2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题
2007年课改实验区初中毕业生学业考试数学模拟试题及答案-

2007年课程改革实验区初中毕业生学业考试数 学 模 拟 试 题本试卷满分为120分,考试时间为120分钟.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)⒈sin 45°的值是 ()A .12 B C D .1 ⒉方程042=-x 的根是 ( )A 、2;B 、-2;C 、2或-2;D 、以上答案都不对⒊当你走在路灯下,越来越接近路灯时,你的影子的长是如何变化( )A 、变长;B 、变短;C 、不变;D 、无法确定⒋等腰三角形两边长分别为6、3,则该等腰三角形的周长为 ( )A 、15;B 、12;C 、12或15;D 、9⒌ 如图1,为了测量学校操场上旗杆BC 的高度,在距旗杆24米的A 处用测倾器测得旗杆顶部的仰角为30°,则旗杆的高度为 ( ) A .米 B 、 1 C 、 1 D 、⒍如图2所示,正方形ABCD 边长为2,点E 在CB 的延长线上, BD=BE 则tan ∠BAE 的值为 ( )A 、22; B 、1; C 、2; D 、22⒎如图3,顺次连结四边形ABCD 各中点得四边形EFGH ,要使四边形EFGH 为菱形,应添加的条件是( ). A .AB ∥DC B . AB =DC C .AC ⊥BD D . AC =BD图2AD HGFC BA图3⒏如图4所示,若将正方形分成k 个全等的矩形,期中上、下各横排两个,中间竖排若干个,则k 的值为 ( )A 、6;B 、8;C 、10;D 、12⒐如图5,P 1、P 2、P 3是双曲线上的三点.过这三点分别作y 轴的垂线,得到三个三角形△P 1A 10、△P 2A 20、△P 3A 30,设它们的面积分别是S 1、S 2、S 3,则 ( ).A . S 1<S 2<S 3B . S 2<S 1<S 3C .S 1<S 3<S 2D .S 1=S 2=S 3⒑已知有一根长10为的铁丝,折成了一个矩形框。
2007年黑龙江牡丹江中考数学试题

图3BA图4图1图2分钟期日期六期五期四期二期一期三2007年黑龙江牡丹江中考数学试题一、选择题(本大题共8小题,每小题3分,满分24分) 1.点P (21-,1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.计算23-所得的正确结果是( )A .9B .6-C .9-D .63.如图1所示,图中阴影部分表示x 的取值范围,则下列表示中正确的是( )A .23<->xB .23≤<-xC .23≤≤-xD .23<<-x 4.小红为了了解自己的学习效率,对每天在家 完成课外作业所用的时间做了一周的记录,并用 图表的形式表示了出来,如图2所示,那么,她用时最多的一天是( ) A .星期一 B .星期三C .星期四D .星期六 5.在下列的计算中,正确的是( )A .xy y x 532=+B .()()4222+=-+a a aC .b a ab a 32=⋅ D .()96322++=-x x x6.如图3所示,则△ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形7.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,那么这张纸片原来的形状不可能是( )A .六边形B .五边形C .四边形D .三角形 8.请你认真观察和分析图4中数字变化的规律, 由此得到图中所缺的数字应为( )A .32B .29C .25D .23二、填空题(本大题共10小题,每小题2分,满分20分)2x y 7433图6P N MBA 图7E BA 图8图99.水位上升用正数表示,水位下降用负数表示. 如图5所示,水面从原来的位置到第二次变化 后的位置,其变化值是______. 10.化简:=12___________.11.计算:=-︒145tan 2______________. 12.分解因式:=+2ab ab _____________. 13.如果23=b a ,那么=-bb a __________.14.如图6是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等.则图中x 的值为______________. 15.请你写出一个图象位于第二和第四象限的反比例函数的表达式:______________________________.16.如图7,直线M A ∥NB ,∠A=70°,∠B=40°.则∠P=____________. 17.如图8,四边形ABCD 是一个矩形,⊙C 的半径是 2cm ,CF=4cm ,EF=2cm .则图中阴影部分的面积约 为___________cm 2(精确到0.1cm 2).18.如图9所示,小李和小陈做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时, 与桌面相接触的边上的数字都是奇数的概率是_____.三、(本大题共2小题,每小题6分,满分12分) 19.(本题满分6分)解分式方程:xx 3231=-. 20.(本题满分6分)1.911.702.251.691.962.282.081.65 1.951.971.961.94 1.96 1.941.861.94小黄小李姓名第8次第7次第6次第5次第4次第3次第2次第1次如图10,PA 、PB 是圆O 的两条切线,A 、B 是切点,连结AB ,直线PO 交AB 于点M . 请你根据圆的对称性,写出△PAB 的三个正确的结论.结论⑴: 结论⑵: 结论⑶:四、(本大题共4小题,每小题8分,满分32分) 21.(本题满分8分)今年体育中考前,03(2)班的小李、小黄两位同学进行了8次立定跳远训练测试,她们的成绩分别如下:(单位:m )⑴小李和小黄这8次训练的平均成绩分别是多少?⑵按规定,女同学立定跳远达到1.94m 就可以得到该项目满分6分.如果按她们目前的水平参加考试,你认为小李与小黄在该项目上谁得6分的可能性更大些?请说明理由.22.(本题满分8分)(3)(1)图11小明和小亮分别利用图11中⑴、⑵的不同方法求出了五边形的内角和都是540°.请你考虑在图⑶中再用另外一种方法求五边形的内角和,并写出求解的过程.23.(本题满分8分)某校八年级在学校团委的组织下,围绕“八荣八耻”开展了一次知识竞赛活动.竞赛规则:每班代表队都必须回答27道题,答对一题得5分,答错或不答都倒扣1分.⑴在比赛到第18题结束时,03(3)班代表队得分为78分,这时03(3)班代表队答对了多少道题?⑵比赛规定,只有得分超过100分(含100分)时才能获奖.03(3)班代表队在比赛到第18题结束时得分为78分,那么在后面的比赛中至少还要答对多少道题才有可能获奖?请简要说明理由. 24.(本题满分8分)图12如图12,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一水塔DC ,可过了一会抬头一看:“怎么看不到水塔了?”心里很是纳闷.经过了解,教学楼、水塔的高分别是20m 和30m ,它们之间的距离为30m ,小张身高为1.6m .小张要想看到水塔,他与教学楼之间的距离至少应有多少米?五、(本大题共2小题,每小题10分,满分20分) 25.(本题满分10分)请你根据图13中图象所提供的信息,解答下面问题:⑴分别写出1l 、2l 中变量y 随x 变化而变化的情况; ⑵求出一个二元一次方程组,使它满足图象中的条件. 26.(本题满分10分)图14C BA任意剪一个三角形纸片,如图14中的△ABC ,不妨设它的一个锐角为∠A ,首先利用对折的方法得到高AN .然后按图中所示的方法分别将含有∠B 、∠C 的部分向里折,找出AB 、AC 的中点D 、E ,同时得到两条折痕DF 、EG ,分别沿折痕DF 、EG 剪下图中的三角形①、②,并按图中箭头所指的方向分别旋转180°.⑴你能拼成一个什么样的四边形?并说明你的理由;⑵请你利用这个图形,证明三角形的面积公式:高底⨯=21S .六、(本大题共1题,满分12分)27.如图15,抛物线222+++-=m mx x y 的图象与x 轴交于A (1-,0)、B 两点,在x 轴上方且平行于x 轴的直线EF 与抛物线交于E 、F 两点,E 在F 的左侧,过E 、F 分别作x 轴的垂线,垂足是M 、N .⑴求m 的值及抛物线的顶点坐标;⑵设BN = t ,矩形EMNF 的周长为C ,求C 与t 的函数表达式; ⑶当矩形EMNF 的周长为10时,将△ENM 沿EN 翻折,点M 落在坐标平面内的点记为M ′,试判断点M ′是否在抛物线上?并说明理由.。
黑龙江省牡丹江市2023-2024学年八年级上学期期末考试数学试卷(含解析)

2023-2024学年黑龙江省牡丹江市八年级(上)期末数学试卷一、单项选择题(本题12个小题,每小题3分,共36分)1.(3分)习近平总书记强调,“垃圾分类工作就是新时尚”.下列垃圾分类标识的图形中,轴对称图形个数是( )A.1个B.2个C.3个D.4个2.(3分)下列运算正确的是( )A.a3•a4=a12B.2b+5a=7abC.(a+b)2=a2+b2D.(a2b3)2=a4b63.(3分)2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为( )A.2.8×10﹣10B.2.8×10﹣8C.2.8×10﹣6D.2.8×10﹣94.(3分)下列各式,,,,,中,最简分式的个数是( )A.4B.3C.2D.15.(3分)将一把直角三角尺和一把直尺按如图所示的位置放置.若∠1=65°,则∠2等于( )A.145°B.150°C.155°D.160°6.(3分)若分式的值是整数,则满足条件的所有正整数m的和等于( )A.9B.8C.7D.57.(3分)如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ABC外角平分线交CA延长线于点D,DE⊥BC,垂足是E,若△ABC周长是8,则线段CD的长为( )A.B.9C.8D.78.(3分)如果x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,则满足条件的整数m的个数是( )A.1B.2C.3D.49.(3分)有两个正方形A,B,现将B放在A的内部,得到图①,将A,B并列放置后构成新的正方形,得到图②.