阴极保护的设计

合集下载

强制电流阴极保护系统设计

强制电流阴极保护系统设计

强制电流阴极保护系统设计强制电流阴极保护系统是一种常用于金属结构保护的阴极保护方案。

其基本原理是通过施加外加电流,使金属结构的电位降低,从而减少或阻止金属的腐蚀。

1. 系统的整体设计:首先需要确定需要保护的金属结构的大小、形状、材质等,以及所需施加的保护电流的大小。

根据这些参数,设计出合适的保护系统。

2. 电流供应装置的选择:电力供应装置是强制电流阴极保护系统的核心部件,其主要功能是提供稳定的直流电源。

在选择电流供应装置时,需要考虑给定结构所需的保护电流、工作环境条件、可靠性等因素。

3. 电流分配系统的设计:电流分配系统用于将电流从电源传输到被保护的金属结构上。

在设计电流分配系统时,需考虑金属结构的几何形状、结构复杂度、电阻分布等因素,合理规划电流的传输路径。

4. 电流控制系统的设计:电流控制系统用于实时监测和控制电流的大小和方向,以保证被保护金属结构的电位保持在理想的范围。

电流控制系统的设计需要考虑电流监测、控制逻辑和保护功能等方面。

5. 电位测量系统的设计:电位测量系统用于实时监测所保护金属结构的电位,以便及时发现和解决电位异常的问题。

电位测量系统的设计需要考虑测量精度、抗干扰能力、测量位置等因素。

6. 地下电流分散系统的设计:为了保证电流从金属结构传输到地下的有效分散,需要设计合适的地下电流分散系统。

该系统包括地下电流分发线路和地下电流分散装置。

7. 监控与维护系统的设计:强制电流阴极保护系统的长期稳定运行需要进行监控和维护。

监控与维护系统的设计需要考虑对电流和电位的实时监测、数据存储与处理、故障报警等功能。

强制电流阴极保护系统的设计需要综合考虑结构的特点、保护电流的要求以及工作环境等因素,合理选择和设计各个子系统,以确保金属结构能够得到有效的阴极保护,延长其使用寿命。

