第二章导数与微分

合集下载

第2章导数与微分总结

第2章导数与微分总结

1、极限的实质是:动而不达导数的实质是:一个有规律商的极限。

规律就是:2、导数的多种变式定义:lim 丄一x)f°)是描述趋近任意 x 时的斜率。

而x 03、I若x 没趋近到x0,那么除法得到的值是这段的平均斜率, 如果趋近到了 x0,得到的就是这点的斜率一一导数。

4、可导与连续的关系:1基础总结lim -= limx 0 x x 0 f(x X)f(x)xlim x x o f(x )f (x o )X o叫 号严可以刻画趋近具体x0时的斜率。

lim o要注意细心观察发现,导数的实质是定义在某点的左右极限。

既然定义在了某点上,该点自然存在,而 且还得等于左右极限。

因此,可导一定是连续的。

反之,如果连续,不一定可导。

不多说。

同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定 极限有可能存在,但是导数绝不会存在。

同理要注意左右导数的问题。

如果存在左或者右导数,那么在左侧该点一定是存 在的。

如:f(x) x,x 0这个函数,在0点就不存在左导数,只存在右导数。

为什么嫩?看定义:万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该 点必须存在! 由此引发了一些容易误判的血案: 例如:A 旦主^謎IC m F 左电鼓 pg 总生戟乞f ( x) f (x)-中的f(x))至u 底是神马。

比如求上图limf(x x) f(x)x 0xlimf(X X)f(0)。

x 0定义里面需要用到f(0)啊!因此,千中 iimf (x)论) x 1x x 0,这个f(x0)千万要等于2/3,而不是1 !定义解决时候一定要注意问。

X X o由此也可以知道,f (x)2x 3, x 1这个函数是不存在导数的,也不存在左导数,3只存在右导数。

5、反函数的导数与原函数的关系:注意,求反函数时候不要换元。

因为换了元虽然对自身来讲函数形式不变, 与原函数融合运算时候就算是换了一个不是自己反函数的一个函数进行运算 果显然是错误的。

高等数学 第二章 导数与微分

高等数学 第二章 导数与微分

(2)算比值: y f (x x) f (x) .
x
x
(3)求极限: f (x) lim y lim f (x x) f (x) .
x x0
x0
x
四、函数可导性与连续性的关系
定理 如果函数 y f (x) 在点 x0 处可导,则函数 y f (x) 在点 x0 处一定连续. 如果函数 f (x) 在点 x0 处连续,则函数 f (x) 在点 x0 处不一定可导.
第二章
导数与微分
导学
我们在解决实际问题时,除了需要确定变量之间的函数关系外,有时 还需要研究函数相对于自变量变化的快慢程度,即函数的变化率,以及当 自变量发生微小变化时函数的近似改变量,这两个问题就是我们本章所要 讨论的主要内容——导数与微分.
第一节
导数的概念
一、导数的定义
设某物体在数轴上做变速直线运动,运动方程为 s s(t) ,现在求该物体在 t0 时刻的瞬时速度 v(t0 ) .

u
C (C
为常数)时,有
C v
Cv v2

二、反函数的求导法则
定理 2 如果函数 x f ( y) 在区间 I y 内单调、可导且 f ( y) 0 ,那么它的反函数 y f 1(x) 在
区间 Ix {x | x f ( y) ,y I y} 内也可导,且有
[ f 1(x)] 1 或 dy 1 .
当时间 t 由 t0 变到 t0 t 时,物体的路程 s(t) 由 s(t0 ) 变到 s(t0 t) ,
路程的增量 s 为 s s(t0 +t) s(t0 ) ,
物体在
t0
到 t0
t
这段时间内的平均速度为
v
s t