若图①和图②中的阴影面积分别是3和8,则正方形A,B的面积之和是( )A.9B.11C.12D.1510.(3分)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划多植树20棵,实际植树800棵所需时间与原计划植树600棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( )A.B.C.D.11.(3分)一组按规律排列的式子:,,,,…,第n个式子是(n为正整数)( )A.B.C.D.12.(3分)在以“长方形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:在长方形纸片ABCD的BC边上取一点E,将△ABE沿AE翻折,使点B落在点B'处,边EB'交AD于点F,第二步:将△ECD沿DE翻折,点C的对应点C′恰好落在线段EB'上.根据以上的操作,若BC=6,C'是EB'的中点,则线段AF的长为( )A.B.3C.D.4二、填空题(本题8个小题,每小题3分,共24分)13.(3分)如图,∠CAB=∠DBA,只需补充一个条件 ,就可以根据“ASA”得到△ABC≌△BAD.14.(3分)若分式的值为0,则m的值为 .15.(3分)如图,在△ABC中,AB=AC=8,∠BAC=150°,点P,Q分别在边AB,BC上,则AQ+PQ的最小值为 .16.(3分)若x m=4,x n=6,则x3m﹣n的值为 .17.(3分)如图,网格内每个小正方形的边长都是1个单位长度,A,B,C,D都是格点,AB与CD相交于点P,则∠A+∠D= .18.(3分)关于x的分式方程的解是非负数,则m的取值范围是 .19.(3分)等腰三角形ABC中,高BD与一腰所夹的锐角是40°,则等腰三角形ABC底角的度数为 .20.(3分)如图,在△ABC中,AB=AC,点D在AC边上,点F在AB边上,过点D作DE⊥BC,垂足是E,∠FED=∠B,4∠FDE﹣∠A=180°.下列结论:①2∠CDE=∠A;②BC=BF+CD;③△DEF是等边三角形;④过点D作DM⊥DE,交AB边于点M,若M是AF的中点,DM=3,则BC=9.其中正确的是 .三、解答题(60分)21.(18分)(1)计算:(﹣1)2024+()﹣2﹣(π﹣3)0;(2)计算:(m﹣n)2﹣2m(m﹣n);(3)因式分解:a2(x﹣y)+4(y﹣x);(4)解分式方程:﹣3=.22.(6分)先化简:,再从﹣2,﹣1,﹣6,中选择一个适合的数x代入求值.23.(7分)如图,在平面直角坐标系中,△ABC的顶点A,B,C在格点上.(1)请在图中作出△ABC关于y轴对称的△A′B′C';(2)写出点B',点C'的坐标,以A',B,C′为顶点的三角是 三角形;(3)点P在图中格点上,若△PBC是等腰三角形,则点P的个数是 .24.(9分)在△ABC中,∠BAC=∠BCA,D是平面内一点,∠DAB=∠ABC=90°,点E在AB边所在直线上,CE⊥BD,垂足是F.(1)当点E在线段AB上时,如图①,求证:AE+AD=BC;(2)当点E在线段BA延长线上时,如图②;当点E在线段AB延长线上时,如图③,请猜想并直接写出线段AE,AD,BC的数量关系;(3)如图③,若BF+CF=6,则S四边形ADFC﹣S△BEF= .25.(10分)2024年是中国农历甲辰龙年.元旦前,某商场进货员预测一种“吉祥龙”挂件能畅销市场,就用6000元购进一批这种“吉祥龙”挂件,面市后果然供不应求,商场又用12800元购进了第二批这种“吉祥龙”挂件,所购数量是第一批购进数量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批“吉祥龙”挂件每件的进价分别是多少元?(2)若两批“吉祥龙”挂件按相同的标价销售,要使两批“吉祥龙”挂件全部售完后获利不低于7300(不考虑其他因素),且最后的50件“吉祥龙”挂件按八折优惠售出,那么每件“吉祥龙”挂件的标价至少是多少元?26.(10分)如图,△ABC在平面直角坐标系中,顶点B(m,0),C(n,0)在x轴上,顶点A在y轴的正半轴上,BD⊥AC,垂足是D,BD交AO于点E,∠AED﹣∠BAO=45°,(m+4)2+(n﹣6)2=0.请解答下列问题:(1)求点B、点C的坐标;(2)求线段AE的长;(3)连接CE.若OE=2,在坐标轴上是否存在点F,使S△ACF=S△ACE?若存在,请直接写出点F的个数和其中一个点F的坐标;若不存在,请说明理由.参考答案与解析一、单项选择题(本题12个小题,每小题3分,共36分)1.(3分)习近平总书记强调,“垃圾分类工作就是新时尚”.下列垃圾分类标识的图形中,轴对称图形个数是( )A.1个B.2个C.3个D.4个【解答】解:左起第一、第四个图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.第二、第三这两个图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:B.2.(3分)下列运算正确的是( )A.a3•a4=a12B.2b+5a=7abC.(a+b)2=a2+b2D.(a2b3)2=a4b6【解答】解:A、原式=a7,不符合题意;B、原式不能合并,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=(a2)2•(b3)2=a4b6,符合题意.故选:D.3.(3分)2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为( )A.2.8×10﹣10B.2.8×10﹣8C.2.8×10﹣6D.2.8×10﹣9【解答】解:0.000000028=2.8×10﹣8.故选:B.4.(3分)下列各式,,,,,中,最简分式的个数是( )A.4B.3C.2D.1【解答】解:==﹣,=5a,=,都不是最简分式,,,是最简分式,故选:B.5.(3分)将一把直角三角尺和一把直尺按如图所示的位置放置.若∠1=65°,则∠2等于( )A.145°B.150°C.155°D.160°【解答】解:∵直尺的两边互相平行,∠1=65°,∴∠3=∠1=65°,∴∠4=∠3=65°,∴∠2=∠4+90°=65°+90°=155°.故选:C.6.(3分)若分式的值是整数,则满足条件的所有正整数m的和等于( )A.9B.8C.7D.5【解答】解:∵分式的值是整数,∴m+1是6的约数,即m+1=1或2或3或6,解得:m=0(舍去)或1或2或5,则满足条件的所有正整数m的和为1+2+5=8.故选:B.7.(3分)如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ABC外角平分线交CA延长线于点D,DE⊥BC,垂足是E,若△ABC周长是8,则线段CD的长为( )A.B.9C.8D.7【解答】解:在等腰直角三角形ABC中,AB=AC,∠BAC=90°,设AB=AC=x,则BC=x,∵△ABC周长是8,∴x+x+x=8,∴x=8﹣4,∴AB=AC=8﹣4,BC=(8﹣4)×=8﹣8,∵BD是∠ADE的角平分线,DE⊥BE,AB⊥AD,∴BE=AB=8﹣4,又∵BD=BD,∴Rt△BDE≌Rt△BDA(HL),∴DE=DA,设CD=m,则AD=DE=m﹣8+4,∵S,∴(m﹣8+4)×=(8﹣4)(2m﹣8+4),解得m=8,即CD=8,故选:C.8.(3分)如果x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,则满足条件的整数m的个数是( )A.1B.2C.3D.4【解答】解:∵x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,∴(m﹣1)2=5﹣2m,解得m=±2.故选:B.9.(3分)有两个正方形A,B,现将B放在A的内部,得到图①,将A,B并列放置后构成新的正方形,得到图②.若图①和图②中的阴影面积分别是3和8,则正方形A,B的面积之和是( )A.9B.11C.12D.15【解答】解:设正方形A、B的边长分别是a、b,则正方形A,B的面积之和是a2+b2.根据题意,图①中阴影部分的图形是正方形,边长为(a﹣b),图②中新正方形的边长为(a+b),根据图①和图②中的阴影面积分别是3和8,得,经整理,得,∴a2+b2=11,∴正方形A,B的面积之和是11.故选:B.10.(3分)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划多植树20棵,实际植树800棵所需时间与原计划植树600棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( )A.B.C.D.【解答】解:由题意可得:=,故选:B.11.(3分)一组按规律排列的式子:,,,,…,第n个式子是(n为正整数)( )A.B.C.D.【解答】解:∵第奇数个式子的符号为“负”,∴第n个式子的符号可用(﹣1)n表示.∵分母中单项式的系数分别为1,2,3...n,字母a的指数分别是1,2,3...n,∴第n个式子的分母可表示为:na n.∵分子分别是2,5,8,11...(3n﹣1),∴第n个式子的分母是3n﹣1.∴第n个式子为:(﹣1)n.故选:D.12.(3分)在以“长方形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:在长方形纸片ABCD的BC边上取一点E,将△ABE沿AE翻折,使点B落在点B'处,边EB'交AD于点F,第二步:将△ECD沿DE翻折,点C的对应点C′恰好落在线段EB'上.根据以上的操作,若BC=6,C'是EB'的中点,则线段AF的长为( )A.B.3C.D.4【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∴CE=2,BE=4,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴AB2+16+8+DC2+4=36,∴AB=CD=2,∵∠B'=∠DC'F=90°,∠AFB'=∠DFC',AB'=C'D=CD=2,∴△AB'F≌△DC'F(AAS),∴AF=DF=AD=3,故选:B.二、填空题(本题8个小题,每小题3分,共24分)13.(3分)如图,∠CAB=∠DBA,只需补充一个条件 AC=BD ,就可以根据“ASA”得到△ABC≌△BAD.【解答】解:补充条件AC=BD.