类似地可得11)arch (2-='x x , 211)arth (x x -='.例19.y =sin nx ⋅sin n x (n 为常数), 求y '. 解: y '=(sin nx )' sin n x + sin nx ⋅ (sin n x )'= n cos nx ⋅sin n x +sin nx ⋅ n ⋅ sin n -1 x ⋅(sin x )'= n cos nx ⋅sin n x +n sin n -1 x ⋅ cos x =n sin n -1 x ⋅ sin(n +1)x .§2. 3 高阶导数一般地, 函数y =f (x )的导数y '=f '(x )仍然是x 的函数. 我们把y '=f '(x )的导数叫做函数y =f (x )的二阶导数, 记作y ''、f ''(x )或22dxyd ,即 y ''=(y ')', f ''(x )=[f '(x )]' , )(22dxdydx d dx y d =.相应地, 把y =f (x )的导数f '(x )叫做函数y =f (x )的一阶导数.类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, ⋅ ⋅ ⋅, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作y ''', y (4), ⋅ ⋅ ⋅ , y (n ) 或33dx y d , 44dx y d , ⋅ ⋅ ⋅ , n n dxyd .函数f (x )具有n 阶导数, 也常说成函数f (x )为n 阶可导. 如果函数f (x )在点x 处具有n 阶导数, 那么函数f (x )在点x 的某一邻域内必定具有一切低于n 阶的导数. 二阶及二阶以上的导数统称高阶导数. y '称为一阶导数, y '', y ''', y (4), ⋅ ⋅ ⋅, y (n )都称为高阶导数.例1.y =ax +b , 求y ''. 解: y '=a , y ''=0.例2.s =sin ω t , 求s ''.解: s '=ω cos ω t , s ''=-ω 2sin ω t .例3.证明: 函数22x x y -=满足关系式y 3y ''+1=0.证明: 因为22212222x x x x x x y --=--=', 22222222)1(2x x x x xx x x y -------='')2()2()1(22222x x x x x x x ----+-=32321)2(1yx x -=--=,所以y 3y ''+1=0.例4.求函数y =e x 的n 阶导数. 解; y '=e x , y ''=e x , y '''=e x , y ( 4)=e x , 一般地, 可得 y ( n )=e x , 即 (e x )(n )=e x .例5.求正弦函数与余弦函数的n 阶导数. 解: y =sin x ,)2sin(cos π+=='x x y ,)22sin()2 2 sin()2 cos(ππππ⋅+=++=+=''x x x y ,)23sin()2 2 2sin()2 2cos(ππππ⋅+=+⋅+=⋅+='''x x x y ,)24sin()2 3cos()4(ππ⋅+=⋅+=x x y ,一般地, 可得)2sin()(π⋅+=n x y n , 即)2 sin()(sin )(π⋅+=n x x n .用类似方法, 可得)2cos()(cos )(π⋅+=n x x n .例6.求对函数ln(1+x )的n 阶导数 解: y =ln(1+x ), y '=(1+x )-1, y ''=-(1+x )-2,y '''=(-1)(-2)(1+x )-3, y (4)=(-1)(-2)(-3)(1+x )-4, 一般地, 可得y (n )=(-1)(-2)⋅ ⋅ ⋅(-n +1)(1+x )-n nn x n )1()!1()1(1+--=-,即 nn n x n x )1()!1()1()]1[ln(1)(+--=+-.例6.求幂函数y =x μ (μ是任意常数)的n 阶导数公式. 解: y '=μx μ-1, y ''=μ(μ-1)x μ-2,y '''=μ(μ-1)(μ-2)x μ-3,y ( 4)=μ(μ-1)(μ-2)(μ-3)x μ-4, 一般地, 可得y (n )=μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n , 即 (x μ )(n ) =μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n . 当μ=n 时, 得到(x n )(n ) = μ(μ-1)(μ-2) ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1=n ! . 而 (x n )( n +1)=0 .如果函数u =u (x )及v =v (x )都在点x 处具有n 阶导数, 那么显然函数u (x )±v (x )也在点x 处具有n 阶导数, 且 (u ±v )(n )=u (n )+v (n ) . (uv )'=u 'v +uv '(uv )''=u ''v +2u 'v '+uv '',(uv )'''=u '''v +3u ''v '+3u 'v ''+uv ''' , 用数学归纳法可以证明 ∑=-=nk k k n k n n v u C uv 0)()()()(, 这一公式称为莱布尼茨公式.例8.y =x 2e 2x , 求y (20). 