城镇燃气埋地钢质管道阴极保护的设计

城镇燃气埋地钢质管道阴极保护的设计

城镇燃气埋地钢质管道阴极保护的设计城镇燃气供应是现代城市生活中不可或缺的一部分,而城镇燃气管道的安全性是保障城市居民生活安全的重要环节。

埋地钢质管道作为城镇燃气输送的主要管道,受到外界环境的侵蚀,容易出现腐蚀现象,为了保护钢质管道,阴极保护技术成为一种重要的保护措施。

下面将介绍城镇燃气埋地钢质管道阴极保护的设计。

阴极保护技术是一种利用外部电流或天然电位来减缓导体腐蚀速率的技术。

在城镇燃气管道阴极保护设计中,需要考虑以下几个方面:防腐涂层、阴极保护电位、阴极保护电源以及监测系统。

首先,防腐涂层是阻隔钢质管道与外界环境的直接接触,起到抵御腐蚀的作用。

在设计防腐涂层时,需要考虑涂层的材料、厚度以及施工方式等因素。

一般选用的防腐涂层材料有环氧煤沥青、环氧涂料等。

涂层的厚度要满足一定的要求,以确保有效地阻隔锈蚀物质的渗透。

施工时要注意涂层的均匀性和质量,以免出现漏涂或涂层粘接不牢等问题。

其次,阴极保护电位是阴极保护系统的重要参数。

钢质管道的腐蚀速率与管道周围溶液的电位有关,通过提供负电位以调整电位差,可以减缓或抑制钢质管道的电腐蚀。

在设计阴极保护电位时,需要考虑管道材质、土壤性质以及周围环境因素等因素。

在正常情况下,一般将阴极保护电位设置为-0.85V到-1.1V之间,来达到较好的防腐蚀效果。

但需要根据具体情况进行调整。

阴极保护电源是提供阴极保护电流的装置,其作用是为阴极保护系统提供所需的电流。

常见的阴极保护电源有直流电源和交流电源。

在设计阴极保护电源时,需要考虑电源的工作稳定性、电流容量以及维护保养等因素。

为了确保阴极保护电流的稳定性和可靠性,可以选择双电源供电系统或备用电源供电系统。

最后,监测系统是对阴极保护系统运行状态进行监测和控制的重要手段。

通过监测系统可以实时了解阴极保护系统的运行情况,并及时发现可能存在的问题。

常见的监测参数包括管道电位、管道电流、土壤电阻等。

监测系统可以采用有线传输或无线传输方式,以实现远程监控和管理。

强制电流阴极保护系统设计

强制电流阴极保护系统设计

强制电流阴极保护系统设计在金属结构的防腐蚀工程中,强制电流阴极保护系统是一种非常重要的防腐蚀措施。

它通过在金属结构表面施加一个适当的电流,使金属结构表面处于一个保护性的电位范围内,从而达到延长金属结构使用寿命、减少维护成本和保护环境的目的。

本文将探讨强制电流阴极保护系统的设计原理、技术要点和应用范围。

一、设计原理强制电流阴极保护系统的设计原理是利用外加的直流电源,在金属结构表面施加一个适当的负电压,使金属表面处于一个保护电位范围内,从而抑制金属结构的腐蚀。

保护电位的选择一般是根据金属材料的特性、环境腐蚀情况和电流密度等因素进行综合考虑的。

在保护电位下,金属结构表面的阳极和阴极反应都会减少或者停止,从而达到保护金属结构的目的。

强制电流阴极保护系统还可以对不同区域的腐蚀情况进行定位、监测和调节,从而保证系统的稳定性和可靠性。

二、技术要点1. 电源选择:强制电流阴极保护系统的电源一般采用直流稳压电源或者直流整流电源。

在选择电源时需要考虑金属结构的规模、电流密度、环境条件和使用要求等因素。

2. 电流传输:电流的传输一般通过导电材料进行,如铜线、铝线、铜带等。

在选择导电材料时需要考虑导电性能、耐腐蚀性能和成本等因素。

3. 电流分布:要保证金属结构表面的电流密度均匀分布,避免出现电流偏弱或者偏强的情况,从而保证金属结构表面腐蚀均匀。

4. 监测系统:要对金属结构表面的电位、电流密度等参数进行实时监测,并可以根据监测结果对电流进行调节,从而保证系统的稳定性和可靠性。

5. 接地系统:接地系统是强制电流阴极保护系统的重要组成部分,在设计时需要考虑接地电阻、接地方式和接地位置等因素,保证接地系统的可靠性和稳定性。

三、应用范围强制电流阴极保护系统广泛应用于钢结构、地下管道、海洋平台、船舶、储罐、桥梁、海水结构等金属结构的防腐蚀工程中。

其应用范围几乎涵盖了所有金属结构的防腐蚀领域,具有非常广泛的市场前景。

随着金属结构的规模和使用寿命的不断增加,强制电流阴极保护系统的需求也将会不断增加。

阴极保护设计-1docx(1)

阴极保护设计-1docx(1)

阴极保护初步设计一、设计方案埋地钢质管道外壁电化学保护主要采用外加电流阴极保护局部屏蔽区域安装少量牺牲阳极。

海水给水及回水管道内壁采用牺牲阳极阴极保护。

二、设计依据及执行的标准规范2.1设计依据(1)建设方提供的图纸资料。

(2)同类工程经验数据。

2.2设计执行的标准规(1) GB/T 16166-2013滨海电厂海水冷却水系统牺牲阳极阴极保护(2) GB/T 21448-2017埋地钢质管道阴极保护技术规范(3) GB/T 21447-2018钢质管道外防腐控制规范(4) GB/T 21246-2007埋地钢质管道阴极保护参数测量方法(5) GB/T 4948-2002 铝-锌-铟合金牺牲阳极(6) SY/T6878-2012海底管道牺牲阳极阴极保护(7) SY/T石油天然气站场阴极保护技术规范2.3设计范围本设计范围为:海水给水管(SWLF)、海水回水管(SWLR)内外壁阴极保护;循环给水管(CWS)、循环回水管(CWR)、消防管(FW)、生产给水管(MW)、仪表气管(AGI)、加压废水管(PWW)、冷凝液管(SGC)外壁阴极保护。

三、海水管(SWLF、SWLR)内壁阴极保护设计3.1海水管道内壁阴极保护方案及设计计算3.1.1技术指标(1)海水管道内壁阴极保护设计有效期15年(2)在设计有效期内,管道内外壁阴极保护保护电位应达到-0.85~-1.10V(CSE电极),或至少负向极化100mV。