理由:在△ABC和△BAD中,,△ABC≌△BAD(SAS).故答案为:AC=BD.14.(3分)若分式的值为0,则m的值为 1 .【解答】解:由题意得,,解得m=1,故答案为:1.15.(3分)如图,在△ABC中,AB=AC=8,∠BAC=150°,点P,Q分别在边AB,BC上,则AQ+PQ的最小值为 4 .【解答】解:作点A关于直线BC的对称点E,连接EB、AE、PE,作EF⊥AB于点F,∵AB=AC=8,∠BAC=150°,∴∠ABC=∠C=×(180°﹣150°)=15°,∵BC垂直平分AE,∴EB=AB=8,∴∠EBC=∠ABC=15°,∴∠ABE=2∠ABC=30°,∵∠BFE=90°,∴EF=EB=4,∵EQ+PQ≥PE,PE≥EF,且EQ=AQ,∴AQ+PQ≥EF,∴AQ+PQ≥4,∴AQ+PQ的最小值为4,故答案为:4.16.(3分)若x m=4,x n=6,则x3m﹣n的值为 .【解答】解:x3m﹣n=x3m÷x n=43÷6==.故答案为:.17.(3分)如图,网格内每个小正方形的边长都是1个单位长度,A,B,C,D都是格点,AB与CD相交于点P,则∠A+∠D= 135° .【解答】解:如图,过点B作BF∥CD,连接EF,由勾股定理得:BE==,EF=,BF=,∴BE=EF,∵BE2+EF2=BF2,∴∠BEF=90°,∴∠EBF=45°,∴∠APD=∠EBF=45°,∴∠A+∠D=180°﹣45°=135°,故答案为:135°.18.(3分)关于x的分式方程的解是非负数,则m的取值范围是 m≥1且m≠4 .【解答】解:原方程去分母得:m﹣4=x﹣3,解得:x=m﹣1,∵x﹣3≠0,∴x≠3,∴m﹣1≠3,∴m≠4,∵关于x的分式方程的解是非负数,∴x≥0,即m﹣1≥0,解得:m≥1,又∵m≠4,∴m的取值范围是m≥1且m≠4.故答案为:m≥1且m≠4.19.(3分)等腰三角形ABC中,高BD与一腰所夹的锐角是40°,则等腰三角形ABC底角的度数为 50°或65°或25° .【解答】解:依题意有以下两种情况:(1)△ABC为锐角三角形时,此时又有两种情况:①当BD是等腰△ABC底边上的高时,如图1所示:∵BD为等腰三角形底边AC上的高,∴∠ADB=90°,∴∠ABD+∠A=90°,∵高BD与一腰所夹的锐角是40°,∴∠BAD=40°,∴∠A=90°﹣∠BAD=50°;②当BD是等腰△ABC腰上的高时,如图2所示:∵BD为等腰三角形腰AC上的高,∴∠ADB=90°,∴∠A+∠ABD=90°,∵高BD与一腰所夹的锐角是40°,∴∠ABD=40°,∴∠A=90°﹣∠ABD=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣50°)=65°.(2)当等腰△ABC为钝角三角形时,则顶角为钝角,此时高BD只能是腰上的高,如图3所示:∵BD为等腰三角形腰AC上的高,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵高BD与一腰所夹的锐角是40°,∴∠ABD=40°,∴∠DAB=90°﹣∠ABD=50°,∴∠BAC=180°﹣∠DAB=130°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠BAC)=(180°﹣130°)=25°.综上所述:等腰三角形ABC底角的度数为50°或65°或25°.故答案为:50°或65°或25°.20.(3分)如图,在△ABC中,AB=AC,点D在AC边上,点F在AB边上,过点D作DE⊥BC,垂足是E,∠FED=∠B,4∠FDE﹣∠A=180°.下列结论:①2∠CDE=∠A;②BC=BF+CD;③△DEF是等边三角形;④过点D作DM⊥DE,交AB边于点M,若M是AF的中点,DM=3,则BC=9.其中正确的是 ①②④ .【解答】解:①在△ABC中,AB=AC,∴∠B=∠C,∴∠A=180°﹣2∠C,∵DE⊥BC,∠CDE=90°﹣∠C,∴∠CDE=2∠A,故结论①正确;②设∠B=∠C=α,则∠FED=∠B=∠C=α,∴∠A=180°﹣2α,∵4∠FDE﹣∠A=180°,∴4∠FDE﹣(180°﹣2α)=180°,∴∠FDE=90°﹣α,∴∠DFE=180°﹣(FED+∠FDE)=180°﹣(α+90°﹣α)=90°﹣α,∴∠FDE=∠DFE,∴DE=EF,∵DE⊥BC,∴∠CDE+∠C=90°,∠BEF+∠FED=90°,∵∠C=∠FED=α,∴∠CDE=∠BEF,在△CDE和△BEF中,,∴△CDE≌△BEF(AAS),∴CD=BE,CE=BF,∴BC=CE+BE=BF+CD,故结论②正确;③不妨假设△DEF是等边三角形,∴∠FED=60°,∴∠B=∠FED=60°,∴△ABC是等边三角形,根据已知条件,无法判定△ABC是等边三角形,∴假设是错误的.故结论③不正确.④∵DM⊥DE,DE⊥BC,∴DM∥BC,∠MDE=90°,∴∠AMD=∠B,∠ADM=∠C,∠MDF+∠FDE=90°,∵∠B=∠C,∴∠AMD=∠ADM,∴△AMD为等腰三角形,∵△CDE≌△BEF,∴∠DEC=∠EFB=90°,∴∠EFM=90°,即∠MFD+∠EFD=90°,∵∠FDE=∠DFE,∴∠MDF=∠MFD,∴DM=FM=3,∵点M是AF的中点,∴AM=FM=DM=3,∴△AMD为等边三角形,∴∠ADM=∠AMD=∠A=60°,AM=DM=AD=3,∴∠FMD=120°,∴∠MDF=∠MFD=(180°﹣∠FMD)=(180°﹣120°)=30°,∴∠ADF=∠ADM+∠MDF=60°+30°=90°,在Rt△ADF中,AF=AM+FM=6,AD=3,由勾股定理得:FD==,∵∠AMD=∠B=60°,∠ADM=∠C=60°,∴△ABC为等边三角形,∴BC=AB,∵∠FED=∠B=60°,DE=EF,∴△DEF为等边三角形,∴EF=FD=,∵∠EFB=90°,∠B=90°,∴∠BEF=30°,在Rt△BEF中,∠BEF=30°,∴BE=2BF,由勾股定理得:BE2﹣BF2=EF2,即(2BF)2﹣BF2=,∴BF=3,∴AB=AF+BF=6+3=9,∴BC=AB=9.故结论④正确.综上所述:正确的结论是①②④.故答案为:①②④.三、解答题(60分)21.(18分)(1)计算:(﹣1)2024+()﹣2﹣(π﹣3)0;(2)计算:(m﹣n)2﹣2m(m﹣n);(3)因式分解:a2(x﹣y)+4(y﹣x);(4)解分式方程:﹣3=.【解答】解:(1)(﹣1)2024+()﹣2﹣(π﹣3)0=1+9﹣1=9;(2)(m﹣n)2﹣2m(m﹣n)=m2﹣2mn+n2﹣2m2+2mn=n2﹣m2;(3)a2(x﹣y)+4(y﹣x)=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2);(4)﹣3=,方程两边都乘x﹣2,得3﹣3(x﹣2)=1﹣x,3﹣3x+6=1﹣x,﹣3x+x=1﹣6﹣3,﹣2x=﹣8,x=4,检验:当x=4时,x﹣2≠0,所以分式方程的解是x=4.22.(6分)先化简:,再从﹣2,﹣1,﹣6,中选择一个适合的数x代入求值.【解答】解:=•===,∵x=﹣1,﹣2时,原分式无意义,∴x可以为﹣6或,当x=﹣6时,原式==2.23.(7分)如图,在平面直角坐标系中,△ABC的顶点A,B,C在格点上.(1)请在图中作出△ABC关于y轴对称的△A′B′C';(2)写出点B',点C'的坐标,以A',B,C′为顶点的三角是 等腰直角 三角形;(3)点P在图中格点上,若△PBC是等腰三角形,则点P的个数是 10个 .【解答】解:(1)如图,△A′B′C'即为所求.(2)由图可得,B'(﹣3,2),C'(﹣2,﹣1).由勾股定理得,A'B==,A'C'==,BC'==,∴A'B=A'C',A'B2+A'C'2=BC'2,∴∠BA'C'=90°,∴△A'BC'为等腰直角三角形.故答案为:等腰直角.(3)如图,点P1,P2,P3,P4,P5,P6,P7,P8,P9,P10均满足题意,∴点P的个数是10个.故答案为:10个.24.(9分)在△ABC中,∠BAC=∠BCA,D是平面内一点,∠DAB=∠ABC=90°,点E在AB边所在直线上,CE⊥BD,垂足是F.(1)当点E在线段AB上时,如图①,求证:AE+AD=BC;(2)当点E在线段BA延长线上时,如图②;当点E在线段AB延长线上时,如图③,请猜想并直接写出线段AE,AD,BC的数量关系;(3)如图③,若BF+CF=6,则S四边形ADFC﹣S△BEF= 18 .【解答】(1)证明:由题意得,△ABC为等腰直角三角形,则AB=BC,∵∠ABD+∠CBF=90°,∠CBF+∠FCB=90°,∴∠ABD=∠BCF,∵∠EBC=∠DBA=90°,AB=BC,∴△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=AE+BE=AE+DA;(2)解:当点E在线段BA延长线上时,BC=AD﹣AE,理由:由(1)同理可得:△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=BE﹣AE=AD﹣AE;当点E在线段AB延长线上时,BC=AE﹣AD,理由:由(1)同理可得:△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=AE﹣BE=AE﹣AD;(3)解:如图③,设EF=a,BF=x,则FC=6﹣x,则BC2=x2+(6﹣x)2,由(1)同理可得:△EBC≌△DAB(ASA),则S△EBC=S△DAB,则S四边形ADFC﹣S△BEF=S△EBC+S△DAB+S△ABC﹣2S△BEF=2S△EBC+S△ABC﹣2S△BEF=(a+6﹣x)x﹣[(6﹣x)2+x2]﹣ax=ax+6x﹣x2+18﹣6x+x2﹣ax=18,故答案为:18.25.(10分)2024年是中国农历甲辰龙年.元旦前,某商场进货员预测一种“吉祥龙”挂件能畅销市场,就用6000元购进一批这种“吉祥龙”挂件,面市后果然供不应求,商场又用12800元购进了第二批这种“吉祥龙”挂件,所购数量是第一批购进数量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批“吉祥龙”挂件每件的进价分别是多少元?(2)若两批“吉祥龙”挂件按相同的标价销售,要使两批“吉祥龙”挂件全部售完后获利不低于7300(不考虑其他因素),且最后的50件“吉祥龙”挂件按八折优惠售出,那么每件“吉祥龙”挂件的标价至少是多少元?