高中物理课件-高数第二章-导数与微分--课件

高中物理课件-高数第二章-导数与微分--课件
求 f 0
例2.已知 f x0 存在,求
lim f x0 ah f x0 bh
h0
h
3、导数的意义
函数 y f x在点x0 处的导数f x0
是因变量 y在点x0处的变化率,它反
映了 在点x0 处因变量随自变量的变
化而变化的快慢程度。
(二)导函数
1、定义:如果函数 y f x 在开区间
四、基本求导法则与导数公式
(一)常数和基本初等函数的导数公式
1. C 0
2. x x1
3. sin x cos x
4. cos x sin x
5. ta n x sec2 x 6. cot x csc2 x
7. sec x sec x tan x 8. csc x csc x cot x

k0
lim xx0
f
x f x0 就是曲线C
x x0
在 M0 x0, y0 点处切线的斜率。
二、导数的定义 (一)函数在一点处的导数
1、定义:设函数 y f x在点x0的某个
邻域内有定义,当自变量 x在x0 处取得
增量 x(点 x0
时 , 相应地函数
x 仍在该邻域内)
y 取得增量
chx shx
thx
1 ch2
x
arshx 1 archx 1
1 x2
x2 1
arthx
1
1 x2
例18.求
y cos x2 sin 1 arctan thx x
的导数。
例19.
y sin nxsinn xn为常数,求y
§2-3 高阶导数
(一)二阶导数
1、定义:把 y f x 的导数叫做函数
x xx0 x0

专升本高数数学第二章导数与微分

专升本高数数学第二章导数与微分

导数的几何意义
总结词
导数的几何意义是切线的斜率。
详细描述
函数在某一点的导数等于该点处切线的斜率。如果函数在某点可导,那么在该点处一定存在切线,并且切线的斜 率就是函数的导数值。
导数的物理意义
总结词
导数的物理意义是描述物理量变化率的重要工具。
详细描述
在物理学中,许多物理量的变化率都可以用导数来描述。例如,速度是位置函数的导数,加速度是速 度函数的导数等。通过导数的计算,可以深入了解物理量的变化规律和性质。
微分的物理意义是函数值随自变量变化的速率。
02
在物理量中,速度、加速度、角速度等都是微分的应
用,它们都是描述物理量随时间变化的速率。
03
微分可以用来解决物理中的一些问题,如求瞬时速度
、加速度等。
04 导数与微分的应用
CHAPTER
导数在几何中的应用
切线斜率
导数可以用来求曲线上某一点的 切线斜率,从而了解曲线在该点 的变化趋势。
专升本高数数学第二章导数与 微分
目录
CONTENTS
• 导数概念 • 导数的运算 • 微分概念 • 导数与微分的应用
01 导数概念
CHAPTER
导数的定义
总结词
导数是描述函数在某一点附近的变化 率的重要概念。
详细描述
导数定义为函数在某一点处的切线的 斜率,即函数在该点附近的小范围内 变化的速度。导数的计算公式为极限 lim(x->0) [f(x+Δx)-f(x)]/Δx,其中 Δx是自变量的增量。
解的精度。
无穷小分析
03
微分是无穷小分析的基础,可以用来研究函数在无穷小情况下
的性质和变化趋势。
谢谢

《高数数学(上)》-导数与微分

《高数数学(上)》-导数与微分
(2)设函数 u1(x),u2 (x),u3(x) un (x) 可导, f (x) u1(x)u2 (x) un (x),写出 f (x) 的求导公式.
解 (1)根据导数定义并运用极限的运算法则
u(x)v(x) lim u(x x)v(x x) u(x)v(x)
x0
x
u(x x)v(x x) u(x)v(x x) u(x)v(x x) u(x)v(x)
定理2.1
函数f (x)在x0 处可导的充要条件是左、右导数都存在
且相等.
7
一、 导数的定义
例 1 若函数f (x)在x=0 处连续,且 lim f (x) 存在, x0 x
证明f (x)在x=0 处可导.
证法一
设 lim f (x) A(A为常数),则 x0 x
lim f (x) lim x f (x) 0 A 0,
证 若函数y f (x)在x0 处可导,由导数的定义可得
lim
x x0
f (x) f (x0 ) x x0
f (x0 ),所以利用函数极限与无穷小之间的
关系可得
f (x) f (x0 ) x x0
f
( x0
)
,lim x x0
0,即
f (x) f (x0 ) f (x0 )(x x0 ) (x x0 )
x
所以k 1 时,f (x) 在 x 0 处可导. 2
12
本讲内容
01 导数的定义 02 导数的几何意义 03 可导与连续的关系
二、 导数的几何意义
几何意义
若函数 f (x)在x x0 处可导,f (x0 ) 是曲线 y f (x) 在点 (x0 , f (x0 )) 处切线的斜率.
x0