3.1.2设计参数(1)管道内壁防腐涂层:环氧玻璃鳞片涂层(2)管道内为海水平均电阻率:0.3Ω·m。

3.1.3海水管道内壁阴极保护方案海水管道内壁阴极保护设计采用牺牲阳极阴极保护方案。

3.1.4海水管道内壁阴极保护电流海水管道内壁阴极保护电流按(4-8)计算I s =Ai×is(4-8)式中I s—海水内壁平均阴极保护电流(A)计算结果见表1Ai—海水内壁保护面积(m2)见表1is—海水内壁阴极保护电流密度(A/m2) 0.027(A/m2)海水管道内壁阴极保护电流计算表(表1)3.1.4牺牲阳极材料(1)设计采用铝-锌-铟-镁-钛合金牺牲阳极。

牺牲阳极阴极保护设计说明

牺牲阳极阴极保护设计说明

牺牲阳极施工图设计说明(五)阴极保护1.主要设计及施工规范《钢质管道外腐蚀控制规范》GB/T21447-2018《埋地钢质管道阴极保护技术规范》GB/T21448-2017《镁合金牺牲阳极》GB/T17731-2015《埋地钢质管道阴极保护参数测量方法》GB/T21246-20232.设计概况本工程对消耗油库至外场供油干管和同油干管进行牺牲阳极阴极保护。

供油干管与回油干管平行敷设,采用联合阴极保护方式,被保护管道两端设绝缘接头。

被保护管道相关数据见下表:3.设计参数土壤电阻率:30Ω∙m覆盖层电阻率:≥10000Ω∙m2设计使用年限:20年管道最小保护电流密度:0.05mA∕m2管道自然电位:-0.55V(CSE)管道最小保护电位:-0∙85V(CSE)4.设计内容及技术参数4.1本工程设5组镁合金牺牲阳极,每组设3支阳极块,每组间距400米。

4.2设测试桩5组,与牺牲阳极结合设置。

5.材料的选用及技术要求5.1本工程选用镁合金牺牲阳极,牌号:AZ63B,质量符合《镁合金牺牲阳极》GB/T17731-2015中的要求。

阳极形状选用梯形。

牺牲阳极应具有完整的质量证明文件,阳极上应标记材料类型,阳极质量和炉号。

阳极电化学性能、规格尺寸如下表:5.2牺牲阳极填包料由石膏粉、膨润土和工艺硫酸钠组成,它们的质量百分比为75:20:5o填包料预包装,袋子应采用麻袋或棉质布袋,不应采用化纤类包装袋。

填料厚度应均匀密实,各个方向填料厚度不小于200mmO5.3阴极保护电缆采用铜芯电缆,型号为:YJV22-1KV∕1X10mm26.主要施工技术要求6.1阳极使用前应对表面进行处理,清除表面氧化膜和油污,使其呈金属光泽。