【解答】解:(1)设该商场购进第一批“吉祥龙”挂件的进价是x元/件,则第二批“吉祥龙”挂件的进价是(x+4)元,根据题意得:=×2,解得:x=60,经检验,x=60是所列方程的解,且符合题意,∴x+4=60+4=64(元/件).答:该商场购进第一批“吉祥龙”挂件的进价是60元/件,第二批“吉祥龙”挂件的进价是64元;(2)该商场购进第一批“吉祥龙”挂件的数量是6000÷60=100(件),该商场购进第二批“吉祥龙”挂件的数量是12800÷64=200(件).设每件“吉祥龙”挂件的标价是y元,根据题意得:(100+200﹣50)y+50×0.8y﹣6000﹣12800≥7300,解得:y≥90,∴y的最小值为90.答:每件“吉祥龙”挂件的标价至少是90元.26.(10分)如图,△ABC在平面直角坐标系中,顶点B(m,0),C(n,0)在x轴上,顶点A在y轴的正半轴上,BD⊥AC,垂足是D,BD交AO于点E,∠AED﹣∠BAO=45°,(m+4)2+(n﹣6)2=0.请解答下列问题:(1)求点B、点C的坐标;(2)求线段AE的长;(3)连接CE.若OE=2,在坐标轴上是否存在点F,使S△ACF=S△ACE?若存在,请直接写出点F的个数和其中一个点F的坐标;若不存在,请说明理由.【解答】解:(1)∵(m+4)2+(n﹣6)2=0,则m+4=0且n﹣6=0,解得:m=﹣4且n=6,故点B、C的坐标分别为:(﹣4,0)、(6,0);(2)∵BD是△ABC的高,∴BD⊥AC,∴∠BDC=∠BDA=90°,∴∠DAE+∠DEA=90°.∵x轴⊥y轴,∴∠AOB=∠AOC=90°,∴∠DAE+∠ACB=90°,∴∠ACB=∠DEA.∵∠ACB﹣∠BAO=45°,∴∠DEA﹣∠BAO=45°.∵∠DEA﹣∠BAO=∠ABD,∴∠ABD=45°.∵∠BDA=90°,∴∠BAD=90°﹣∠ABD=45°,∴BD=AD.在△DBC和△DAE中,,∴△DBC≌△DAE(AAS),∴AE=BC=6+4=10;(3)由(2)知,AE=10,则点A、E的坐标分别为:(0,12)、(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣2x+12,∵S△ACF=S△ACE,故取AE的中点N(0,7),过点N作直线n∥AC,取AM=AN,过点M(0,17)作直线m∥AC,则直线m、n和x坐标轴的交点即为点F,故共有4个,为点M、N以及m、n和x轴的交点,∵n∥AC,则直线n的表达式为:y=﹣2x+7,则直线n和坐标轴的交点坐标为:(0,7)、(3.5,0);同理可得直线m和坐标轴的交点坐标为:(0,17)、(8.5,0);综上,符合条件的点F有4个,坐标为:(0,7)或(3.5,0)或(0,17)或(8.5,0).。
文档:da2007年黑龙江省中考数学

黑龙江省2007年初中升学统一考试数学题库参考答案一、填空题(每小题3分,满分30分)1.3x -≥ 2.42.210⨯ 3.434.增大 5.200 6.64 7.4- 8.40或140 9.4 10.2二、单项选择题(将正确答案的代号填在题后括号内,每小题3分,满分30分)11.C 12.D 13.A 14.B 15.A 16.D 17.A 18.C 19.B 20.A三、解答题(满分60分)21.(本题6分) 解:原式2(1)(1)1(1)11x x x x x x x +-+=-+-+ ································································· 2分 11x =+ ········································································································ 2分 当21x =-时,原式122211==-+ ···························································· 2分 22.(本题6分)解:(1)由题意知,0k ≠且244(3)0k ∆=--> ······················································································ 2分43k ∴>-且0k ≠. ······················································································· 1分 (2)存在.121243x x x x k k+=-=-, ············································································ 1分 又12123222x x x x +-=,82k k∴-+=. 解得14k =,22k =-(不符合题意,舍去). ······················································ 1分 ∴存在满足条件的k 值,即4k =. ··································································· 1分23.(本题6分)解:(1)20; ································································································· 2分(2)在表中所填数据由左至右,由上至下依次为6,0.30,1,0.05; ······················· 2分(3)400(0.40.150.05)240⨯++=(人),于是可以估计,该校初四男生身高不低于175厘米的约有240人. ··························· 2分24.(本题6分)解:不妨设10cm AD =,15cm AB =,20cm CD =,分别过点A D ,作AE BC ⊥于点E ,DF BC ⊥于点F .12cm AE DF ==,10cm EF AD ==. ······························· 1分 在Rt ABE △中,229(cm)BE AB AE =-= ···················································· 1分 同理可求16cm CF =. ··················································································· 1分分三种情况:(1)如图1,35(cm)BC BE EF CF =++= ····················································· 1分(2)如图2,17(cm)BC EF BE CF =-+= ····················································· 1分(3)如图3,3(cm)BC BE EF CF =+-= ······················································· 1分 综上所述,该梯形纸板另一底的长为35cm 或17cm 或3cm .25.(本题8分)解:(1)设直线OD 解析式为1y k x =,由题意可得16010k =,116k =,16y x = ··························································· 1分 当15y =时,1156x =,90x =,908010-=(分) ·········································· 1分 故乙比甲晚10分钟到达李庄.(2)设直线BC 解析式为2y k x b =+,由题意可得2260108015k b k b +=⎧⎨+=⎩, ·············································································· 1分 解得2145k b ⎧=⎪⎨⎪=-⎩,,154y x =- ················································································ 1分 由图像可知甲20分钟行驶的路程为5千米,1554x -=,40x =,402020-=(分) ························································· 1分 故甲因事耽误了20分钟.(3)分两种情况: ①1516x -=,36x =, ················································································· 1分 A D C F E B 图1 AD C FE B 图2 A D CF E B 图3②115164x x ⎛⎫--= ⎪⎝⎭,48x =, ······································································ 1分 当x 为36或48时,乙行驶的路程比甲行驶的路程多1千米. ································· 1分26.(本题8分)解:图2结论:PD PE PF AB ++=. ····························································· 2分 证明:过点P 作MN BC ∥分别交AB AC ,于M N ,两点,由题意得PE PF AM +=. ············································································· 2分 四边形BDPM 是平行四边形,MB PD ∴=. ·················································· 1分 PD PE PF MB AM AB ∴++=+=,即PD PE PF AB ++=. ··············································································· 1分 图3结论:PE PF PD AB +-=. ··································································· 2分27.