第二章 导数与微分

第二章 导数与微分
Δy=2×10×0.001+0.0012=0.020 001.
由此可见,当|Δx|很小时,(Δx)^2的作用非常小,可以忽略不计 因此,函数y=x^2在x0有微小改变量Δx时,函数的改变量Δy约为 2x0·Δx, Δy≈2x0·Δx.
从图2-3中不难看出,Δy表示的是以x0为边长的正方形外围 的阴影部分面积,它为图示的Ⅰ、Ⅱ、Ⅲ部分面积之和 2(x0·Δx)+(Δx)2,显然当|Δx|相对于x0很小时,(Δx)^2是微乎其 微的. 当f(x)=x2时,f′(x0)=2x0,因此Δy≈2x0·Δx可以写成 Δy≈f′(x0)·Δx. 由于f′(x0)·Δx是Δx的线性函数,所以通常把 f′(x0)·Δx叫做Δy的线性主部.
一般地,对于给定的可导函数y=f(x),当自变量在x0处有 微小的改变量Δx时,函数值y的改变量Δy可用下式近似计算, 即
已知曲线方程y=f(x),可以求过曲线上点M(x0,y0)处的 切线斜率.在M点的附近取点N(x0+Δx,y0+Δy),其中Δx可正 可负,作割线MN,其斜率为(φ为倾斜角) tanφ=Δy/Δx=[f(x0+Δx)-f(x0)]/Δx.当Δx→0时,割线MN将绕着 点M转动到极限位置MT,如图2-2所示.根据上面切线的定义, 直线MT就是曲线y=f(x)在点M处的切线.自然,割线MN的斜 率tanφ的极限就是切线MT的斜率tanα(α是切线MT的倾斜角).
以上两个问题,虽然它们所代表的具体内容不同,但从 数量上看,它们有共同的本质:都是计算当自变量的增量趋 于零时,函数的增量与自变量的增量之比的极限.在自然科学 、工程技术问题和经济管理中,还有许多非均匀变化的问题 ,也都可归结为这种形式的极限.因此,抽去这些问题的不同 的实际意义,只考虑它们的共同性质,就可得出函数的导数 定义.

大一上学期《高等数学》知识整理-第二章 导数与微分

大一上学期《高等数学》知识整理-第二章 导数与微分

大一上学期《高等数学》知识整理-第二章导数与微分第二章导数与微分1.导数的定义。

对于一个在x0的某个邻域内有定义的函数,当自变量x在x0处取得增量Δx时,相应地函数y取得增量Δy=f(x0+Δx)-f(x0),如果当Δx→x0时Δy/Δx的极限存在,则称函数y=f(x)在x0点可导,并称这个极限为函数y=f(x)在x0处的导数。

