2第二章 导数与微分答案

合集下载

(完整版)第二章.导数和微分答案解析

(完整版)第二章.导数和微分答案解析

第二章 导数与微分一 导数(一) 导数的概念(见§2.1) Ⅰ 内容要求(ⅰ)理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。

(ⅱ)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。

Ⅱ 基本题型(ⅰ)用导数定义推证简单初等函数的导数公式1. 用导数定义求证下列导数公式,并记忆下列公式(每题4分)(1)0)(='C (2)21)1(x x-=' (3)xx 21)(='(4)x x sin )(cos -=' (5)a a a xx ln )(=' (6)1)(-='μμμx x(ⅱ)确定简单基本初等函数在某点处的切线方程和法线方程 2.(6分)求x y ln =在)0,1(点处的切线方程及法线方程。

解:xy 1'=,1)1('==k y ,所以 切线方程为1-=x y 法线方程为1+-=x y 3.(6分)求x x y =在)1,1(点处的切线方程。

解:43x y =,41'43-=x y ,43)1('==k y切线方程为1)1(43+-=x y ,即4143+=x y (ⅲ)科技中一些量变化率的导数表示4.填空题(每题4分)(1)若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体的温度随时间的变化速度为 )('t T(2)若某地区t 时刻的人口数为)(t N ,则该地区人口变化速度为 )('t N Ⅲ 疑难题型(ⅰ)分段函数在分段点处的导数计算5. 讨论下列函数在0=x 处的连续性与可导性(1)(7分)|sin |x y =解:在0=x 处连续但不可导(2)(7分)⎪⎩⎪⎨⎧=≠=0,00,1sin x x x x y 解:0)0(lim 0==→f y xxx x x x x ∆=∆-∆∆→∆→∆1sinlim 01sinlim00不存在, 所以)(x f 在0=x 处连续但不可导6.(8分)已知:⎪⎩⎪⎨⎧<-≥=0,0,)(2x x x x x f ,求).(),0(),0(),0(x f f f f ''''-+解:)0(-'f =10lim )0()0(lim 00-=--=-+--→→xx x f x f x x ='+)0(f 00lim )0()0(lim 200=-=-+++→→xx x f x f x x ,不存在)0('f ∴ ∴⎩⎨⎧<->=0,10,2'x x x x f )((ⅱ)用导数定义解决的有关抽象函数的题型(自学)7.(7分)设1)0(,0)0(='=f f ,求xx f x f x )3()2(lim 0--→.解:x x f x f x )3()2(lim 0--→=xf x f f x f x )0()3()0()2(lim 0+---→=x f x f x )0()2(lim 0-→+xf x f x )0()3(lim 0+--→=)0(2f 5)0(3=+f8.(7分)对任取的y x ,,总有)()()(y f x f y x f +=+,且)(x f 在0=x 处可导, 求证:)(x f 在),(+∞-∞上处处可导。

导数与微分习题及答案

导数与微分习题及答案

第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆02.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数()u f y =是可导的,且2x u =,则=dxdy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6.()2-=x x f 在点2=x 处的导数是( )A .1B .0C .-1D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )A .8B .12C .-6D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数12.已知()()[]x g f x F =,在0x x =处可导,则( )A .()x f ,()x g 都必须可导B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( ) A .211x +- B .211x + C .221x x +- D . 221x x + 14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( ) A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim 。

(完整版)第二章导数与微分(答案)

(完整版)第二章导数与微分(答案)

x 第二章导数与微分(一)f X 0 X f X 0Ix 0X3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A )5. 若函数f x 在点a 连续,则f x 在点a ( D )C . a6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C .-1 D .不存在7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A )A . 8B . 12C . -6D . 68.设y e f x 且fx 二阶可导,则y ( D )A . e f xB f X r e ff X££fX丄2x C . e f x f x D . ef x9.若 f x axe , x 0在x 0处可导,则a , b 的值应为 b sin2x,(A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到X ox 时,相应函数的改变量f x 0 x B .f x 0 x C . f x 0X f X 0 f X 。

x2 .设f x 在x o 处可,则limf X 0 B .X oC . f X 0D . 2 f X 0A .必要不充分条件B . 充分不必要条件C .充分必要条件既不充分也不必要条件4.设函数y f u 是可导的,且ux2,则 dy ( C )x 2 B . xf x 2C .2 22xf x D . x f xD .有定义10•若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A )A •一定都没有导数B •—定都有导数C .恰有一个有导数D •至少一个有导数11.函数fx 与g x 在x 0处都没有导数,则Fxg x 在 x o 处(D )13 . y arctg 1,贝U yxA .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12.已知F xf g x ,在 X X 。

同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第二章 导数与微分【圣才出品】

同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第二章 导数与微分【圣才出品】

第二章 导数与微分2.2 课后习题详解习题2-1 导数概念1.设物体绕定轴旋转,在时间间隔[0,t]上转过角度θ,从而转角θ是t的函数:θ=θ(t).如果旋转是匀速的,那么称为该物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻t 0的角速度?解:物体在时间间隔上的平均角速度在时刻t 0的角速度2.当物体的温度高于周围介质的温度时,物体就不断冷却.若物体的温度T 与时间t 的函数关系为T =T(t),应怎样确定该物体在时刻t 的冷却速度?解:物体在时间间隔上平均冷却速度[,]t t t +∆在时刻t 的冷却速度3.设某工厂生产x件产品的成本为函数C(x)称为成本函数,成本函数C(x)的导数在经济学中称为边际成本.试求(1)当生产100件产品时的边际成本;(2)生产第101件产品的成本,并与(1)中求得的边际成本作比较,说明边际成本的实际意义.即生产第101件产品的成本为79.9元,与(1)中求得的边际成本比较,可以看出边际成本的实际意义是近似表达产量达到x单位时再增加一个单位产品所需的成本.4.设f(x)=10x2,试按定义求.解:5.证明证:6.下列各题中均假定存在,按照导数定义观察下列极限,指出A表示什么:以下两题中给出了四个结论,从中选出一个正确的结论:7.设则f(x)在x=1处的( ).A.左、右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左、右导数都不存在【答案】B【解析】 故该函数左导数存在,右导数不存在.8.设f(x)可导,,则f(0)=0是F(x)在x=0处可导的( ).A.充分必要条件B .充分条件但非必要条件C .必要条件但非充分条件D .既非充分条件又非必要条件【答案】A 【解析】 当f(0)=0时,,反之当时,f(0)=0,为充分必要条件.9.求下列函数的导数:10.已知物体的运动规律为s =t 3m ,求这物体在t =2s 时的速度.解:11.如果f(x)为偶函数,且f '(0)存在,证明f '(0)=0.证:f(x)为偶函数,得.因为所以f '(0)=0.。

第二章 导数与微分课后答案

第二章 导数与微分课后答案

错误!未找到引用源。

第二章导数与微分内容概要名称主要内容导数的定义00 0()() ()limxf x x f x f xx∆→+∆-'=∆00 0()() ()limhf x h f xf xh→+-'=()()()limx xf x f xf xx x→-'=-函数的求导法则(1)导数的四则运算法则错误!未找到引用源。