(本题10分)解:(1)设该店购进A 种香油x 瓶,B 种香油(140)x -瓶,由题意得6.58(140)1000x x +-=, ·································································· 2分 解得80x =,14060x -= ··············································································· 1分 该店购进A 种香油80瓶,B 种香油60瓶. ························································· 1分(2)80(8 6.5)60(108)240⨯-+⨯-=(元) ···················································· 1分 将购进的140瓶香油全部销售完可获利240元. ··················································· 1分(3)设购进A 种香油a 瓶,B 种香油(200)a -瓶,由题意得 6.58(200)14201.52(200)339a a a a +-⎧⎨+-⎩≤,≥. ································································· 2分 解得120122a ≤≤.a 为非负整数,∴a 取120,121,122.200a ∴-相应取80,79,78. ········································································· 1分 有三种购货方案:A 种香油120瓶,B 种香油80瓶;A 种香油121瓶,B 种香油79瓶; A 种香油122瓶,B 种香油78瓶. ····································································· 1分28.(本题10分)解:(03)C ,,3OC ∴=.6ABC S =△,4AB ∴=.由已知可得4OA OB m +=,44m =,1m =. ··················································· 1分 ∴2430x x -+=,解得1313x x ==,.1OA ∴=,3OB =. ····················································································· 1分 OBC ∴△为等腰直角三角形,∴45ABC ∠=. ·················································· 1分 (2)由90AOC ∠=,90ACD ∠=,CAO DCO ∠=∠,AOC COD △∽△,······················································································ 1分AO OC CO OD=,9OD =, ·················································································· 1分 ∴点D 的坐标为(9,0). ··············································································· 1分(3)存在.直线PD 的解析式为263y x =-或263y x =-+. ················································ 4分。
【初三数学】牡丹江市九年级数学上期中考试测试卷(解析版)

新人教版九年级(上)期中模拟数学试卷及答案一、填空题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)如图,不是中心对称图形的是()A.B.C.D.2.(3分)若y=(m﹣2)x+3x﹣2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定3.(3分)方程x2﹣2x﹣4=0和方程x2﹣4x+2=0中所有的实数根之和是()A.2B.4C.6D.84.(3分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 5.(3分)如图,已知在⊙O中,点A,B,C均在圆上,∠AOB=80°,则∠ACB等于()A.130°B.140°C.145°D.150°6.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)方程a (x﹣1)2+b(x﹣1)+c=0的两根是x1=0,x2=6.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.8.(3分)已知A(﹣2,y1),B(﹣1,y2),C(1,y3)两点都在二次函数y=(x+1)2+m 的图象上,则y1,y2,y3的大小关系为.9.(3分)将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB =度.10.(3分)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B 的读数分别为86°、30°,则∠ACB的大小为.11.(3分)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为.12.(3分)如图,点O是等边△ABC内一点,∠AOB=110°.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.当α为度时,△AOD是等腰三角形?三、(本大题共5小题,每小题12分,共30分)13.(12分)用适当的方法解下列方程:(1)(x﹣3)2=2x﹣6;(2)2x2+5x﹣3=014.(8分)随着港珠澳大桥的顺利开通,预计大陆赴港澳旅游的人数将会从2018年的100万人增至2020年的144万人,求2018年至2020年这两年的赴港旅游人数的年平均增长率.15.(10分)如图,有一座抛物线型拱桥,桥下面水位AB宽20米时,此时水面距桥面4米,当水面宽度为10米时就达到警戒线CD,若洪水到来时水位以每小时0.2米的速度上升,问从警戒线开始,再持续多少小时才能到拱桥顶?(平面直角坐标系是以桥顶点为点O的)16.(6分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,请仅用无刻度的直尺,分别按下列要求画图.(1)如图(1),在抛物线y=ax2+bx+c找一点D,使点D与点C关于抛物线对称轴对称.(2)如图(2),点D为抛物线上的另一点,且CD∥AB,请画出抛物线的对称轴.17.(13分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE 交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.四.(本大题共3小题,每小题10分,共24分)18.(10分)已知一元二次方程x2﹣4x+k=0有两个不相等的实数根(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.19.(8分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?20.(10分)如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过C作CD⊥P A,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.五.(本大题共2小题,每小题9分,共18分)21.(9分)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c=;(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式的值;(3)若方程ax2+bx+c=0(a≠0)是倍根方程,且不同的两点M(k+1,5),N(3﹣k,5)都在抛物线y=ax2+bx+c上,求一元二次方程ax2+bx+c=0(a≠0)的根.22.(9分)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.六、(本大题共12分)23.(9分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.2018-2019学年江西省赣州市南康区五校九年级(上)期中数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.【解答】解:根据中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,可知A、B、C是中心对称图形;D不是中心对称图形.故选:D.2.【解答】解:由题意,得m2﹣2=2,且m﹣2≠0,解得m=﹣2,故选:A.3.【解答】解:∵方程x2﹣2x﹣4=0的根的判别式△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程x2﹣2x﹣4=0有两个不相等的实数根,两根之和为2;∵方程x2﹣4x+2=0的根的判别式△=(﹣4)2﹣4×1×2=8>0,∴方程x2﹣4x+2=0有两个不相等的实数根,两根之和为4.∵2+4=6,∴两方程所有的实数根之和是6.故选:C.4.【解答】解:将抛物线y=x2向右平移2个单位可得y=(x﹣2)2,再向上平移3个单位可得y=(x﹣2)2+3,故选:B.5.【解答】解:设点E是优弧AB上的一点,连接EA,EB∵∠AOB=80°∴∠E=∠AOB=40°∴∠ACB=180°﹣∠E=140°.故选:B.6.