6.2阳极采用立式埋地敷设方式,阳极与被保护管道间距3米,成组布置阳极间距3米,阳极覆土厚度不小于15米。

6.3牺牲阳极应埋设在冻土层以下,并尽量敷设在土壤电阻率低的位置。

阳极与管道之间不应存在其他金属构筑物。

城镇燃气埋地钢质管道阴极保护的设计

城镇燃气埋地钢质管道阴极保护的设计

城镇燃气埋地钢质管道阴极保护的设计河南邦信防腐材料有限公司2017年3月31日随着城镇燃气地下管网的迅速发展,钢质管道的腐蚀与防护问题也日益突出。

为了延长埋地钢质管道的使用寿命,确保城镇燃气供应安全、可靠,通常采用阴极保护方法保护埋地钢质管道。

1 阴极保护设计1.1 阴极保护类型的确定阴极保护属于电化学保护,是利用外部电流使金属腐蚀电位发生改变以降低其腐蚀速率的防腐蚀技术。

埋地钢质管道阴极保护分为强制电流阴极保护和牺牲阳极阴极保护两种[2~7]。

强制电流阴极保护主要适用于郊区等地下管网单一地区的燃气主管道或城镇燃气环网。

其优点是输出电流大而且可调,不受土壤电阻率影响,保护半径较大;系统运行寿命长,保护效果好;保护系统输出电流的变化可反映出管道涂层的性能改变。

其缺点是需设专人维护管理,要求有外部电源长期供电,易产生屏蔽和干扰,特别是地下金属构筑物较复杂的地方。

牺牲阳极阴极保护主要适用于人口稠密地区和城镇内各种压力级制燃气管道。

其优点是不需外加电源,施工方便,不需进行经常性专门管理,不会生屏蔽,对其他构筑物也不会产生干扰,保护电流分布均匀、利用率高。

其缺点是输出电流小,保护范围有限;需定期更换,不能实时监测输出电流分的变化,也不能反映管道涂层的状况。

根据以往的经验和我们的实践得知,城镇燃埋地钢质管道宜采用牺牲阳极阴极保护来减缓土壤对管道的电化学腐蚀。

1.2 阴极保护电流的确定要使埋设的燃气管道得到充分的保护,就要证有足够的电流使管道不受到腐蚀。

钢质管道廖的小保护电流是阴极保护设计重要的参数之一,其计算公式如下:I=AIP (1)式中I——管道所需保护电流,mAA——管道总表面积,m2IP——保护电流密度,mA/m2保护电流密度Ip是根据管道的防腐层种类、好坏来确定的,新建沥青玻璃布防腐管道所需的Ip约0.1mA/m2,新建三层PE管道所需的Ip约0.001 mA/m2,旧管道的Ip取0.3mA/m2。

强制电流阴极保护系统设计

强制电流阴极保护系统设计强制电流阴极保护系统是一种使用电流进行阴极保护的措施,通常用于金属结构的防腐。

以下是一个强制电流阴极保护系统的设计方案,包括系统组成和原理。

1. 系统组成:(1) 阴极保护源:通常是一个直流电源,用于提供保护电流。

(2) 电流传输装置:由电缆、连接头等组成,用于将阴极保护源的电流传输到受保护金属结构上。

(3) 保护电流分配装置:用于将阴极保护电流分配到受保护金属结构上的各个部位,以确保整个金属结构均受到保护。

(4) 测量监控装置:用于监测和测量阴极保护电流的大小和金属结构的电位,以便及时调整和控制电流的分配。

(5) 接地系统:用于提供电流回路的接地,形成一个完整的电流回路。

2. 工作原理:强制电流阴极保护系统的工作原理基于阴极保护原理,通过将保护电流引入金属结构,形成一个保护电流环路,从而达到防止金属结构腐蚀的目的。

当阴极保护系统开始工作时,阴极保护源提供直流电流,通过电流传输装置将电流输送到受保护金属结构上。

保护电流分配装置将电流按需分配到各个部位,以保证整个金属结构均受到保护。

测量监控装置实时监测金属结构的电位和保护电流的大小,当发现电位过高或保护电流不足时,会发出警报并调整电流的分配,以实现最佳的阴极保护效果。

接地系统起到了提供电流回路的作用,使得电流能够流经金属结构,形成一个完整的闭合回路。

良好的接地系统也能够有效降低结构上的电位,提高阴极保护的效果。

3. 设计要点:(1) 选择合适的阴极保护源:根据金属结构的大小和防腐要求选择合适的阴极保护源。

一般来说,阴极保护源需要能够提供稳定的直流电流。

(2) 合理布置电流传输装置和保护电流分配装置:根据金属结构的形状和大小,合理布置电流传输装置和保护电流分配装置,确保保护电流能够均匀分配到各个部位。

(3) 选择合适的测量监控装置:选择合适的测量监控装置,能够实时监测电位和电流,并具备报警和调整功能,以确保阴极保护系统的稳定工作。

强制电流阴极保护系统设计

强制电流阴极保护系统设计1. 引言1.1 背景介绍强制电流阴极保护系统是一种常用的金属防腐蚀技术,通过施加外部电流控制金属结构表面的电位,将金属结构的阳极和阴极区域之间形成保护电位差,从而实现对金属结构的防腐蚀保护。

在海洋平台、油气管道、桥梁等工程中,金属结构长期暴露在恶劣的环境中容易受到腐蚀的侵害,因此需要采取阴极保护措施。

强制电流阴极保护系统具有防腐蚀效果好、操作简便、成本低廉等优点,因此受到广泛应用。

本文旨在研究强制电流阴极保护系统的设计原理、设计要素、系统组成部分、操作流程以及参数调整等关键内容,以探讨其在工程实践中的可行性和实际应用价值,同时分析存在的问题,并提出改进方向,展望未来强制电流阴极保护系统在防腐蚀领域的发展前景。