.[()()]()()u x v x u x v x--'''+=+错误!未找到引用源。

.[()()]()()()()u x v x u x v x u x v x'''⋅=+错误!未找到引用源。

.2()()()()()[](()0)()()u x u x v x u x v xv xv x v x''-'=≠(2)复合函数的求导法则(链式法则)dy dy dudx du dx=⋅隐函数的导数(1)求隐函数的导数时,只需将确定隐函数的方程两边同时对自变量x求导,凡遇到含有因变量y的项时,把y当作中间变量看待,再按照复合函数求导法则求之,然后从所得等式中解出dydx (2)对数求导法:对幂指函数()()v xy u x=,可以先在函数两边取对数,然后在等式两边同时对自变量x求导,最后解出所求导数反函数的导数反函数的导数等于直接函数导数的倒数,即1()()f xyϕ'=',其中()x yϕ=为()y f x=的反函数高阶导数(1)直接法:利用基本求导公式及导数的运算法则,对函数逐次地连续求导(2)间接法:利用已知的高阶导数公式,通过导数的四则运算,变量代换等方法,间接求出指定的高阶导数(3)莱布尼茨公式()()nn k n k knkuv C u v-==∑课后习题全解习题2-1★ 1. 用定义求函数3y x =在1x =处的导数.知识点:函数在某点处导数的定义思路:按照三个步骤:(1)求增量;(2)算比值;(3)求极限 解:3323(1)133()()y x x x x ∆=+∆-=∆+∆+∆ 2210033()|lim lim(33())3x x x yx x xyy x x x =∆→∆→∆=+∆+∆∆∆'==+∆+∆=∆ ★ 2. 已知物体的运动规律2()st m =,求该物体在2()t s =时的速度.知识点:导数的定义思路: 根据导数的定义,按照三个步骤求导解: 2222000(2)(2)(2)24|lim lim lim 4t t t t s t s t t tv t t t=∆→∆→∆→+∆-+∆-∆+∆====∆∆∆ 3. 设0()f x '存在,试利用导数的定义求下列极限:知识点:导数的定义思路:利用导数的定义式)()()(lim0000x f hx f h x f h '=-+→求极限★(1)000()()lim x f x x f x x∆→-∆-∆解:0000000()()()()lim lim ()x x f x x f x f x x f x f x x x ∆→∆→-∆--∆-'∆∆=-=--★(2)000()()lim h f x h f x h h→+--解:00000000()()()()()()lim lim h h f x h f x h f x h f x f x f x h h h→→+--+-+--= 000000000()()()()lim lim ()()2()h h f x h f x f x h f x f x f x f x h h→→+---'''=+=+=- ★★ (3)000()()lim2x f x x f x x x∆→+∆--∆∆2解:00000000()()()()()(2)lim lim22x x f x x f x x f x x f x f x f x x x x ∆→∆→+∆--∆+∆-+--∆∆∆2=000000000()()(2)()113lim lim ()()()2222x x f x x f x f x x f x f x f x f x x x ∆→∆→+∆--∆-'''+∆-∆==+= ★★ 4.设()f x 在2x =处连续,且2()lim 22x f x x →=-,求(2)f '.知识点:导数和连续的定义思路: 关键求出(2)f ,再利用导数的定义 解: ()f x 在2x =处连续2(2)lim ()x f f x →∴=又22222()()()lim ()lim(2)lim(2)lim 0lim 0222x x x x x f x f x f x f x x x x x x →→→→→=-⋅=-⋅=⋅=---22(2)0()(2)()(2)limlim 222x x f f x f f x f x x →→∴=-'∴===-- ★ 5.给定抛物线22y x x =-+,求过点(1,2)的切线方程与法线方程.知识点:导数的几何意义思路:利用导数的几何意义得切线的斜率解:21y x '=- ∴切线的斜率1|2111x k y ='==-=∴切线的方程为21(1)y x -=-,即1y x =+法线方程为2(1)(1)y x -=--,即3y x =-+★ 6.求曲线x y e =在点(01),处的切线方程和法线方程.知识点:导数的几何意义思路:利用导数的几何意义得切线的斜率 解: xy e '= ∴切线的斜率00|1x k y e ='===∴切线的方程为11(0)y x -=-,即1y x =+ 法线方程为11(0)1y x -=--,即1y x =-+★ 7.函数21,01()31,1x x f x x x ⎧+≤<=⎨-≤⎩在点1x =处是否可导?为什么?知识点:函数在某点可导的充要条件思路:利用导数的定义求左右导数,然后利用函数在某点可导的充要条件判别解:11()(1)312(1)lim lim 311x x f x f x f x x +++→→---'===-- 211()(1)12(1)lim lim 211x x f x f x f x x ---→→-+-'===--(1)(1)f f +-''≠ ()f x ∴在1x =处不可导.★ 8.用导数的定义求,0()ln(1),0x x f x x x <⎧=⎨+≥⎩在0x =处的导数.知识点:函数在某点可导的充要条件思路:利用导数的定义求左右导数,然后利用函数在某点可导的充要条件 解: 00()(0)ln(1)0(0)lim lim 100x x f x f x f x x +++→→-+-'===--00()(0)0(0)lim lim 100x x f x f x f x x ---→→--'===--(0)(0)f f +-''= (0)(0)(0)f f f+-'''∴===★★ 9.设sin ,0(),0x x f x x x <⎧=⎨≥⎩,求()f x '.知识点:分段函数的导数思路:分段函数在每一段内可以直接求导,但是在分段点处要利用导数的定义求导 解:当0x <时,()(sin )cos f x x x ''==当0x >时,()1f x x ''== 当0x=时,00()(0)(0)lim lim 10x x f x f xf x x+++→→-'===- _00()(0)sin (0)lim lim 10x x f x f xf x x--→→-'===-(0)1cos ,0()1,0f x x f x x '∴=<⎧'∴=⎨≥⎩ ★★ 10.试讨论函数21sin ,00,0x x y xx ⎧≠⎪=⎨⎪=⎩在0x =处的连续性与可导性. 知识点:函数在某点连续与可导的定义思路:利用函数在某点连续与可导的定义判断解: 201lim ()lim sin0(0)x x f x x f x→→=== ()y f x ∴=在0x =处连续.20001()s i n 01l i m l i m l i m [()s i n ]0x x x x y x x x xx∆→∆→∆→∆-∆∆==∆=∆∆∆ 21s i n y x x∴=在0x =处可导.★★ 11.设()x ϕ在x a =处连续, 22()()()f x x a x ϕ=-,求()f a '.知识点:函数在某点处导数的定义 思路:利用导数的定义求导数 解:()x ϕ在x a =处连续22lim ()()()()()()0()lim lim lim()()2()x ax a x a x a x a f x f a x a x f a x a x a a x a x aϕϕϕϕϕ→→→→∴=---'∴===+=--★★ 12.设不恒为零的奇函数()f x 在0x =处可导,试说明0x =为函数()f x x的何种间断点.知识点:导数以及间断点的定义思路:利用导数的定义求极限解:()f x 为奇函数 (0)(0)(0)f f f ∴=-=- (0)0f ∴= 又()f x 在0x =处可导 '0()(0)l i m (0)0x f x f f x →-∴=-即0()lim (0)x f x f x→'=∴()f x x在0x =处有极限. 0x ∴=为函数()f x x的可去间断点. ★★ 13.当物体的温度高于周围介质的温度时,物体就不断冷却,若物体的温度T 与时间t 的函数关系为()T T t =,应怎样确定该物体在时刻t 的冷却速度?知识点: 导数的定义思路: 导数反映的是函数的变化率,在t 时刻的冷却速度即为函数()T T t =对时间t 的导数 解:t 时刻该物体的温度为()T T t =,则t t +∆时刻物体的温度为()T T t t =+∆,∴物体在t 时刻的冷却速度0()()()lim()t T t t T t dTv t T t t dt∆→+∆-'===∆.★★★ 14.设函数()f x 在其定义域上可导,若()f x 是偶函数,证明()f x '是奇函数;若()f x 是奇函数,则()f x '是偶函数(即求导改变奇偶性).知识点:导数的定义思路:利用导数的定义求导数解:若()f x 为偶函数时, ()()f x f x -=000()()()()()limlim()()lim ()x x x f x x f x f x x f x f x x xf x x f x f x x∆→∆→-∆→-+∆---∆-'∴-=∆∆-∆-'=-∆==--()f x '∴为奇函数.若()f x 为奇函数时, ()()f x f x -=-000()()()()()limlim()()lim ()x x x f x x f x f x x f x f x x xf x x f x f x x∆→∆→-∆→-+∆----∆+'∴-=∆∆-∆-'=-∆==()f x '∴ 为偶函数. 习题2-2★ 1. 计算下列函数的导数:知识点:基本初等函数的导数和导数的四则运算法则思路:利用基本初等函数的导数和导数的四则运算法则求导数(1)35y x x =+;解: 5(35)(3)(5)32y x x x x x''''=+=+=+(2)2533x x y x e =-+;解: 22(533)(5)(3)(3)103ln 33xxxxxxy x e x e x e '''''=-+=-+=-+(3)2tan sec 1y x x =+-;解: 2(2tan sec 1)(2tan )(sec )(1)2sec sec tan y x x x x x x x '''''=+-=+-=+(4)sin cos y x x =⋅;解: 22(sin cos )(sin )cos sin (cos )cos sin cos 2y x x x x x x x x x ''''=⋅=+=-=(5)3ln y x x =;解: 3332321(ln )()ln (ln )3ln (3ln 1)y x x x x x x x x x x x x''''==+=+=+(6)cos x y e x =;解: (cos )()cos (cos )cos sin xxxxxy e x e x e x e x e x ''''==+=-(7)ln xy x=; 解:2221ln (ln )ln 1ln x xx x x x xx y x x x-''--'=== (8)(1)(2)(3)y x x x =---;解:(1)(2)(3)(1)(2)(3)(1)(2)(3)y x x x x x x x x x ''''=---+---+---(2)(3)(1)(3)(1)(2)x x x x x x =--+--+--(9)1sin 1cos t st+=+;解:22(1sin )(1cos )(1sin )(1cos )cos (1cos )(1sin )(sin )(1cos )(1cos )t t t t t t t t s t t ''++-+++-+-'==++ 21sin cos (1cos )t tt ++=+(10)3sin x x y x x a e =+;解:333(sin )()()sin (sin )()()x xxxxxy x x a e x x x x a e a e '''''''=+=+++21331sin cos ln 3x x x x x x x x a e a a e -=+++(11)2log ln 2y x x =+;解:22221(log )(ln 2)log (log )0log ln 2y x x x x x x x '''''=+=++=+(12)225341x x y x -+=-.