通俗地讲,就是描述某个函数在某点增长或下降的瞬时速度,这个“速度”的单位为y每x,即每变化一个单位的x,y变化多少。

与物理学中定义米/秒是一个性质的。

把函数f(x)的导数看做是关于x的函数,即得到函数f(x)的导函数f'(x),简称导数。

(以上的“x0”中的“0”都是x 的下标,下同。

)导数也可以用微分的形式记作dy/dx,这个后面会提及。

2.在导数的定义中,如果Δx从左边趋向x0或从右边趋向x0,那么对应的导数被称为左导数和右导数。

只有f(x)在x0处的左导数和右导数相等,才能称f(x)在x0处可导。

举个例子,绝对值函数y=|x|,其在x=0处的左导数是-1(即x每增大1,y减小1),右导数是1,两者不相等,所以该函数在x=0处不可导。

如图所示。

绝对值函数y=|x|的导数是符号函数y=sgn(x),但是不包含x=0(单独的符号函数y=sgn(x),当x=0时,y=0)。

3.用定义法可以求初等函数的导数,本质上就是求极限。

比如说求y=x²在x=a处的导数,即就是求Δx→0时((a+Δx)²-a²)/Δx的极限。

求得结果为2a了解即可,还不如求导公式来得快。

下图为求该极限的过程,也就是用定义求y=x²的导数的过程。

4.函数的可导性与连续性的关系。

我们有定理:如果函数y=f(x)在点x0处可导,则f(x)在x0处必连续。

但反过来就不一定了。

归纳为一句话:连续不一定可导,可导一定连续。

y=|x|就是一个例子。

该函数在定义域内处处连续但是在x=0时不可导(因为左右极限不一样)。

第二章__导数与微分

第二章__导数与微分

t
t
瞬时速度
v(t0
)
lim
t0
s t
lim
t0
s(t0
t) t
s(t0
)
2
2.切线问题 割线的极限位置——切线位置
播放
3
y
割线M0M的斜率为
tanφ y f (x0 x) f (x0 )
x
x
切线M0T的斜率为
o
k tanα lim y x0 x
lim f (x0 x) f (x0 )
(0
h)] h
ln(1
0)
1,
f (0) 1.
f
(x)
1
1, 1
x
,
x0 x0.
27
二、反函数的导数
定理 如果函数x φ(y)在某区间Iy内单调、可导 且φ(y) 0 , 那末它的反函数 y f (x)在对应区间Ix 内也可导 , 且有
f (x) 1 φ (x)
即 反函数的导数等于直接函数导数的倒数.
(
x )
1
x
1 2
1
2
1 2x
.
(x1 )
(1)x11
1 x2
.
17
例8 求函数 f (x) ax(a 0,a 1)的导数. 解 (ax ) lim axh ax
h0 h ax lim ah 1
h0 h ax lna.
即 (ax ) ax lna. (ex ) ex .
18
例9 求函数 y loga x(a 0,a 1)的导数.
即 (sinx) cos x.
16
例7 求函数 y xn(n为正整数)的导数.
解 (xn ) lim (x h)n xn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t0
t0 t t0
t
8
二、导数的定义
定义1设 y f x 在点 x0的某个邻域内有定义, 当 x
在点 x0处有增量 x x0 x 仍在该邻域内)时,

x 0
时,lim x0
y x
lim
x0
f
x0
x
x
f
x0
存在,
则称 y f x 在点 x0 处可导,并称这个极限值为
y f x 在点 x0 处的导数,记作
两个增量之比 y 6x x2 6 x.
x
x
对上式两端取极限,得 f ' 3 lim y lim 6 x 6
x x0
x0
类似地,可求得
f'
x0
lim y x0 x
lim x0 x2 x02
x0
x
lim
x0
2x0
x
2
x0
.
上述结果中,由于 x0 可以是(-∞,+∞)内的任意值
因此f x x2 在(-∞,+∞)内的任意点都存在导数
x 定义2 如果 y f x 在区间 I 内的每一点 都有导数,
则称函数 y f x 在区间 I 内可导.这时,对于区间 I
内每一点 x,都有一个导数值 f ' x 与它对应.因此f ' x是 x
的函数,称为
y
f
x
的导函数,记作
f
' x, y', dy 或 df
2) 既然不能描述运动员的运动状态,那我们
应该用什么来描述呢?
瞬时速度
3) 如何求运动员的瞬时速度?
一、引例
例2、求变速直线运动的瞬时速度
物体在时段内的平均速度
速度= 路程 时间
.
v s s(t0 t) s(t0 )
t
t
物体在t0时刻的瞬时速度
v lim v lim s lim s(t0 t) s(t0 )
x
,
dx dx