通过对该技术的深入研究和探讨,旨在为相关工程领域的技术人员提供参考和借鉴,推动该技术的进一步应用和发展。

1.2 研究目的本文旨在深入探讨强制电流阴极保护系统设计的相关原理、要素和操作流程,以及系统组成部分和参数调整等内容。

通过对这些内容的详细分析和讨论,旨在为相关领域的研究人员和工程师提供参考和指导,帮助他们更好地理解和应用强制电流阴极保护技术,提高阴极保护系统的设计和运行效率。

具体来说,本文将通过对强制电流阴极保护系统设计原理的介绍,帮助读者了解阴极保护系统工作的基本原理,从而为系统设计提供理论支持。

接着,本文将详细解析设计阴极保护系统所需考虑的要素,包括材料选择、电流密度、涂层方式等因素,帮助读者制定合理的设计方案。

本文还将对系统的组成部分进行详细描述,包括阳极、电源、监测设备等组成部分,帮助读者了解系统的整体结构和功能。

通过对操作流程和参数调整的讨论,本文旨在帮助读者了解如何正确操作和调整阴极保护系统,确保系统运行稳定和有效。

本文的研究目的是为了促进强制电流阴极保护系统设计的进一步发展和应用,提高系统的设计水平和运行效率,从而更好地保护金属结构免受腐蚀的侵害。

强制电流阴极保护系统设计

强制电流阴极保护系统设计强制电流阴极保护系统是针对金属结构在海洋、工业和土木工程环境中受到腐蚀的一种保护方法。

本文将详细介绍强制电流阴极保护系统的设计原理及流程,希望能给读者更多的指导。

一、设计原理强制电流阴极保护系统是通过向被保护构件施加一个外加电源,使得保护系统构成电路,从而在被保护构件表面形成一个保护电位,从而防止其腐蚀。

具体原理如下:1. 阴极保护作用原理保护对象的电位可以依靠电化学反应来调节,利用阴极保护可以将被保护金属构件的电位调整到一个较低的水平,从而使其从腐蚀产生阴极反应,发生电子体积效应和电子分布效应等,形成一个保护膜,“阴极保护”涂覆在金属表面后,使其成为阴极电极,从而防止其发生腐蚀。