解:222222(534)(1)(534)(1)'(1)x x x x x x y x ''-+---+-=-2222222(103)(1)(534)(2)3(61)(1)(1)x x x x x x x x x ----+-+==--★ 2.计算下列函数在指定点处的导数:知识点:基本初等函数的导数和导数的四则运算法则思路:利用基本初等函数的导数和导数的四则运算法则求导数(1)3333x y x =+-,求(0)y ';解:32233()()33(3)x y x x x '''=+=+-- 1(0)3y '∴=(2)2(31)x y e x x =-+,求(0)y '.解:222(31)(31)(23)(2)x x x x y e x x e x x e x e x x ''⎡⎤=-+=-++-=--⎣⎦20(0)(2)1(112)2x x y e x x ='∴=--=--=-★ 3.求曲线22sin y x x =+上横坐标为0x =的点处的切线方程与法线方程.知识点:导数的几何意义,基本初等函数的导数和导数的四则运算法则思路:利用基本初等函数的导数和导数的四则运算法则求导数得切线的斜率解:2cos 2y x x '=+ ∴在0x =的点处切线的斜率0|2cos0202x k y ='==+=又当0x=时,0y = ∴在0x =的点处切线方程为2y x =,法线方程为12y x =-★ 4.写出曲线1y x x=-与x 轴交点处的切线方程.知识点:导数的几何意义,基本初等函数的导数和导数的四则运算法则 思路:利用基本初等函数的导数和导数的四则运算法则求导数得切线的斜率 解:211()1y x xx ''=-=+当0y =时,即10x x-= 解得1x =或1- ∴曲线与x 轴的交点为(1,0),(1,0)-∴点(1,0)处的切线的斜率为11|2x k y ='== ∴切线方程为2(1)y x =-,即22y x =- ∴点(1,0)-处的切线的斜率为21|2x k y =-'== ∴切线方程为2(1)y x =+,即22y x =+★ 5.求下列函数的导数:知识点:基本初等函数的导数以及复合函数的求导法则 思路:利用链式法则求复合函数的导数(1)cos(43)y x =-;解:[]cos(43)(43)sin(43)(3)3sin(43)y x x x x '''=-⋅-=---=-(2)23xy e -=;解:2223323()(3)6x x xy ee x xe ---'''==⋅-=-(3)22y a x =-;解:22222222()1(2)22a x x y x a xa xa x'-'==-=----(4)2tan()y x =;解:22222sec ()()2sec ()y x x x x ''=⋅=(5)arctan()x y e =;解:22()'1()1x xx xe e y e e '==++(6)arcsin(12)y x =-;解:22(12)11(12)x y x x x'-'==----(7)1arccosy x=;解:222211()111||11()1x x y x x x x''=-==--- (8)ln(sec tan )y x x =+;解:211(sec tan )(sec tan sec )sec sec tan sec tan y x x x x x x x x x x''=+=+=++(9)ln(csc cot )y x x =-.解:211(csc cot )(csc cot csc )csc csc cot csc cot y x x x x x x x x x x''=-=⋅-+=--★ 6.求下列函数的导数:知识点:导数的四则运算法则和复合函数的求导法则思路:利用导数的四则运算法则和复合函数的求导法则求导数(1)22(23)15y x x =++;解:222222(1645)(23)15(23)(15)15x x y x x x x x+'''=++++⋅+=+(2)ln ln y x x =+;解:1(ln )11()22ln 2ln x y x x x x x x '''=⋅+=+(3)1ln1x y x+=-;解:211(1)(1)111122()111(1)(1)x x x x x xxy x x xx x x⋅-+⋅+-+-''=⋅=⋅=+-+--⋅(4)ln tan2x y =; 解:21111(tan )sec csc 222sin tan tan 22x x y x x x x ''=⋅=⋅⋅== (5)ln ln y x =;解:11(ln )ln ln y x x x x''=⋅=(6)21arcsin y x x x =-+;解:22222221211(1)1211211x y x x x x x x xxx-''=-+⋅-+=-+⋅+=----(7)2(arcsin )2xy =;解:222arcsin 122arcsin(arcsin )2arcsin ()22221(2)4xx x x x y x x'''=⋅=⋅⋅=--(8)21ln y x =+;解:22222(1ln )2ln (ln )2ln (1)ln 21ln 21ln 21ln 1ln x x x x x x y xxxx x''+'====++++(9)arctanxy e =解:arctan arctan arctan arctan 22()11(arctan )11()22(1)x xxxx e y ex ee x x x x x '''=⋅=⋅=⋅⋅=+++(10)tan 210x x y =;解:tan 2tan 2210ln10(tan 2)10ln10[tan 2sec 2(2)]x xx x y x x x x x x '''=⋅⋅=+⋅ tan 2210ln10(tan 22sec 2)x xx x x =+(11)44ln 1xx e y e =+;解:44411[ln ln(1)]2ln(1)22x x x y e e x e =-+=-+ 4444411(1)2[2ln(1)]222211x x xx xe e y x e e e '+''∴=-+=-⋅=-++ (12)21sin xy e-=.解:222111sin sin sin 2111111(sin )(2sin )(sin )(2sin )(cos )()xxx y ee e x x x x x x---''''=⋅-=⋅-⋅=⋅-⋅⋅21sin 212sin xe x x-=★★ 7.设()f x 为可导函数,求dydx: 知识点:复合函数的导数思路:利用链式法则求复合函数的导数(1)3()y f x =;解:3323()()3()y f x x x f x ''''=⋅=(2)22(sin )(cos )y f x f x =+;解:222222(sin )(sin )(cos )(cos )sin 2[(sin )(cos )]y f x x f x x x f x f x '''''''=⋅+⋅=⋅- (3)1(arcsin )y f x=.解:2211111(arcsin )(arcsin )(arcsin )()11y f f x x xxx ''''=⋅=⋅⋅-- 211(arcsin )||1f x x x '=-⋅-★★ 8.设(1)x f x xe --=,且()f x 可导,求()f x '.知识点:抽象函数的导数思路:利用换元法求函数表达式,然后求导数 解:令1x t -=,则1x t =-(1)1()(1)(1)t t f t t e t e ---∴=-=- 1()(1)x f x x e -∴=- 1111()[(1)](1)(1)()x x x x f x x e x e x e xe ----''''∴=-=-+-=-★★ 9.设()f u 为可导函数,且5(3)f x x +=,求(3),()f x f x ''+.知识点:复合函数的导数思路:)3(+'x f 表示对)3(+x 的导数,)(x f '表示对x 的导数,注意求导的变量 解: 由5(3)f x x +=有 5(3)[(3)3]f x x +=+-44(3)5[(3)3]15f x x x '∴+=+-⋅=令3x t +=,则3x t =- 5()(3)f t t ∴=- 5()(3)f x x ∴=- 54(3)()5f x x x ''∴+==★★ 10.已知1()1xf x x=+,求()f x '. 知识点:抽象函数的导数思路:利用换元法求函数表达式,然后求导数解:令1t x =,则1x t= 11()111t f t t t∴==++ 1()1f x x ∴=+ 211()()1(1)f x x x ''∴==-++ ★★ 11.已知2()()fx x a ϕ=,且1()()ln f x f x a'=,证明()2()x x ϕϕ'=.知识点:复合函数的导数 思路:利用链式法则求导数 解:22()2()()ln [()]2ln ()()f x fx x aa f x a a f x f x ϕ'''=⋅⋅=⋅⋅由1()()ln f x f x a '=,得1()()ln f x f x a'⋅= 2()()22()f x x a x ϕϕ'∴== ★★ 12.设()f x 在(,)-∞+∞内可导,且22()(1)(1)F x f x f x =-+-,证明:(1)(1)F F ''=-知识点: 复合函数的导数思路: 利用链式法则求导解:由22()(1)(1)F x f x f x =-+-,有22()(1)2(1)(2)F x f x x f x x '''=-⋅+-⋅- (1)2(0)2(0)0F f f '''∴=-=(1)2(0)2(0)0F f f '''-=-+= (1)(1)F F ''∴=-★ 13.求下列函数的导数:知识点:复合函数的导数 思路:利用链式法则求导数(1)()y ch shx =;解:()()()y sh shx shx sh shx chx ''=⋅=⋅(2)chx y shx e =⋅;解:2()()()chxchx chx chx chx y shx eshx e shx chx e shx e shx e chx sh x '''=⋅+⋅⋅=⋅+⋅⋅=+(3)(ln )y th x =;解:2211(ln )ln (ln )y x ch x x ch x ''=⋅=⋅ (4)32y sh x ch x =+;解:223()2()32y sh x shx chx chx sh x chx chx shx '''=⋅+⋅=⋅+⋅(5)2()x y arch e =;解:2224411[()]()211xx x x x y arch e e e e e '''==⋅=⋅--(6)2(1)y arsh x =+.解:22212(1)1(1)1(1)x y x x x ''=⋅+=++++习题2-3★ 1.