【解答】解:由对称轴为直线x=2,得到﹣=2,即b=﹣4a,∴4a+b=0,故(1)正确;当x=﹣2时,y=4a﹣2b+c<0,即4a+c<2b,故(2)错误;当x=﹣1时,y=a﹣b+c=0,∴b=a+c,∴﹣4a=a+c,∴c=﹣5a,∴5a+3c=5a﹣15a=﹣10a,∵抛物线的开口向下∴a<0,∴﹣10a>0,∴5a+3c>0;故(3)正确;∵方程ax2+bx+c(a≠0)=0的两根为x1=﹣1,x2=5,∴方程a(x﹣1)2+b(x﹣1)+c=0的两根是x1=0,x2=6,故(4)正确.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:20188.【解答】解:∵二次函数y=(x+1)2+m,∴当x>﹣1时,y随x的增大而增大,当x<﹣1时,y随x的增大而减小,函数有最小值,顶点坐标为(﹣1,m),∵点A(﹣2,y1),B(﹣1,y2),C(1,y3)两点都在二次函数y=(x+1)2+m的图象上,﹣1﹣(﹣2)=1,﹣1﹣(﹣1)=0,1﹣(﹣1)=2,∴y2<y1<y3,故答案为:y2<y1<y3.9.【解答】解:由题意可得∠AOB+∠COD=180°,又∠AOB+∠COD=∠AOC+2∠COB+∠BOD=∠AOD+∠COB,∵∠AOD=110°,∴∠COB=70°.故答案为:70.10.【解答】解:设半圆圆心为O,连OA,OB,如图,∵∠ACB=∠AOB,而∠AOB=86°﹣30°=56°,∴∠ACB=新九年级(上)期中考试数学试题及答案一、选择题(本大题共10小题,每小题4分,满分40分)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2 2.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣3 3.若a=5cm,b=10mm,则的值是()A.B.C.2 D.54.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣27.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s 的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.二、填空题(本大题共4大题,每小题5分,满分20分)11.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:,使△ABC∽△AED.12.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为.13.如图,正方形OAPB,矩形ADFE的顶点O,A,D,B在坐标轴上,点E是AP的中点,点P,F在函数y=(x>0)图象上,则点F的坐标是.14.如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A'BE,点A'落在矩形ABCD的内部,且∠AA'G=90°,若以点A'、G、C为顶点的三角形是直角三角形,则AE =.三、(本大题共2小题,每小题8分,满分16分)15.已知,求的值.16.已知二次函数y=x2+2x﹣3.(1)用配方法求该二次函数图象的顶点坐标;(2)指出y随x的变化情况.四、(本大题共2小题,每小题8分,满分16分)17.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y =(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.18.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.求证:(1)求证:AC2=AD•AB;(2)利用相似形的知识证明AB2=AC2+BC2.六、(本题满分12分)21.根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x (吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?七、(本题满分12分)22.定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是;(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图象经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.八、(本题满分14分)23.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.参考答案与试题解析一.选择题(共10小题)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选:C.2.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣3【分析】按照“左加右减”的规律即可求得.【解答】解:将抛物线y=2x2向左平移3个单位,得y=2(x+3)2;故所得抛物线的解析式为y=2(x+3)2.故选:A.3.若a=5cm,b=10mm,则的值是()A.B.C.2 D.5【分析】根据比例线段计算即可.【解答】解:因为a=5cm,b=10mm,所以的值=,故选:D.4.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限【分析】根据反比例函数的图象和性质,k=﹣2<0,函数位于二、四象限.【解答】解:y=﹣中k=﹣2<0,根据反比例函数的性质,图象位于第二、四象限.故选:D.5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.【分析】根据相似图形的定义,结合图形,对选项一一分析,排除不符合要求答案.【解答】解:A:形状相同,符合相似形的定义,对应角相等,所以三角形相似,故A选项不符合要求;B:形状相同,符合相似形的定义,故B选项不符合要求;C:形状相同,符合相似形的定义,故C选项不符合要求;D:两个矩形,虽然四个角对应相等,但对应边不成比例,故D选项符合要求;故选:D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣2【分析】根据二次函数的图象性质即可判断.【解答】解:由二次函数y=x2﹣2x﹣1=(x﹣1)2﹣2可知a=﹣2<0,∴二次函数开口向下,顶点为(1,﹣2),对称轴为:直线x=1,当x=1时,函数y的最小值是﹣2,当x>1时,y随x的增大而增大,故选:D.7.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=【分析】根据相似三角形的判定和性质,以及平行线分线段成比例定理即可得到结论.【解答】解:∵PF∥CD,PE∥BC,∴△APF∽△ACD,△AEP∽△ABC,∴=,=,∴;=,故A、D正确;∵PE∥BC,PF∥CD,∴四边形AEPF是平行四边形,∴PF=AE,∵=,∴;故B正确;同理,故C错误;故选:C.8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.【分析】首先根据反比例函数所在象限确定k的符号,再根据k的符号确定抛物线的开口方向和对称轴,即可选出答案.【解答】解:A、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0,此时函数y=x2+kx﹣k的对称轴为y=﹣<0,对称轴在y轴的左侧,与所示图象不符,故本选项错误;B、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0,此时函数y=x2+kx﹣k的对称轴为y=﹣<0,对称轴在y轴的左侧,﹣k<0,与y轴交于负半轴,与所示图象相符,故本选项正确;C、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0,此时函数y=x2+kx﹣k的对称轴为y=﹣>0,对称轴在y轴的右侧,与所示图象不符,故本选项错误;D、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0,此时,﹣k>0,函数y=x2+kx﹣k的与y轴交于正半轴,与所示图象不符,故本选项错误;故选:B.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.【分析】首先利用勾股定理计算出AC的长,进而得到CO的长,然后证明△DAC∽△OFC,根据相似三角形的性质可得,然后代入具体数值可得FO的长,进而得到答案.【解答】解:∵将矩形纸片ABCD折叠,使点C与点A重合,∴AC⊥EF,AO=CO,在矩形ABCD,∠D=90°,∴△ACD是Rt△,由勾股定理得AC==2,∴CO=,∵∠EOC=∠D=90°,∠ECO=∠DCA,∴△DAC∽△OFC,∴,∴,∴EO=,∴EF=2×=.故选:B.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s 的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.【分析】根据题意可以分别得到各段y与x的函数解析式,从而可以解答本题.【解答】解:点M从点A到点D的过程中,y==x,(x≤3),故选项A、B、C错误,当点M从D点使点N到点B的过程中,y=4,(3<x≤5),点M到C的过程中,y=4﹣=﹣x+,(x>5),故选项D正确,故选:D.二.填空题(共4小题)11.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:∠AED=∠B(答案不唯一),使△ABC∽△AED.【分析】根据∠AED=∠B和∠A=∠A可以求证△AED∽△ABC,故添加条件∠AED=∠B 即可以求证△AED∽△ABC.【解答】解:∵∠AED=∠B,∠A=∠A,∴△AED∽△ABC,故添加条件∠AED=∠B即可以使得△AED∽△ABC,故答案为:∠AED=∠B(答案不唯一).12.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为 4 .【分析】先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离.