该方法适用于构件表面的均匀腐蚀。

2.阴极保护的控制阴极保护的电流、电压和能量密度,都影响着阴极保护的效果。

通过控制强制电流,可以调整被保护构件的电位,从而实现防腐的目的。

二、设计流程强制电流阴极保护系统的设计是一个繁琐的过程,需要根据具体需要来进行。

一般来说,其设计流程包括以下几个步骤:1.确定强制电流阴极保护的需要在设计过程中,需要首先确定被保护金属构件的抗腐蚀要求。

如果构件的腐蚀等级达到或超过NC 水平,或者其腐蚀等级随时间推移而逐渐升高,都需要对其实施阴极保护。

2.选择合适的保护电极保护电极的选择需要考虑到其引入电路的方式以及电极的形状、大小、长度等因素。

不同引入方式和电极形状对保护效果有一定的影响,需要根据具体情况进行判断。

3.确定保护电流和电压保护电流和电压是决定阴极保护效果的关键因素,需要通过保护电流和电压的测定和筛选来确定。

强制电流阴极保护需要供电,因此需要选择合适的电源,以满足保护电流和电压的需要。

电源的要求包括输出电压、输出电流、能耗等方面。

基于以上的信息,设计出一个合适的强制电流阴极保护系统。

该系统一般包括电源、保护电极、电缆及其他配件。

在设计过程中,需要考虑到系统的耐用性、安全性和可靠性等方面。

埋地钢质管道强制电流阴极保护设计规范

埋地钢质管道强制电流阴极保护设计规范一、设计目标1.延长管道的使用寿命,减少腐蚀损坏。

2.保证管道正常运行,减少维修和更换的成本。

3.避免对环境造成污染和安全隐患。

二、设计原则1.选择合适的阴极保护方式,如直接电流阴极保护、间接电流阴极保护等。

2.确定管道的适当电位,使其能够得到有效的保护。

3.设计合理的电流密度,避免过高或过低的电流密度对管道造成损害。

4.设计合适的阳极布置,保证阳极与管道之间的电流传递均匀。

5.考虑到土壤情况,设计合适的土壤电阻率。

三、设计参数1.根据管道的长度和直径确定电流需求量。

2.根据土壤电阻率确定阳极运行电压。

3.根据电流需求量和阳极运行电压计算所需阳极数量和分布。

4.根据阳极布置方案确定阳极与管道之间的距离。

5.根据阳极材料的耐蚀性选择合适的阳极。

四、施工和维护1.保证阳极和管道之间的良好接触,避免电流流失和脱落。

2.定期检查阳极和管道的状态并进行必要的维护和更换。

3.确保阴极保护系统的可靠运行,监测电位和电流密度。

4.制定完善的隐患排查和应急处理方案,确保管道的安全运行。

五、评估和改进1.定期评估阴极保护系统的效果并进行必要的改进。

2.根据管道的使用情况和环境变化调整电流密度和电位。

3.根据维护和更换记录分析管道的腐蚀状况,改进设计和施工方案。

六、安全措施1.施工和维护人员应具备相关技术知识和操作经验。

2.遵守相关安全规范,使用防护设备和工具。

3.避免电流泄露和短路,确保施工和维护安全。

以上是埋地钢质管道强制电流阴极保护设计规范的一些要点,设计规范应根据具体情况进行调整和补充。

通过合理的设计和施工,可以有效延长管道的使用寿命,降低维修和更换的成本,提高管道的安全性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 阴极保护设计
1.1 阴极保护类型的确定
阴极保护属于电化学保护,是利用外部电流使金属腐蚀电位发生改变以降低其腐蚀速率的防腐蚀技术。

埋地钢质管道阴极保护分为强制电流阴极保护和牺牲阳极阴极保护两种[2~7]。

强制电流阴极保护主要适用于郊区等地下管网单一地区的燃气主管道或城镇燃气环网。

其优点是输出电流大而且可调,不受土壤电阻率限制,保护半径较大;系统运行寿命长,保护效果好;保护系统输出电流的变化可反映出管道涂层的性能改变。

其缺点是需设专人维护管理,要求有外部电源长期供电,易产生屏蔽和干扰,特别是地下金属构筑物较复杂的地方。

牺牲阳极阴极保护主要适用于人口稠密地区和城镇内各种压力级制燃气管道。

其优点是不需外加电源,施工方便,不需进行经常性专门管理,不会生屏蔽,对其他构筑物也不会产生干扰,保护电流分布均匀、利用率高。

其缺点是输出电流小,保护范围有限;需定期更换,不能实时监测输出电流分的变化,也不能反映管道涂层的状况。

根据以往的经验和我们的实践得知,城镇燃埋地钢质管道宜采用牺牲阳极阴极保护来减缓土壤对管道的电化学腐蚀。

1.2 阴极保护电流的确定
要使埋设的燃气管道得到充分的保护,就要证有足够的电流使管道不受到腐蚀。

钢质管道廖的最小保护电流是阴极保护设计最重要的参数之一,其计算公式如下:
I=AIP (1)
式中 I——管道所需最小保护电流,mA
A——管道总表面积,m2
IP——最小保护电流密度,mA/m2
最小保护电流密度Ip是根据管道的防腐层种类、好坏来确定的,新建沥青玻璃布防腐管道所需的Ip约0.1mA/m2,新建三层PE管道所需的Ip约0.001 mA/m2,旧管道的Ip取0.3mA/m2。