求下列函数的二阶导数:知识点:高阶导数思路:利用基本求导公式及导数的运算法则,对函数逐次求导(1)5342y x x x =++;解:425122y x x '=++ 32024y x x ''=+(2)32x y e -=;解:3232(32)3x x y ex e --''=⋅-= 32323(32)9x x y e x e --'''=⋅-=(3)sin y x x =;解:sin (sin )sin cos y x x x x x x x '''=+=+(sin )cos (cos )2cos sin y x x x x x x x x '''''=++=-(4)sin t y e t -=;解:()sin (sin )(cos sin )ttty e t e t e t t ---'''=+=-()(cos sin )(cos sin )2cos t t t y e t t e t t e t ---''''=-+-=-(5)21y x =-;解:222(1)211x x y xx'-'==---2222222231(1)1(1)11(1)(1)x x x x x x x x y x x x ''-------''=-=-=----(6)2ln(1)y x =-;解:222(1)211x xy x x '-'==--- 2222222(2)(1)2(1)2(1)(1)(1)x x x x x y x x ''---+''=-=---(7)tan y x =;解:2sec y x '= 22sec (sec )2sec tan y x x x x '''=⋅=(8)211y x =+; 解:22222(1)2(1)(1)x xy x x '-+'==-++2222222242423(2)(1)2[(1)]2(1)22(1)262(1)(1)(1)x x x x x x x x x y x x x ''+-⋅++-⋅+⋅-''=-=-=+++(9)2xy xe=.解:2222222()()(12)x x x x x y x ex e e xe x e x ''''=+=+=+222222222()(12)(12)2(12)42(32)x x x x x y e x e x xe x e x xe x ''''=+++=++⋅=+★ 2.设10()(31)f x x =+,求(0)f '''.知识点:高阶导数思路:利用基本求导公式及导数的运算法则,对函数逐次求导 解:99()10(31)(31)30(31)f x x x x ''=+⋅+=+88()309(31)(31)810(31)f x x x x '''=⨯++=+77()8108(31)(31)19440(31)f x x x x ''''=⨯++=+ (0)19440f '''∴= ★ 3.已知物体的运动规律为sin s A t ω=(,A ω是常数),求物体运动的加速度,并验证:2220d s s dtω+=. 知识点:高阶导数思路:利用基本求导公式及导数的运算法则,对函数逐次求导 解:cos s A t ωω'= 2sin s A t ωω''=222sin d s a A t dt ωω∴==- 22222sin sin 0d s s A t A t dtωωωωω∴+=-+=★ 4.验证函数12x x y C e C e λλ-=+(12,,C C λ是常数)满足关系式: 20y y λ''-=知识点:高阶导数思路:利用基本求导公式及导数的运算法则,对函数逐次求导 解:12xx y C eC e λλλλ-'=- 2212x x y C e C e λλλλ-''=+2221212()()0x x x x y y C e C e C e C e λλλλλλλ--''∴-=+-+=★★ 5.设()g x '连续,且2()()()f x x a g x =-,求()f a ''.知识点: 导数的定义思路: 因为()g x ''不一定存在,不能直接求二阶导数,要利用导数的定义求解:2()2()()()()f x x a g x x a g x ''=-+- ()0f a '∴=又()g x ' 连续,但()g x '不一定存在 lim ()()x ag x g a →''∴=()()()()limlim lim[2()()()]2()x ax a x a f x f a f x f a g x x a g x g a x ax a →→→'''-'''∴===+-=-- ★★ 6.若()f x ''存在,求下列函数的二阶导数22:d ydx.知识点: 高阶导数,复合函数的求导法则 思路: 利用链式法则求导 (1)3();y f x =解:32()3y f x x ''=⋅ 32323436()3()36()9()y xf x x f x x xf x x f x ''''''''∴=+⋅=+ (2)ln[()]y f x =.解:()()f x y f x ''= 22()()[()][()]f x f x f x y f x '''⋅-''∴= ★★★ 7.已知2,0()ln(1),0ax bx c x f x x x ⎧++<=⎨+≥⎩在0x =处有二阶导数,试确定参数,,a b c 的值.知识点:可导与连续的定义,以及可导与连续的关系思路:由已知条件得方程组,联立方程组求解解: ()f x 在0x =处有二阶导数 ()f x ∴在0x =处连续,且()f x '在0x =处连续从而有0lim ()(0)x f x f -→=,即2lim ()0x ax bx c -→++= 0c ∴= 又 ()f x 在0x =处可导 (0)(0)f f +-''∴=而0()(0)ln(1)(0)lim lim 10x x f x f x f x x+++→→-+'===-2_00()(0)(0)lim lim 0x x f x f ax bxf b x x--→→-+'===-1b ∴=,且(0)(0)1f f +-''==21,01(),011,0ax x f x x x x +<⎧⎪⎪'∴=>⎨+⎪=⎪⎩ 又()f x 在0x =处二阶可导 (0)(0)f f +-''''∴=而 0011()(0)1(0)lim lim 1x x f x f x f x x+++→→-''-+''===- 00()(0)(21)1(0)lim lim 2x x f x f ax f a x x---→→''-+-''===21a ∴=-,即12a =-8.求下列函数所指定阶的导数:知识点:高阶导数思路: 利用已知的高阶导数公式和莱布尼茨公式求高阶导数★ (1)cos ,x y e x =求(4)y ;解:(4)4(sin )6(cos )4sin (cos )x x x x ye e x e x e x x =+-+-++-★★ (2)ln y x x =,求()n y ;解:()()(1)(ln )(ln )n n n yx x n x -=+121(1)!(2)!(1)(1)n n n n n n x n x x-----=-+⋅- ★★ (3)2132y x x =-+,求()n y ; 解:21113221y x x x x ==--+-- ()()()1111!!()()(1)(1)21(2)(1)n n n n nn n n n y x x x x ++∴=-=-------★★ (4)44sin cos y x x =+,求()n y .解:44222222131sin cos (sin cos )2sin cos 1sin 2cos 4244y x x x x x x x x =+=+-=-=+ ()()11(cos 4)4cos(4)42n n n y x x n π-∴==+⋅ ★★★ 9.作变量代换ln x t =,简化方程2220xd y dy ye dx dx-+=. 知识点: 高阶导数思路: 利用链式法则求导解: 1dy dy dx dy dt dx dt t dx =⋅= dy dy t dt dt ∴=又22222211111()()()d y d dy d dy dy d dy dy d y dx dt dt dt dt t dx t dx t dt dx t dx t dx dt ===-+=-+⋅ 22211dy d yt dt t dx =-+ 22222d y d y dy t t dx dt dt ∴=+代入方程得22220d y t yt dt += 即 220d y y dt+= 习题2-41.求下列方程所确定的隐函数y 的导数dy dx :知识点: 隐函数的导数思路: 方程两边同时对自变量x 求导,凡遇到含有因变量y 的项时,把y 当作中间变量看待,再按照复合函数求导法则求之,然后从所得等式中解出dy dx★(1)x y xy e +=;解:方程两边同时对x 求导,得 (1)x yy xy e y +''+=+解得x yx yy e y e x++-'=-★ (28)2sin()0xy y π-=;解:方程两边同时对x 求导,得 2cos()20y xy y yy ππ''+-⋅=解得22cos()yy y y xππ'=-★ (3)350xy e y x +-=;解:方程两边同时对x 求导,得 2()350xye y xy y y ''⋅++-=解得253xyxy ye y xe y -'=+★ (4)1y y xe =+;解:方程两边同时对x 求导,得 yyy e xe y ''=+解得1yye y xe '=-★ (5)22arctanln yx y x=+.解:方程两边同时对x 求导,得22222222221x yy y x yx y x y x y x'+'-+=++ 即y xy x yy ''-+=+ 解得x y y x y +'=-2.求下列方程所确定的隐函数y 的导数22d ydx :知识点: 隐函数的导数,高阶导数思路: 方程两边同时对自变量x 求导,凡遇到含有因变量y 的项时,把y 当作中间变量看待,再按照复合函数求导法则求之,然后从所得等式中解出dydx,再对一阶导数利用导数四则运算法则和复合函数求导法则求导★★ (1)222222b x a y a b +=解:方程两边同时对x 求导,得 22220b x a yy '+= 解得2'2b xy a y=-22222222242222322323b y xy b a y b x b a b b y a y a a y a a y a y'-+''∴=-⋅=-⋅=-⋅=- ★★ (2)sinln()y x y =+;解: 方程两边同时对x 求导,得 1cos (1)y y y x y ''⋅=++ 解得1()cos 1y x y y '=+- ''2''23(1)cos ()(sin )()cos ()sin [()cos 1][()cos 1]y y x y y y x y y x y yy x y y x y y +++-⋅+-+∴=-=-+-+- ★★ (3)tan()y x y =+.解: 方程两边同时对x 求导,得 2sec ()(1)y x y y ''=++解得222sec ()11sec ()1sec ()1x y y x y x y -+'==--+-+-221cot ()csc ()x y x y =--+=-+ 232csc ()cot ()x y x y =-++3.