f ' x
lim
y
lim
f
x x
f
x
.
x x0
x0
x
三、基本导数公式
例4 求函数 f (x) C(C为常数)的导数.
解:f ' x lim f (x h) f (x) lim C C 0
h0
h
h0 h
即 (C)' 0 这就是说,常数的导数等于零.
用定义求导数,可分为以下三个步骤:
(10) (e x)ex
(11)
(loga
x)
1 xln a
(12) (lnx) 1 x
(13) (arcsin x) 1 1 x2
(14) (arccosx) 1 1 x2
(15) (arctanx) 1 1 x2
(16)
(arccot x) 1 1 x2
17
四、导数的几何意义
f (x0 )表示曲线 y f (x)在点M (x0, f (x0 ))处的切线的斜率,
英国数学家 Newton 德国数学家 Leibniz
5
一、引例
例1 求曲线切线的斜率. 割线的斜率是
tan y
x
f x0 x f x0
x
切线的斜率
tan
lim tan
x0
lim
x0
y x
lim x0
f
x0
x
x
f
x0 .
1) 你认为用平均速度描述运动员的运动状态 有什么问题吗?
f ' x0 ,
y , x x0
dy ,
dx xx0
df (x) dx xx0
9



f
' x0
lim
x0
y x
lim
x0
f
x0
x
x
f
x0 .
如果上述极限不存在,则称 y f x 在点 x0 处不可导.
有了导数的概念,前面讨论的两个实例可以表示为:
(1)变速直线运动的瞬时速度
2
cos
x.
2
即 (sin x) cos x.
(sin x) x cos x x
4
4
2. 2
15

例6 求函数 y ax (a >0,a ≠0)的导数.
解得:ax ' ax ln a. 特别:ex ' ex
例7 求函数 y loga x
解得:loga x 1
x ln a
( a >0,a ≠0)的导数
熟练掌握基本初等函数的求导公式; 熟练 掌握导数的四则运算法则;熟练掌握复合函 数的求导法则;了解高阶导数、隐函数概念 并能计算。
理解函数微分的定义,会用微分的运算法则 和一阶微分形式不变性求函数的微分,了解
4 微分在近似计算中的应用。
§2.1 导数的概念
导数思想最早由法国 数学家 Ferma 在研究 极值问题中提出. 微积分学的创始人:
特别:ln x' 1
x
例8 求函数 y cos x 的导数.
解得:cos x sin x.
16
基本导数公式
(1) (C)0
(2) (xm)m xm1
(3) (sin x)cos x (4) (cos x)sin x (5) (tan x)sec2x (6) (cot x)csc2x (7) (sec x)sec xtan x (8) (csc x)csc xcot x (9) (a x)a x ln a
v t0 s' t0
ds dt
. t t0
(2)曲线在某 处的切线斜率

k切 tan f ' x0 .
10
单侧导数
(1)左导数
f (x ) lim f ( x) f (x0 ) lim f ( x0 x) f ( x0 );
0
xx0 0
xx
x0
x
0
(2)右导数
f (x ) lim f (x) f (x0 ) lim f (x0 x) f (x0 );
《高等数学》
数学教研室 邓敏英
1
第二章 导数与微分
本章主要内容
§2.1 导数的概念 §2.2 函数的求导法则 §2.3 隐函数及参数方程的导数 §2.4 高阶导数 §2.5 函数的微分及其应用
3
学习目标
理解导数的概念,了解导数在几何上、经济 上的实际意义,会用导数的定义求一些简单 函数的导数。会求曲线上一点处的切线方程 和法线方程。
(1)求增量 y f x x f x;
(2)算比值
y
f
x x
f
x
;
x
x
(3)取极限
f ' x lim y lim f x x f x
x x0
x0
xLeabharlann 解f ( x) lim
f ( x h)
f
(
x)
lim
sin(
x
h)
sin
x
h0
h
h0
h
h
lim
h0
cos(
x
h) 2
sin h
0
xx0 0
x x0
x0
x
结论:函数 f (x)在点 x0处可导 左导数 f(x0 )和
右导数 f(x0 )都存在且相等.
11
例3 求 f x x2 在点 x 3 和 x x0 处的导数.
解 给自变量 在 x 3处以增量 x ,对应的函数的增量是
y f 3 x f 3 3 x2 32 6x x2 .
相关文档
最新文档