解: 设u =e 2x , v =x 2, 则(u )(k )=2k e 2x (k =1, 2, ⋅ ⋅ ⋅ , 20),v '=2x , v ''=2, (v )(k ) =0 (k =3, 4, ⋅ ⋅ ⋅ , 20), 代入莱布尼茨公式, 得y (20)=(u v )(20)=u (20)⋅v +C 201u (19)⋅v '+C 202u (18)⋅v ''=220e 2x ⋅ x 2+20 ⋅ 219e 2x ⋅ 2x !21920⋅+218e 2x ⋅ 2 =220e 2x (x 2+20x +95).§2. 4 隐函数的导数 由参数方程所确定的函数的导数 相关变化率一、隐函数的导数显函数: 形如y =f (x )的函数称为显函数. 例如y =sin x , y =ln x ++e x .隐函数: 由方程F (x , y )=0所确定的函数称为隐函数.例如, 方程x +y 3 -1=0确定的隐函数为y 31x y -=.如果在方程F (x , y )=0中, 当x 取某区间内的任一值时, 相应地总有满足这方程的唯一的y 值存在, 那么就说方程F (x , y )=0在该区间内确定了一个隐函数.把一个隐函数化成显函数, 叫做隐函数的显化. 隐函数的显化有时是有困难的, 甚至是不可能的. 但在实际问题中, 有时需要计算隐函数的导数, 因此, 我们希望有一种方法, 不管隐函数能否显化, 都能直接由方程算出它所确定的隐函数的导数来.例1.求由方程e y +xy -e =0 所确定的隐函数y 的导数.解: 把方程两边的每一项对x 求导数得(e y )'+(xy )'-(e )'=(0)',即 e y ⋅ y '+y +xy '=0,从而 y ex y y +-='(x +e y ≠0). 例2.求由方程y 5+2y -x -3x 7=0 所确定的隐函数y =f (x )在x =0处的导数y '|x =0.解: 把方程两边分别对x 求导数得5y ⋅y '+2y '-1-21x 6=0,由此得 2521146++='y x y . 因为当x =0时, 从原方程得y =0, 所以 21|25211|0460=++='==x x y x y . 例3. 求椭圆191622=+y x 在)323 ,2(处的切线方程.解: 把椭圆方程的两边分别对x 求导, 得 0928='⋅+y y x . 从而 yx y 169-='. 当x =2时, 323=y , 代入上式得所求切线的斜率 43|2-='==x y k . 所求的切线方程为 )2(43323--=-x y , 即03843=-+y x . 解: 把椭圆方程的两边分别对x 求导, 得 0928='⋅+y y x . 将x =2, 323=y , 代入上式得 03141='⋅+y , 于是 k =y '|x =243-=. 所求的切线方程为 )2(43323--=-x y , 即03843=-+y x . 例4.求由方程0sin 21=+-y y x 所确定的隐函数y 的二阶导数.解: 方程两边对x 求导, 得 0cos 211=⋅+-dxdy y dx dy , 于是 ydx dy cos 22-=. 上式两边再对x 求导, 得 3222)cos 2(sin 4)cos 2(sin 2y y y dx dy y dx y d --=-⋅-=. 对数求导法: 这种方法是先在y =f (x )的两边取对数, 然后再求出y 的导数.设y =f (x ), 两边取对数, 得ln y = ln f (x ),两边对x 求导, 得 ])([ln 1'='x f y y, y '= f (x )⋅[ln f (x )]'.对数求导法适用于求幂指函数y =[u (x )]v (x )的导数及多因子之积和商的导数.例5.求y =x sin x (x >0)的导数.解法一: 两边取对数, 得ln y =sin x ⋅ ln x ,上式两边对x 求导, 得 xx x x y y 1sin ln cos 1⋅+⋅=', 于是 )1sin ln (cos xx x x y y ⋅+⋅=' )sin ln (cos sin xx x x x x +⋅=. 解法二: 这种幂指函数的导数也可按下面的方法求:y =x sin x =e sin x ·ln x ,)sin ln (cos )ln (sin sin ln sin xx x x x x x e y x x x +⋅='⋅='⋅. 例6. 求函数)4)(3()2)(1(----=x x x x y 的导数. 解: 先在两边取对数(假定x >4), 得ln y 21=[ln(x -1)+ln(x -2)-ln(x -3)-ln(x -4)], 上式两边对x 求导, 得 )41312111(211-----+-='x x x x y y , 于是 )41312111(2-----+-='x x x x y y . 当x <1时, )4)(3()2)(1(x x x x y ----=; 当2<x <3时, )4)(3()2)(1(x x x x y ----=; 用同样方法可得与上面相同的结果.注: 严格来说, 本题应分x >4, x <1, 2<x <3三种情况讨论, 但结果都是一样的.二、由参数方程所确定的函数的导数设y 与x 的函数关系是由参数方程⎩⎨⎧==)()(t y t x ψϕ确定的. 则称此函数关系所表达的函数为由参数方程所确定的函数.在实际问题中, 需要计算由参数方程所确定的函数的导数. 但从参数方程中消去参数t 有时会有困难. 因此, 我们希望有一种方法能直接由参数方程算出它所确定的函数的导数.设x =ϕ(t )具有单调连续反函数t =ϕ-1(x ), 且此反函数能与函数y =ψ(t )构成复合函数y =ψ[ϕ-1(x ) ], 若x =ϕ(t )和y =ψ(t )都可导, 则 )()(1t t dtdx dt dy dx dt dt dy dx dy ϕψ''=⋅=⋅=, 即 )()(t t dx dy ϕψ''=或dt dx dt dy dx dy =.。