用对数求导法则求下列函数的导数:知识点: 对数求导法思路: 在函数两边取对数,然后在等式两边同时对自变量x 求导,最后解出所求导数★ (1)2tan (1)x y x =+;解:等式两边同时取对数,得 2ln tan ln(1)y x x =+等式两边同时对x 求导,得22212sec ln(1)tan 1x y x x x y x '=++⋅+2tan 2222tan (1)[sec ln(1)]1xx xy xx x x '∴=++++★★ (2)533322x x y x --=+解: 等式两边同时取对数,得111ln ln(3)ln(32)ln(2)532y x x x =-+--+等式两边同时对x 求导,得11(3)1(32)1(2)5333222x x x y y x x x '''--+'=⋅+⋅-⋅--+ 53332111[]5(3)322(2)2x x y x x x x --'∴=+---++ ★★ (3)452(3)(1)x x y x +-=+解:等式两边同时取对数,得1ln ln(2)4ln(3)5ln(1)2y x x x =++--+等式两边同时对x 求导,得111452231y y x x x '=⋅--+-+ 452(3)145[](1)2(2)31x x y x x x x +-'∴=--++-+★ 4.设函数()y y x =由方程1y y xe -=确定,求(0)y ',并求曲线上其横坐标0x =处点的切线方程与法线方程.知识点:隐函数导数和导数的几何意义思路: 方程两边同时对自变量x 求导,凡遇到含有因变量y 的项时,把y 当作中间变量看待,再按照复合函数求导法则求之,然后从所得等式中解出dy dx解: 方程两边同时对x 求导,得 0yyy e xe y ''--= 解得 1yye y xe '=-当0x =时,1y = ∴在0x =处切线的斜率(0)k y e '==0x ∴=处的切线方程为1y ex -=,即1y ex =+法线方程为11y x e -=-,即11y x e=-+★★ 5.求曲线2ln(1)arctan x t y t ⎧=+⎨=⎩在1t =对应点处的切线方程和法线方程.知识点: 参数方程表示的函数的导数思路: 利用参数方程表示的函数的求导公式求导解:22111221dy t t dx t t +==+ 11|2t dy dx =∴= 当1t=时,ln 2,4x y π==∴ 在1t =对应点处的切线方程为1(ln 2)42y x π-=-, 即11ln 2224y x π=-+ 法线方程为2(ln 2)4y x π-=--, 即22ln 24y x π=-++6.求下列参数方程所确定的函数的导数dydx:知识点: 参数方程表示的函数的导数思路: 利用参数方程表示的函数的求导公式求导★ (1) 23x at y bt⎧=⎨=⎩; 解:23322t t y dy bt bt dx x at a '==='★ (2) sin cos t tx e t y e t⎧=⎨=⎩; 解:cos sin cos sin sin cos sin cos t t t t t t y dy e t e t t t dx x e t e t t t '--==='++★ (3) 22cos sin x t y t ⎧=⎨=⎩. 解:2sin cos 12cos sin t t y dy t t dx x t t'===-'- 7.求下列参数方程所确定的函数的导数dy dx: 知识点: 参数方程表示的函数的导数思路: 利用参数方程表示的函数的求导公式求一阶导数,再将t 看作中间变量利用复合函数求导法则求二阶导数,★★ (1) 32ttx e y e -⎧=⎨=⎩;解: 22233t t t t t y dy e e dx x e '===-'-22223222414()()()33339t t t tt d y d d dt e e e e dx dx dt dx e -=-=-=-⋅-= ★★ (2) 231x t y t t⎧=-⎨=-⎩;解:22131322t t y dy t t dx x t t'--===-'-22222223131362131()()22424d y d t d t d t t t d x d x t d t t d x t t t----+∴=-=-=-⋅=-- ★★ (3) 2ln(1)arctan x t y t t ⎧=+⎨=-⎩.解: 22111221t t y dy t t t dx x t-'+==='+ 2222111()()22224d y d t d t dt t t dx dx dt dx t t ++===⋅= ★★ 8.落在平静水面上的石头,产生同心波纹,若最外一圈波半径的增大率总是6/2m ,问在2s 末扰动水面面积的增大率为多少?知识点: 导数的定义思路: 导数反映的函数的变化率,列出函数求导解:设最外一圈波半径为r ,则水面面积2s r π=∴扰动水面面积的增大率22ds rdr dr r dt dt dtππ== (*) 在2t s =时,6212r m =⨯=. 6/drm s dt=代入(*)式得22126144(/)dsm s dtππ=⨯⨯=★★ 9.一长为5米得梯子斜靠在墙上.如果梯子下端以0.5米/秒的速率滑离墙壁,试求梯子与墙的夹角为3π时,该夹角的增加率.知识点: 导数的定义思路: 导数反映的函数的变化率,列出函数求导 解:设梯子下端离墙面的距离为L ,则0.5L t =设梯子与墙的夹角为α,则0.5sin 5510L t t α=== arcsin 10t α∴= 当3πα=时,535sin32L π==,即530.52t = 53t ∴=∴当3πα=时,夹角α的增加率为5321110|51()10t d dtt α===- ★★ 10.在中午十二点整甲船以6公里/小时的速率向东行驶,乙船在甲船之北16公里处,以8公里/小时的速率向南行驶,问下午一点整两船相距的速率为多少?知识点: 导数的定义思路: 导数反映的函数的变化率,列出函数求导解:在十二点后t 小时甲船行驶的路程6s t =甲(km),乙船行驶的路程为8s t =乙(km)当02t≤≤时,甲乙两船的距离2222(16)(168)3664(2)s t t t t =+-=+-甲乙∴当1t =时,甲乙两船相距的速率122256200| 2.823664(2)t ds tdt t t =-+==-+-甲乙km/h习题2-5★ 1.已知13-=x y ,在点2=x 处计算当x ∆分别为1,0.1,0.01时的y ∆及dy 之值.知识点:函数增量以及函数微分的定义思路:利用函数增量以及函数微风的定义计算即可解:8)2()2()2(3-∆+=-∆+=∆x f x f y dx dx f dy x 12)2(|2='==)1(当1=∆x 时,19833=-=∆y12112=⨯=dy(2) 当1.0=∆x 时,261.18)1.2(3=-=∆y 2.11.012=⨯=dy(3) 当01.0=∆x 时,120601.08)01.2(3=-=∆y 12.001.012=⨯=dy★ 2.将适当的函数填入下列括号内,使等式成立:知识点:微分形式的不变性思路:利用du u f dy )('=求函数微分(1)xdx d 5)(=解:xdx x d 2)(2= xdx c x d 5)25(2=+∴(2)xdx d ωsin )(=解:xdx x d ωωωsin )(cos -= x d xc xd ωωωs i n )c o s 1(=+-∴ (3)dx xd +=21)(解:dx x x d +=+21))2(ln( dx xc xd +=++∴21))2(ln( (4)dx e d x 2)(-=解:dx e ed x x222)(---= dx e c e d x x 22)21(--=+-∴(5)dx x d 1)(=解:dx xx d 21)(=dx xc xd 1)2(=+∴ (6)xdx d 2sec )(2=解:xdx x d 2sec 2)2(tan 2= x d xc xd 2se c )2t a n 21(2=+∴ 3.求下列函数的微分:知识点:基本初等函数的导数,导数的四则运算法则,复合函数的导数,以及微分的定义 思路:利用dx x f dy )('=求函数微分★ (1)x x y 2ln +=解:x x y 11+=' dx xx dy )11(+=∴★(2)x x y 2sin =解:x x x y 2cos 22sin +=' dx x x x dy )2cos 22(sin +=∴★ (3)22x y x e =解: 22222()()2(1)xx x y x ex e x x e '''=+=+ 22(1)x dy x x e dx ∴=+★ (4)3ln 1y x =-解:3233(1)32(1)1x x y x x '-'==--- 2332(1)x dy dx x ∴=-- ★ (5)2()x x y e e -=+解:222()()2()xxxxxx y e e e e ee ---'=+-=- 222()x x dy e e dx -∴=-★ (6)y x x=-解:()2124x x x y x xx x x'--'==--214x dy dx x x x-∴=-★ (7)221arctan1x y x -=+解:2224221()21111()1x x x y x x x -'+'==--+++ 421x dy dx x =-+ ★★ (8)21cos()x x x y a a arc a =+-解:2222(1)()ln arccos()1[]211x x xx xxxa a y a a a a a a'-'=++----2222ln ln ln cos()ln cos()11x x xx xx xxa a a a a a arc a a a arc a a a =--=---22ln cos()1x x xa a dy arc a dx a ∴=--★★ 4.求方程2()ln()y x x y x y -=--所确定的函数()y y x =的微分dy .知识点: 微分的四则运算法则和微分形式的不变性 思路: 方程两边同时求微分,再解出dy解:方程两边同时求微分, (2)()ln()()(ln())d y x d x y x y x y d x y -=--+--即2()ln()()dx dydy dx dx dy x y x y x y--=--+-⋅-化简得2ln()3ln()x y dy dx x y +-=+-★★ 5.求由方程22cos()xy x y =所确定的函数y 的微分.知识点: 微分的四则运算法则和微分形式的不变性 思路: 方程两边同时求微分,再解出dy解:方程两边同时求微分,得22(cos())()d xy d x y = 即sin()()2()xy dydx xdy xy dx xdy -+=+化简得222sin()sin()2xy y xy dy dx x xy x y +=-+★★ 6.当||x 较小时,证明下列近似公式:知识点: 微分的应用思路: 当||x 较小时,()(0)(0)f x f f x '≈+(1)sin x x ≈解:当||x 较小时,()(0)(0)f x f f x '≈+sin sin0cos0x x x ∴≈+⋅= 即sin x x ≈(2)1x e x ≈+ 解:00x e e e x ≈+ 即1xe x ≈+ (3)11n x x n+≈+解: 11111(10)(10)nnn x x n -+≈+++⋅ 即111n x x n+≈+⋅★★ 7.计算下列格式的近似值:知识点: 微分的应用思路: 当||x 较小时,00()()()f x f x f x x '≈+ (1)1001.002解: 令100(),f x x =则991001()100f x x -'=取01,0.002,x x =∆=得10011.002(1)(1)10.002 1.00002100f f x '≈+∆=+⨯= (2) 0cos29解:令()cos f x x =,则()sin f x x '=-取0306x π==,1180x π∆=-=-,得3cos 29cos(sin )()661802360ππππ≈+-⋅-=+(3) arcsin0.5002解:令()arcsin f x x =,则21()1f x x'=-取00.5,0.0002x x =∆=,得213arcsin 0.5002arcsin 0.50.0002675001(0.5)π≈+⨯=+-。