【解答】解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x ﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.13.如图,正方形OAPB,矩形ADFE的顶点O,A,D,B在坐标轴上,点E是AP的中点,点P,F在函数y=(x>0)图象上,则点F的坐标是(2,).【分析】根据题意可以求得点A的坐标,从而可以求得点F的坐标,本题得以解决.【解答】解:设点P的坐标为(a,),∵a=,得a=1或a=﹣1(舍去),∴点P的坐标为(1,1),∵点E是AP的中点,四边形ADFE是矩形,∴AE=DF,AE=,∴DF=,当y=时,,得x=2,∴点F的坐标为(2,).14.如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A'BE,点A'落在矩形ABCD的内部,且∠AA'G=90°,若以点A'、G、C为顶点的三角形是直角三角形,则AE =1或.【分析】分两种情况,根据相似三角形的判定和性质以及翻折的性质解答即可.【解答】解:①如图1所示,∠GA'C=90°,∵四边形ABCD是矩形,∴∠BAE=∠D=90°,CD=AB=3,∵∠AA'G=90°,∴点A、A'、C在同一直线上,∠BAE=∠ADC=90°,∠ABE=∠DAC,∴△ABE∽△DAC,∴=,即=,解得:x=1;②如图2所示,∠A'GC=90°,∴∠DGC=∠GAA'=∠ABE,∴△ABE∽△DGC,∴=,设AE=EA'=EG=x,∴=,解得:x=,或x=3(舍去),∴AE=;综上所述,x=1或;故答案为:1或.三.解答题(共2小题)15.已知,求的值.【分析】设=k,得到a=3k.b=4k,c=6k,代入即可得到结论.【解答】解:设=k,则a=3k.b=4k,c=6k,∴==.16.已知二次函数y=x2+2x﹣3.(1)用配方法求该二次函数图象的顶点坐标;(2)指出y随x的变化情况.【分析】(1)根据配方法的要求把一般式转化为顶点式,根据顶点式的坐标特点,写出顶点坐标;(2)当a>0时,抛物线开口向上,根据二次函数的性质求解即可.【解答】解:(1)∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标(﹣1,﹣4);(2)∵函数图象开口向上,其对称轴是直线x=﹣1,∴当x>﹣1时,y随x的增大而增大,当x<﹣1时,y随x的增大而减小.四.解答题(共7小题)17.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y =(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.【分析】(1)首先根据点B的坐标和点D为BC的中点表示出点D的坐标,代入反比例函数的解析式求得k值,然后将点E的横坐标代入求得E点的纵坐标即可;(2)根据△FBC∽△DEB,利用相似三角形对应边的比相等确定点F的坐标后即可求得直线FB的解析式.【解答】解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=(x>0)得k=1×3=3;∵BA∥y轴,∴点E的横坐标与点B的横坐标相等,为2,∵点E在双曲线上,∴y=∴点E的坐标为(2,);(2)∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=,BC=2∵△FBC∽△DEB,∴即:∴FC=∴点F的坐标为(0,)设直线FB的解析式y=kx+b(k≠0)则解得:k=,b=∴直线FB的解析式y=18.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.【分析】依据格点△ABC的三边长分别为,2、,将该三角形的各边扩大一定倍数,即可画出与△ABC相似但不全等的格点三角形,进而得出与△ABC相似的格点三角形的最大面积.【解答】解:如图所示:如图所示,格点三角形的面积最大,S=2×8﹣×2×3﹣×1×5﹣×1×8=6.519.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.【分析】(1)先把抛物线解析式化为一般式,再计算△的值,得到△=1>0,于是根据△=b2﹣4ac决定抛物线与x轴的交点个数即可判断不论m为何值,该抛物线与x轴一定有两个公共点;(2)①根据对称轴方程得到=﹣=,然后解出m的值即可得到抛物线解析式;②根据抛物线的平移规律,设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,再利用抛物线与x轴的只有一个交点得到△=52﹣4(6+k)=0,然后解关于k的方程即可.【解答】(1)证明:y=(x﹣m)2﹣(x﹣m)=x2﹣(2m+1)x+m2+m,∵△=(2m+1)2﹣4(m2+m)=1>0,∴不论m为何值,该抛物线与x轴一定有两个公共点;(2)解:①∵x=﹣=,∴m=2,∴抛物线解析式为y=x2﹣5x+6;②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,∵抛物线y=x2﹣5x+6+k与x轴只有一个公共点,∴△=52﹣4(6+k)=0,∴k=,即把该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.求证:(1)求证:AC2=AD•AB;(2)利用相似形的知识证明AB2=AC2+BC2.【分析】(1)证明△ACB∽△ADC,根据相似三角形的性质证明结论;(2)证明△ACB∽△CDB,得到BC2=BD•AB,与(1)中两式相加,得到答案.【解答】证明(1)∵∠A=∠A,∠ACB=∠ADC=90°,∴△ACB∽△ADC,∴=,∴AC2=AD•AB;(2)∵∠B=∠B,∠ACB=∠ADC=90°,∴△ACB∽△CDB,∴=,∴BC2=BD•AB,∴AC2+BC2=AD•AB+BD•AB=AB×(AD+BD)=AB2.21.根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x (吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?【分析】(1)利用待定系数法即可解决问题;(2)销售利润之和W=甲种水果的利润+乙种水果的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)∵函数y2=ax2+bx+c的图象经过(0,0),(1,2),(4,5),∴,解得,∴y2=﹣x2+x.(2)w=(8﹣t)﹣t2+t=﹣(t﹣4)2+6,∴t=4时,w的值最大,最大值为6,∴两种水果各进4吨时获得的销售利润之和最大,最大利润是6千元.22.定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是y=(x﹣2)2+3 ;(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图象经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.【分析】(1)根据“反簇二次函数”定义写出所求即可;(2)把A坐标代入y1,求出m的值,进而表示出y1+y2,根据y1+y2与y1互为“反簇二次函数”,求出a,b,c的值,确定出y2,写出满足题意的范围即可.【解答】解:(1)y=(x﹣2)2+3;故答案为:y=(x﹣2)2+3;(2)∵y1的图象经过点A(1,1),∴2﹣2m+m+2=2,解得:m=2,∴y1=2x2﹣4x+3=2(x﹣1)2+1,∴y1+y2=2x2﹣4x+3+ax2+bx+c=(a+2)x2+(b﹣4)x+c+3,∵y1+y2与y1为“反簇二次函数”,∴y1+y2=﹣2(x﹣1)2+1=﹣2x2+4x﹣1,∴,解得:,∴函数y2的表达式为:y2=﹣4x2+8x﹣4,当0≤x≤3时,y2的最小值为﹣16.23.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.【分析】方法一:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解;(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.方法二:(1)略.(2)求出点M,N的参数坐标,并得到MN的长度表达式,从而求出MN的最大值.(3)因为BM与NC相互垂直平分,所以四边形BCMN为菱形,因为MN∥BC,所以只需MN =BC可得出四边形BCMN为平行四边形,再利用NC⊥BM进行求解.【解答】方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM与NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC与BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).新九年级(上)期中考试数学试题及答案一、选择题(本大题共10小题,每小题4分,满分40分)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2 2.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣3 3.若a=5cm,b=10mm,则的值是()A.B.C.2 D.54.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣27.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s 的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.二、填空题(本大题共4大题,每小题5分,满分20分)11.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:,使△ABC∽△AED.12.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为.13.如图,正方形OAPB,矩形ADFE的顶点O,A,D,B在坐标轴上,点E是AP的中点,点P,F在函数y=(x>0)图象上,则点F的坐标是.14.如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A'BE,点A'落在矩形。