1.3 牺牲阳极的选取
①土壤电阻率
土壤电阻率反映了土壤介质的导电能力。

一般电阻率低的土壤腐蚀性强,反之腐蚀性弱,通常根据土壤电阻率选取适宜的牺牲阳极。

无论采用哪种牺牲阳极,都需要先测出管道所在位置的土壤平均电阻率。

土壤中所含成分的比例不同,造成各个地方电阻率也不同,即使同一地点不同埋深的电阻率也不同,因此我们常采用管道所在埋深处的电阻率的平均值。

②牺牲阳极的选用
牺牲阳极主要有两大类型,即镁合金阳极和锌合金阳极。

根据勘测出来的土壤电阻率(ρ),可以选择采用锌阳极或镁阳极。

一般ρ<5 Ω·m时,选用锌阳极;5Ω·m≤p≤100Ω·113时,选用镁阳极;p>100Ω·m时,选用带状镁阳极。

在土壤潮湿的情况下,锌阳极使用范围可扩大到30Ω·m。

1.4 牺牲阳极的布置
①在布置牺牲阳极时,注意阳极与管道之间不应有金属构筑物。

②牺牲阳极必须埋设在冰冻线以下。

在地下水位低于3m的干燥地带,阳极应适当加深
埋设。

在河流下阳极应埋设在河床的安全部位,以防止洪水冲刷和挖泥清淤时损坏。

③牺牲阳极埋设方式有立式和卧式两种。

立式阳极采用钻孔法在埋设阳极处将阳极以垂直于管道的方向埋入地下,这种方式不需大面积开挖,但保护效果不如卧式阳极,适用于已建管道。

卧式阳极采用开槽法施工,在管道敷设时与管道同沟放置,既节省单独开挖的费用,又起到良好的保护效果。

阳极哩设位置在一般情况下距管道外壁3~5m,最小不宜小于0.3m,但由于考虑到同沟敷设的方便性.一般将间距控制到0.3~0.5m,留出一定操作空间即可。

埋深以阳极顶部距地面不小于1m为宜。

成组布置时,阳极间距以2~3m为宜。

④通常应在管段上相邻两组牺牲阳极的中间部位设置测试桩,测试桩的间距以不大于500m为官。

1.5 设计修正
当计算结束后,在管道上布置牺牲阳极时,还要考虑到一些特殊的情况,对总体设计进行调整。

比如在定向钻的穿越出入土点,当采用的牺牲阳极保护半径不够时,可在出入土点增加阳极的数量或增大阳极的规格,使其能够起到完全保护穿越管道的作用。

2 设计的其他注意事项
2.1
套管
管道穿越铁路、公路采用套管时,无论是钢套管还是混凝土套管都会存在屏蔽作用,使得外部的阴极保护电流流不到套管内的输送管上,成为阴极保护的盲区,一旦套管内进水,盲区内的管道将得不到保护。

针对套管的屏蔽,通常采用带状锌阳极,螺旋式缠绕在管道上,每隔2m左右与管道焊接一次。

每个套管处应安装测试桩,通过套管和管道上的测试导线在地面上可以很方便地测试。

2.2 绝缘连接
为防止阴极保护电流流到与大地连接的非保护构筑物上,应对阴极保护管道系统进行电绝缘。

这样可以防止电流流失,减轻电偶腐蚀,避免不必要的干扰,控制电流流向。

绝缘的设置应考虑以下部位:a.干管与支管连接处;b.新旧管道连接处;c.裸管和覆盖层管道连接处;d.电气接地处;e.套管穿越处;f.跨越管道的支架与管道处;g.大型穿、跨越段两端。

同时要注意在绝缘接头两侧应设有预防雷击和过电流的保护设施,以防止绝缘接头被瞬间的电流击穿。

2.3 交流干扰
城镇的强电线路对管道存在着交流干扰,其危害主要有两方面,一是强电线路的交流电压的长期存在会对钢质管道产生交流腐蚀;二是强电线路发生故障时,会产生瞬间感应电压,可能击穿管道中设置的绝缘装置,并威胁到人身安全。

解决交流干扰的方法有三种,一是保证管道分期施工全部结束后,一次性完成牺牲阳极的施工,尽早进行阳极接地;二是加大管道和接地体的距离,至少应达到3m;三是在管道和接地体间、绝缘装置两侧分别串连接地电池,将瞬间感应电压转移到管道上,再通过管道的接地装置将电流散掉,防止故障电流对管道的影响。

3 结语
在城镇燃气埋地钢质管道牺牲阳极阴极保护的设计中,应根据管道所在位置的土壤平均电阻率和管道的压力、管径、长度、防腐层等来计算阳极的数量及分布,再综合管道经过的地区
情况,如周围其他构筑物的情况、管道是否存在穿跨越、套管的设置情况等对阳极分布进行调整,最后考虑管道起、终点处绝缘装置及接地电池的设置。

相关文档
最新文档