高等数学教材的详细答案

高等数学教材的详细答案

高等数学教材的详细答案第一章:函数与极限1. 函数与映射1.1 函数的定义及性质1.2 映射的分类与性质1.3 复合函数与反函数2. 无穷极限与极限2.1 函数极限的定义2.2 无穷大与无穷小2.3 两个重要极限定理3. 数列极限3.1 数列极限的定义3.2 收敛数列与发散数列3.3 重要数列极限4. 极限的运算4.1 极限运算法则4.2 夹逼准则4.3 极限存在的条件第二章:导数与微分1. 导数的概念1.1 导数的定义1.2 几何意义与物理意义1.3 函数连续与可导的关系2. 基本导函数与基本导数公式2.1 幂函数与初等函数的导函数2.2 导数的四则运算2.3 高阶导数与高阶导数公式3. 隐函数与参数方程的导数3.1 隐函数的导数3.2 参数方程的导数3.3 高阶导数的计算4. 微分与微分近似4.1 微分的定义与性质4.2 微分近似计算4.3 微分中值定理第三章:微分中值定理与导数的应用1. 罗尔定理与拉格朗日中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 函数的单调性与曲线的凹凸性2.1 函数单调性的判定2.2 曲线凹凸性的判定2.3 函数特性的应用3. 泰勒公式与函数的展开3.1 泰勒公式的推导3.2 泰勒公式的应用3.3 麦克劳林公式与函数展开4. 不定积分与定积分4.1 不定积分的定义与性质4.2 基本积分公式4.3 定积分的定义与性质第四章:一元函数积分学1. 牛顿-莱布尼茨公式与基本积分法1.1 牛顿-莱布尼茨公式的推导1.2 基本积分法及应用1.3 函数定积分的计算2. 反函数与换元积分法2.1 反函数的导数与积分2.2 第一类换元法2.3 第二类换元法与分部积分法3. 定积分的应用3.1 面积与曲线长度的计算3.2 物理应用:质量、重心与转动惯量3.3 统计应用:平均与期望值的计算4. 微分方程的基本概念4.1 微分方程的定义与解法4.2 一阶线性微分方程4.3 可降阶的高阶微分方程总结:高等数学教材中的详细答案涵盖了函数与极限、导数与微分、微分中值定理与导数的应用、一元函数积分学等各个章节。

导数与微分习题及答案

第二章导数与微分(A)1 .设函数y 二f x ,当自变量x 由x 0改变到x 0 * e x 时,相应函数的改变量 y =()A. f x 0 : =x B . fx^_x C . f x 0 : =x f x 0D . f x 0 x2. 设f(x )在 x 处可,则曲区弋ix °)= () A. - f x oB . f -X 。

C . f x oD . 2f x o3 .函数f x 在点x 0连续,是f x 在点x 0可导的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数y = f u 是可导的,且u =x 2,则dy=()dxA. f x 2B . xf x 2C . 2xf x 2D . x 2f x 25. 若函数f x 在点a 连续,则f x 在点a () A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6 . f(x)=x-2在点x=2处的导数是() A . 1 B . 0 C . -1 D .不存在 7.曲线y =2x 3 -5x 2 • 4x -5在点2,-1处切线斜率等于()A . 8B . 12C . -6D . 68. 设y=e f 卜且f(x 二阶可导,则y"=() A . e f (x ) B . e f *)f "(x ) C . e f (x )〔f "(x f "(x jD . e f (x X 【f *(x 9 + f*(x 》e axx < 09. 若f"〔b+sin2x, x,0在x=°处可导'则a,b的值应为()717118.210. 若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F X 二 f X g X , G X A f X — g X 在 x ° 处()A .一定都没有导数B . 一定都有导数C .恰有一个有导数D .至少一个有导数11. 函数fx 与g X 在X o 处都没有导数,则Fx 二fx^gx , G x i= f x -g x 在 X o 处()A .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12. 已知F x 二f !g x 1,在x 二X 。

《微积分》各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的阶无穷小.4、01sin lim 0=→xx kx 成立的k 为。

5、=-∞→x e xx arctan lim .6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________. 13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________.15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

高等数学第二章课后习题答案

第二章 导数与微分1. ()().1,102-'=f x x f 试按定义求设200200(1)(1)10(1)10'(1)lim lim1020lim lim(1020)20x x x x f x f x f x xx x x x∆→∆→∆→∆→-+∆--∆---==∆∆∆-∆==∆-=-∆2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。

⑴ ()()=∆-∆-→∆xx f x x f x 000lim(0'()f x -); ⑵ ()=→∆xx f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()()=--+→hh x f h x f h 000lim(02'()f x ).3. 求下列函数的导数:⑴ ='=y x y ,4则34x ⑵ ='=y x y ,32则1323x -⑶ ='=y xy ,1则3212x -- ⑷ ='=y x x y ,53则115165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方上点⎪⎭⎫⎝⎛=πx y'sin ,'()32y x y π=-=-所以切线方程为1()223y x π-=--2(1)03y +-+=班级 姓名学号法线方程为1)23y x π-=-化简得3)0x π+-= 5. 讨论函数⎪⎩⎪⎨⎧=≠=0 001sin 2x x xx y 在0=x 处的连续性和可导性. 20(0)01lim sin 0(0)()x f x f x→===因为有界量乘以无穷小 所以函数在0x =处连续因为 20001s i n(0)(0)1l i m l i m l i ms i n 0x x x x f x f x x x xx∆→∆→∆→∆+∆-==∆=∆∆∆ 所以函数在0x =处可导.6. 已知()()()()是否存在?又及求 0 ,0 0 ,0 2f f f x x x x x f '''⎩⎨⎧<-≥=-+ 2'00(0)(0)(0)lim lim 0h h f h f h f hh +→+→++-==='00(0)(0)(0)limlim 1h h f h f hf hh -→-→++--===- ''(0)(0)f f +-≠ '(0)f ∴不存在7. ()(). , 0 0sin x f x x x x x f '⎩⎨⎧≥<=求已知当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;班级 姓名学号当0x =时'00(0)(0)(0)limlim 1h h f h f hf hh +→→+-===++ '00(0)(0)sin (0)limlim 1h h f h f h f h h-→-→+-===- '(0)1f ∴=综上,cos ,0'()1,0x x f x x <⎧=⎨≥⎩8. 求下列函数的导数:(1);54323-+-=x x x y (2);1227445+-+=x xx y 2222222232242222csc cot (1)2csc 2'(1)2(1)csc cot 4csc (1)23(3)(3ln )(2ln )(2)'(3ln )(94)ln 32(3ln )x x x x xy x x x x x x x x x x x x x x x y x x x x x x x x x x -+-=+-+-=+++-++=+-+-+=+ 2'364y x x =-+652'20282y x x x ---=--+ (3);3253xx e x y +-= (4);1sec tan 2-+=x x y2'152ln 23x x y x e =-+ 2'2s e c s e c t a ny x x x =+班级 姓名学号(5);log 3lg 2ln 2x x x y +-= (6)()();7432x x y -+=123'ln10ln 2y x x x =-+ '422y x =--(7);ln x xy =(8);cos ln 2x x x y = 21ln 'x xx y x-= 221'2ln cos cos ln sin y x x x x x x x x x =+- 21ln x x-= 22l n c o s c o s l n s i n x x x x x x x x =+- (9);1csc 22xxy +=2222csc cot (1)2csc 2'(1)x x x x xy x -+-=+ 2222(1)csc cot 4csc (1)x x x x xx -+-=+ (10).ln 3ln 223x x x x y ++=2232223(3)(3ln )(2ln )(2)'(3ln )x x x x x x x x y x x ++-++=+ 4222(94)ln 32(3ln )x x x x x xx x -+-+=+ 9. 已知. ,cos 21sin 4πϕϕρϕϕϕρ=+=d d 求因为1s i n c o s s i n2d d ρϕϕϕϕϕ=+-班级 姓名学号所以4222422284d d πϕρπϕ==+-=+10. .1轴交点处的切线方程与写出曲线x xx y -= 令0y =,得11x x ==-或 因为2'1y x -=+, 所以 11'2,'2x x y y ==-==曲线在(1,0)处的切线方程为2(1)y x =-,即220x y --=; 曲线在(1,0)-处的切线方程为2(1)y x =+,即220x y -+=。

高等数学题库第02章(导数与微分)

第二章 导数与微分习题一一、选择题1.设)(x f 在a x =处可导,则=+--→hh a f h a f h )()(lim( )A.)(2'a fB. )('a fC. )(2'a f -D.0 2.设0)0(=f ,则下述所论极限存在,则=→xx f x )(lim( ) A. )0(f B. )0('f C. )('x f D.03.函数⎪⎩⎪⎨⎧=≠=000,1arctan )(x x xx x f ,,则)(x f 在点0=x 处( ) A.间断 B.连续,但不可导 C.可导 D.可导且2)0('π=f4.在3=x 处可导,则常数a 和b 的一组值为( )A.6和9B.-6和-9C.6和-9D.-6和95.已知)4)(3)(2)(1()(----=x x x x x f ,且!3)('=k f ,则=k ( ) A.4 B.3 C.2 D.16. 设)(x f 是偶函数,且在0=x 处可导,则)0('f =( ) A.1 B.-1 C.0 D.以上都不对7.设曲线21x e y -=与直线1-=x 的焦点为p ,则曲线在点p 处的切线方程是( ) A.022=+-y x B. 012=++y x C. 032=-+y x D. 032=+-y x8. 已知曲线L 的参数方程是⎪⎩⎪⎨⎧==2sin cos ty tx ,则曲线L 上3π=t 出法线方程是( ) A. 0142=+-y x B. 0124=--y x C. 0342=-+y x D. 0324=-+y x 二.填空题1.设函数)()()(22x g a x x f -=,其中)(x g 在点a x =处连续=)('a f .2.设函数)(x f 在()+∞∞-,可导,)1()1()(22x f x f x F -+-=,则=)1('F .3.设x x x f +=sin )(ln ,则=)('x f .4.设)0(1>=x xy x ,则='y . 5.设x z x y ∙=2,则=dy .6.设π<<x 0,则=∙+)cot 1(x x d )(cot x d7.已知)(2)(x fa x =ϕ,且)(2)('x x ϕϕ=,则=)('x f .8.)(2b x f y +=,则=''y .9.设)(x y y =由y y x =+)(ϕ确定,若)('y ϕ存在且1)('≠y ϕ,则=dxdy. 三.下列各题中均假定)(0'x f 存在,按照导数定义,求出下列各题中的A 值( ) (1)=∆-∆-→∆x x f x x f x )()(lim 000A(2)=→xx f x )(limA 设存在且)0(,0)0('f f = (3)=-+→hx f h x f h )()3(lim000A(4)=--+→hh x f h x f h )()2(lim000A四.设函数()⎩⎨⎧>+≤+=2212x b x x ax x f 在2=x 处可导,求常数a 和b 的值.五.设函数()⎩⎨⎧≥-<=0202x bx x ae x f x 在点0=x 处可导,求常数a 和b 的值.习题二一、选择题1. 2)('=a f ,则=--+→xx a f x a f x )()(lim0( ) A.2 B.-2 C.4 D.-42.设函数)(x f 和)(x g 在0=x 处可导,0)0()0(==g f ,且0)0('≠g ,则=→)()(limx g x f x ( )A.)0()0(''g fB. )()(''x g x f C. )0()0('g f D. )()('x g x f3.下列函数中,在0=x 处既连续又可导的是( ) A.x xx f =)( B. ⎩⎨⎧≤>-=0sin 0,1)(x x x x x f , C. ⎩⎨⎧≥+<=0)1ln(0,)(x x x x x f , D.x y sin =4.满足)()()('''b f a f b a f +=+的函数)(x f =( ) A.2x B.3x C.x e D.x ln5.设)100()4)(3)(2)(1()(++-+-=x x x x x x x f ,则=)1('f ( ) A.!101 B.100!101-C. !100-D. 99!100 6.设a 是实数,函数⎪⎩⎪⎨⎧≤>-∙-=101,11c o s )1(1)(x x x x x f a ,则)(x f 在1=x 处可导时,必有( )A.1-≤aB.01<<-aC.10<≤aD.1≥a7.若)(x f 的一阶导数与二阶导数都存在,且均不等于零,其反函数为)(y x ϕ=,则=)(''y ϕ( )A.)(1''x f B.[]2''')()(x f x f C. []2''')()(x f x f - D. []3''')()(x f x f - 二.填空题1.若对任意实数x ,函数)(x f 满足)()(x f x f -=-,且0)(0'≠=-k x f , 则=)(0'x f .2.已知)(x f e y =,其中f 二阶可导,则=''y .3.设xx x f +=⎪⎭⎫ ⎝⎛11,则=)('x f .4.设抛物线2ax y =与曲线x y ln =相切,则a = .5.设)1ln(2-+=x x y ,则='y .6.设曲线ax x y +=3与曲线c bx y +=2在点()0,1-处相切,其中c b a ,,为常数, 则a = ,b = , c = . 三.求下列函数的一阶导数:1.2ln 222+-=a x x y2.211xx y -+=3.21ln xxy += 4.x x y 2ln +=5.()x x y 32cos 3sin ∙=6.x y arcsin ln 3=7.x x y 2sec arctan ∙=8.xxx y tan 1sin +=9.()22sin sin xxy = 10.xx y ln 2=11.()x x y ln arcsin = 12.()x x y cos cos -=习题三一、选择题1.下列函数中,在0=x 处不可导的是( ) A.x y sin = B. x y cos = C.2ln =y D.x y =2. 下列函数中,在0=x 处可导的是( )A. x y ln =B. x y cos =C. x y sin =D. ⎩⎨⎧≥<=00,2x x x x y ,3.若函数⎩⎨⎧≥-<=0,0,)(2x bx a x e x f x 在0=x 处可导,则b a 、的值必为( )A.1-==b aB. 2,1=-=b aC. 2,1-==b aD. 2==b a4.设函数)(x f 在1=x 处可导,且21)1()31(lim=∆-∆-→∆x f x f x ,则=)1('f ( )A.31B. 61C. 61- D. 31- 5.曲线x e x y +=在0=x 处的切线方程是( )A.012=+-y xB. 022=+-y xC. 01=+-y xD. 02=+-y x 6.曲线1213123+++=bx x x y 在点(0,1)处的切线与x 轴交点的坐标是( ) A.(-1,0) B.⎪⎭⎫ ⎝⎛-0,61 C.(1,0) D. ⎪⎭⎫⎝⎛0,617.设xey 2sin =,则=dy ( )A.)(sin 2x d e xB. )(sin 2sin 2x d e x C. )(sin 2sin 2sin x xd e x∙ D. )(sin 2sin x d e x8.若函数)(x f y =有21)(0'=x f ,则当0→∆x 时,)(x f 在点0x 处的微分是( ) A.与x ∆等价的无穷小量 B.与x ∆同阶,但不等价的无穷小量 C.比x ∆高阶的无穷小量 D. 比x ∆低阶的无穷小量 二.填空题1设函数)(x f 在2=x 处可导,且2)1('=f ,则=+-+→h nh f mh f h )2()2(lim0 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 导数与微分答案第一节 导数概念1.填空题. (1)()'f 0= 0;(2) (2, 4) (3) 1 .(4) =a 2 ,=b -1 . 2.选择题.(1)B ; (2)B ; (3) C ; (4)D ; (5) B ; (6)B 3.解 令)(t v 表示在t 时刻的瞬时速度,由速度与位移的关系知()().5)21(lim 2)22(lim 22lim )2()2(22222'=++=-+-+=--==→→→t t t t t s t s s v t t t4.设()ϕx 在x a =处连续,()()()f x x a x =-ϕ,求()'f a ;若)(||)(x a x x g ϕ-=,()x g 在x a =处可导吗? 解(1)因为()ϕx 在x a =处连续, 故)()(lim a x ax ϕϕ=→,所以()()()).()(lim 0)(lim lim)('a x ax x a x a x a f x f a f a x a x ax ϕϕϕ==---=--=→→→ (2)类似于上面推导知()()()),(0)(lim lim )('a ax x a x a x a g x g a g a x a x ϕϕ=---=--=++→→+()()()).(0)(lim lim )('a ax x a x a x a g x g a g a x a x ϕϕ-=----=--=--→→-可见当()0=a ϕ时,()0)('==a a g ϕ;当()0≠a ϕ时,())(''a g a g -+≠, 故这时()x g 在x a =处不可导。

5.求曲线yx =-43在点()12,-处的切线方程和法线方程.解 根据导数的几何意义知道,所求切线的斜率为,4|4|131'1=====x x x y k从而所求切线方程为),1(4)2(-=--x y 即 64-=x y .所求法线的斜率为,41112-=-=k k 于是所求法线方程为),1(41)2(--=--x y 即 4741--=x y .6.证明函数()⎪⎩⎪⎨⎧≤>-+=0 , 00 ,11x x xx x f 在点x =0处连续,但不可导. 证明 因)0(021lim 11lim )(lim000f xxx x x f x x x ===-+=+++→→→,又易知)0(0)(lim _0f x f x ==→,故()x f 在点x =0处连续。

而()(),21lim 011lim0lim )0(23000'∞==--+=-=+++→→→+h hhhh hf h f f h h h , 故右导数不存在.7. 设)100()1()(--=x x x x f ,求).0('f 解 由导数定义知()()!.1000)100()2)(1(lim 0lim)0(00'=----=-=→→xx x x x x f x f f x x第二节 函数的求导法则1.选择题.(1) D ; (2)D ; (3) A ; 2.求下列函数的导数.(1).2ln 33-+=x y x 解 .33ln 32'x y x += (2)().cos 2x x x y +=解 .212s i n c o s 2)21s i n ()(c o s 2232212'x x x x x x x x x xx y +-=+-++=-(3)()()().321---=x x x y解 ()()'')]3)(2)[(1(32---+--=x x x x x y.11123)23)(1()3)(2(2+-=-+--+--=x x x x x x x(4) ).1,0(sin 3≠>+=a a e a x x y x x 解xx x x e a e a a x x x x y +++=-)ln (cos sin 313132')l n (c o s s i n 313132ae e a x x x x x x ++=-(5).ln cot 2x x x y = 解.cot ln csc ln cot 2)1cot ln csc (ln cot 2)ln (cot ln cot 22222'2'x x x x x x x x xx x x x x x x x x x x x x y +-=+-+=+=(6).sec x xe y x=解 ).tan 1(sec )tan sec sec (sec 'x x x x e x x e x e x x e y xxxx++=++= 3.设yx x x=+ln 1,求x y d d 及.d d 1=x x y解 ,211ln )21(1ln d d 2323---+=-+⋅+=x x x x x x x y因而21211d d 1=-==x xy. 4. 在下列各题中,设f u ()为可导函数,求d d y x. (1))].cos (sin [x x f f y +=解 ).sin )(cos cos (sin )]cos (sin ['''x x x x f x x f f y -++=(2)()().x f x e e f y =解 .)]()()([)()()()('')(')()(''x f x x x f x f x x f x x e e f x f e f e x f e e f e e e f y +=+= 5. 设f x xe x ()1-=-且f x ()可导,求).(x f '解 把方程两端分别对x 求导,得:),1()1()1()1('x e xe e x f x x x -=-⋅+=-⋅---- 令y x =-1, 则,)(1'--=y ye y f 即 .)(1'--=x xe x f 6. 设f u ()为可导函数,且f x x ()+=35,求)3(+'x f 和).(x f '解 把方程两端分别对x 求导,得4'5)3(x x f =+, 进而.)3(5)(4'-=x x f第三节 高阶导数1. 填空题.(1)x y 10=,则()()=0n y n )10(ln . (2)yx =sin2,则()()y x n= )22sin(2πn x n + ..2. 选择题.(1) C ; (2) D ; 3. 求下列函数的n 阶导数.(1) .)1(αx y += 解 ,)1(1'-+=ααx y ,,)1)(1(2" -+-=αααx y.)1)](1([)1()(n n x n y -+---=αααα(2) .5xy =解 ,5ln 5'xy = ,)5(ln 52"xy =, .)5(ln 5)(n x n y =4.计算下列各题. (1)()yx x =-11,求()().24y解 将原题改写为xx y 111--=, 则,)1()1(22'------=x x y ,!2)1(!233''----=x x y ,!3)1()1(!344'''------=x x y ,!4)1(!455)4(----=x x y 于是.493]2)12[(!4)2(55)4(=--=--y (2)()ye x x =-21,求().20y解 ()),12(2122'-+=⋅+-=x x e x e x e y x x x()),14()22(1222''++=+⋅+-+=x x e x e x x e y x x x ()),56()42(1422'''++=+⋅+++=x x e x e x x e y x x x依此类推可用数学归纳法证明, 对一切自然数n 有],1)1(2[2)(--++=n n nx x e y x n将20代入得).37940(2)20(++=x x e y x 注:本题也可用莱布尼茨公式计算.第四节 隐函数及由参数方程所确定的函数的导数 相关变化率1. 设y e y x x sin 22=-,求.dxdy 解 把方程两边分别对x 求导,得,cos 2222dxdy y e dx dy x xy x ⋅=-+ 故 .cos )(222yx xy e dx dy x --=2. 设063sin 33=+-+y x y x ,求.0=x dx dy解 把方程两边分别对x 求导,得,063cos 33322=+-+dxdy x dx dy y x (*) 故 .23c o s 22+-=y x x dx dy由原方程可得,0=x 时,0=y ,将0,0==y x 代入上式,即得.210==x dx dy 或:不必求出dx dy 的具体表达式,将0,0==y x 代入(*)式,可解得.210==x dx dy 3.求曲线⎪⎪⎩⎪⎪⎨⎧+=+=2221313t t y t t x 在2=t 处的切线方程和法线方程. 解 将2=t 代入原方程得),(000y x M 的坐标 512,5600==y x , 在点),(000y x M 的切线斜率为,34336d d 222-=-====t t t t x y k在点),(000y x M 的切线方程为)56(34512--=-x y , 即01234=-+y x , 在点),(000y x M 的法线方程为)56(43512-=-x y , 即0643=+-y x . 4.利用对数求导法求导数. (1).1sin x e x x y -=解 两边取对数, 得 ),1sin ln(21ln x e x x y -=上式两边对x 求导, 得)].)1(2cot 1[21]}1)21(sin 1[cos 1sin 11{21])1(sin 1[sin 1sin 1211''x x xx xx x x x e e x x e e x e x e x x e x x e x e x x y y --+=--⋅+--+⋅=-⋅+--⋅= 因此,)].)1(2cot 1[1sin 21'xx x e e x x e x x y --+-= (2)().sin ln xx y =解 两边取对数, 得,sin ln ln ln x x y ⋅= 上式两边对x 求导, 得xxx x x y y sin cos ln sin ln 11'⋅+⋅= 因此,).ln cot sin ln 1()(sin ln 'x x x xx y x⋅+= 5.设()y y x =由方程e y x xy+-=350所确定,试求d d yxx =0,.d d 022=x x y解 应用隐函数方程求导法, 得,053)(2=-⋅++dxdy y dx dy xy e xy (*) 将 0=x 代入e y x xy+-=350得13-=y ,即,0=x 1-=y ,将其代入(*), 得.2d d 0==x xy在(*)式两端继续对x 求导,,03)(6)2()(2222222=⋅+⋅+⋅+++dx y d y dx dy y dx y d x dx dy e dx dy x y e xy xy(**) 将,0=x 1-=y ,及.2d d 0==x xy代入(**), 得.319d d 022==x x y6.求下列参数方程所确定的函数的各阶导数.(1) 设()x t y e t ==+⎧⎨⎪⎩⎪-ln sin tan 1,02<<⎛⎝ ⎫⎭⎪t π,求.d d x y 解 利用参数方程求导法, 得.tan )1(sec sin cos )()1(sec )sin (ln )]1[tan(22''t e e tt e e t e dx dy t t t t t -----+-=-⋅+=+= (2) 设)(x y y =由⎩⎨⎧=+-++=01sin 3232y t e t t x y 确定,求.0=t dx dy解 利用参数方程求导法, 得.d d dtdxdtdyx y = 因此只需分别求dt d y 及dt dx 在0=t 时的值.易知,.20==t dt dx下面用隐函数方程求导法求.d dy t在01sin =+-y t e y 两端对t 求导,得0cos sin =-⋅+⋅⋅dtdyt e t dt dy e y y , 由 01sin =+-y t e y 得,0=x 时,1=y ,将1,0==y x 代入上式,即得.0e dt dyt == 于是.20edx dy t ==第五节 函数的微分1. 填空题.(1)设x x y 22-=在x 02=处∆x =001.,则=∆y 0.0201 ,=y d 0.02 .(2) 设()yf x =在x 0处可微,则=∆→∆y x 0lim 0 . (3)函数)(x f 在点0x 可微的必要充分条件是函数)(x f 在点0x 可导 . (4)d C x +ln .1dx x= (5)d C ex+331.3dx e x =(6)d C x +arcsin .112dx x-=(7)dC x +2sec 21.2tan 2sec xdx x =. d 2. 选择题.(1) C ; (2) A ; (3) D ; (4)B3.求下列函数的微分. (1).412x x y +=解 .)11(2]1212[33dx x xdx x x dy -=+-= (2).2x e x y -=解 应用积的微分法则,得.)2()(2)()()(2222dx xe x dx e x xdx e e d x x d e e x d dy x x x x x x -------=-+=+==(3) .1cos 2xx y -=解 应用商的微分法则,得.)1(cos 2sin )1()1()1(cos )(cos )1()1cos (22222222dx x xx x x x x xd x d x x x d dy -+-=----=-= (4) 设x x x y cos ln 22-=,求1=x dy . 解 因 ,]sin )1(ln 2[)sin 2ln 2(2222dx x x x dx x xxxx x dy ++=++= 故 .)1sin 2(1dx dy x +==4.)(x f 可微,)(sin )(sin x f x f y -=,求.dy 解 .)]()(cos cos )(sin [''dx x f x f x x f dy ⋅-= 5.223y xy x y ++=,求.dy解 上式两边对x 求导,得,223'''2yy xy y x y y +++=即 ,2)23('2y x y y x y +=-- 故 .2322dx yx y yx dy --+=6.计算302.1和98.0ln 的近似值.解 ,02.0102.133+= 这里 ,02.0=x 利用近似公式,111x nx n+≈+ (3=n 的情形),便得.0067.102.031102.13=⨯+≈7. 钟摆摆动的周期T 与摆长l 的关系是g l T π2=,其中g 是重力加速度。

相关文档
最新文档