黑龙江省牡丹江市初中毕业学业考试第三次模拟考试数学试题(无答案)

黑龙江省牡丹江市初中毕业学业考试第三次模拟考试数学试题(无答案)数学试卷考生留意:1.考试时间120分钟;2.全卷共三道大题,总分120分;3.一切试题请在答题卡上作答,在试卷上答题有效.一、选择题〔将正确选项涂在答题卡相应的位置上,每题3分,总分值36分〕1.以下图形中,既是轴对称图形,又是中心对称图形的是2.以下计算正确的选项是A.22122a a -=B.62442a a a a ÷+=C.)(222a b a b -=-D.()23624a a -=- 3.函数1y x =-中,自变量x 的取值范围是 4.由一些大小相反的小正方体搭成的几何体的左视图和仰望图,如下图,那么搭成该几何体的小正方体的个数最多是A .7B .8C .9D .105.将抛物线y =(x +2)2-3向右平移3个单位,失掉的抛物线与y 轴的交点坐标是A .(0,-2)B .(0,-1)C .(0,2)D .(0,3)6.有三张质地相反的卡片,正面区分写有数字-2,-1,1,现将三张卡片反面朝上随机抽取一张,以其正面数字作为x 的值,然后从剩余的两张卡片随机抽一张,以其正面数字作为y 的值,那么点(x ,y )在第三象限的概率A .16B .12C .23D .137.如图,△ABC 内接于⊙O ,AB =AC ,⊙O 的直径AD =6,那么BD 的长为A .2B .3C .23D .338.学校举行〝创立文明城〞演讲竞赛,张教员拿出90元钱全部购置甲、乙两种笔记本作为奖品.甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,那么购置笔记本的方案有A .2种B .3种C .4种D .5种9.在同不时角坐标系中,函数k y x =和y kx k =+的大致图象是 A B C D A .x <1 B.x ≤1 C.x >1 D.x ≥1 O y x yx O O y x y xO10.小明为预备体育中考,每天早晨坚持锻炼,某天他慢跑到江边,休息一会后快跑回家,能反映小明离家的距离y 与时间x 的函数关系大致是图象11.等边△ABC 如图放置,A (1,1),B (3,1)等边三角形的中心是点D ,假定将点D 绕点A 旋转90°后失掉点D ′,那么D ′的坐标 A.31,03⎛⎫+ ⎪ ⎪⎝⎭ B.31,03⎛⎫- ⎪ ⎪⎝⎭或31,23⎛⎫+ ⎪ ⎪⎝⎭ C.31,03⎛⎫+ ⎪ ⎪⎝⎭或31,23⎛⎫- ⎪ ⎪⎝⎭ D.32,03⎛⎫+ ⎪ ⎪⎝⎭或32,03⎛⎫- ⎪ ⎪⎝⎭12.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点〔不与点A ,点D 重合〕,将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,衔接BP ,BH .BH 交EF 于点M ,衔接PM .以下结论:①BE =PE ;②EF =BP ;③PB 平分∠APG ;④MH =MF ;⑤BP =2BM ,其中正确结论的个数是A .5B .4C .3D .2二、填空题〔将正确答案写在答题卡相应的横线上,每题3分,总分值24分〕13.2021年黑龙江省地域消费总值完成15083亿元,用迷信记数法表示15083亿元为______________元.14.如图,四边形ABCD ,对角线AC ,BD 交于点O ,AB=CD,请添加一个条件______________(只添一个即可),使四边形ABCD 是平行四边形. 15.一件商品的进价为a 元,将进价提高100%后标价,再按标价打七折销售, 那么这件商品销售后的利润为______________元.16.5个正整数,中位数是4,独一的众数是6,那么这5个数和的最大值为______________.17.假定二次函数()20y ax bx c a =++≠的图象的对称轴2x =,且图象经过点()3,2,那么a b c ++的值为______________.18.⊙O 的半径为5,两条弦AB=8,CD=6,且AB ∥CD ,直径MN ⊥AB 于点P ,那么PC 的值为______________.19.等腰△ABC 的腰AC 边上的高BD =3,且CD =5,那么ABD ∠tan =______________.20.如图,AC =4,BC =3,且BC 边在直线l 上,将△ABC 绕点C 顺时针旋转到位置①可失掉1P ,再将位置①的三角形绕点1P 顺时针旋转到位置②可失掉2P ,将位置②的三角形绕点2P 顺时针旋转到位置③失掉3P ,按此规律继续旋转,那么2016CP =______________.三、解答题〔将解题进程写在答题卡相应的位置上,总分值60分〕21.〔此题总分值5分〕先化简,2211+11x x x⎛⎫÷ ⎪--⎝⎭,再从-2≤x ≤2范围内选取一个适当的整数x 代入求值.第12题图O A D C 第14题图 第20题图22.〔此题总分值6分〕如图,抛物线y =-c bx x ++241与x 轴交于点A (-4,0),B (2,0), 与y 轴交于点C .请解答以下效果:〔1〕求抛物线的函数解析式并直接写出顶点M 坐标;〔2〕衔接AM ,N 是AM 的中点,衔接BN,求线段BN 长.注:抛物线c bx ax y ++=2(0≠a )的顶点坐标是)ab ac ,a b 4-4(-22. 23.〔此题总分值6分〕直角△ABC 中,∠C =90°,∠A =30°,AB =4,以AC 为腰,在△ABC外作顶角为30°的等腰三角形ACD ,衔接BD .请画出图形,并直接写出△BCD 的面积.24.〔此题总分值7分〕某校九年级数学测试后,为了解先生学习状况,随机抽取了九年级局部先生的数学效果停止统计,失掉相关的统计图表如下.请依据以上信息解答以下效果: 〔1〕这次统计共抽取了名先生的数学效果,补全频数散布直方图;〔2〕假定该校九年级有1000名先生,请据此估量该校九年级此次数学效果在B 等级以上〔含B 等级〕的先生有多少人?〔3〕依据学习中存在的效果,经过一段时间的针对性温习与训练,假定A 等级先生数可提高40%,B 等级先生数可提高10%,请估量经过训练后九年级数学效果在B 等级以上〔含B 等级〕的先生可达多少人?25.〔此题总分值8分〕如图1所示,在A ,B 两地之间有汽车站C 站,客车由C 站驶往A地,抵达A 地后再驶往B 地,货车由B 地驶往A 地.两车同时动身,匀速行驶.图2是客车、货车离C 站的路程y 〔千米〕与行驶时间x 〔小时〕之间的函数关系图象.请结合图象信息解答以下效果:〔1〕A ,B 两地间的路程是 千米;请直接在图2中的〔 〕内填上正确的数; 〔2〕求货车由B 地驶往A 地进程中y 与x 之间的函数关系式,并写出自变量x 的取值范围;〔3〕直接写出客、货两车行驶多长时间,在途中距各自动身地的路程相等?图1 图226.〔此题总分值8分〕等腰直角△ABC ,△MAD 中,∠BAC =∠DMA =90°,衔接BM ,CD .且B ,M ,D 三点共线.⑴当点D ,点M 在BC 边下方,CD <BD 时,如图①,求证:BM +CD =AM ;〔提示:延伸DB 到点N ,使MN =MD ,衔接AN .〕⑵当点D 在AC 边右侧,点M 在△ABC 外部时,如图②;当点D 在AB 边左侧,点M 在△ABC 外部时,如图③,请直接写出线段BM ,CD ,AM 之间的数量关系,不需求证明;⑶在⑴,⑵条件下,点E 是AB 中点,MF 是△AMD 的角平分线,衔接EF ,假定EF =2MF =6,那么CD = .图① 图② 图③27.(此题总分值10分)某文具店四月份购进甲、乙两种文具共80件,区分用去400元、1200元,甲种文具每件的进价是乙种文具的 .请解答以下效果: (1)求甲、乙两种文具每件的进价;(2)五月份文具店决议再次购进甲、乙两种文具共80件,进价不变,甲、乙文具每件售价区分是15元、40元.假定80件文具全部售出,求销售甲乙文具获利y 〔元〕与购进甲种文具x 〔件〕之间的函数解析式;(3)在⑵的条件下,销售前文具店决议从这80件文具中拿出一局部,赠送给某校在〝牡丹江首届汉字听写电视大赛〞获一、二等奖的6名同窗,作为奖品,其他文具全部售出.一等奖每人1件甲种文具,3件乙种文具;二等奖每人4件甲种文具,1件乙种文具,这些奖品总进价超越450元,文具店购进的80件文具仅获利30元.请直接写出文具店购进甲、乙两种文具的方案.28.〔此题总分值10分〕点A 在x 轴负半轴上,点B 在y 轴正半轴上,线段OB 的长是方程08-2-2=x x 的解,tan ∠BAO =21. (1)求点A 的坐标;(2)点E 在y 轴负半轴上,直线EC ⊥AB ,交线段AB 于点C ,交x 轴于点D ,S △DOE =16.假定正比例函数xk y =的图象经过点C ,求k 的值; (3)在〔2〕条件下,点M 是DO 中点,点N,P ,Q 在直线BD 或y 轴上,能否存在点P ,使四边形MNPQ 是矩形?假定存在,请直接写出点P 的坐标;假定不存在,请说明理由. 31。
文档:da2007年哈尔滨市初中升学考试数学试卷
哈尔滨市2007年初中升学考试 数学题库参考答案及评分标准一、单项选择题:1.B ;2.D ;3.A ;4.B ;5.A ;6.D ;7.C ;8.D ;9.C ;10.B . 二、填空题:11.46.610⨯; 12.3()()a x y x y +-; 13.4x ≠; 14.18y x=; 15.34; 16.2(32)n n ++; 17.6; *17.2; 18.120; 19.21152y x x =-+; 20.875或1275. 三、解答题:21.原式2222()a b a ab b a b a a a a a b --+-=÷=- ················································ 2分 1a b=- ···························································································· 1分 当33tan 30131313a =+=⨯+=+ ······························································ 1分 22cos 45212b ==⨯= ·········································································· 1分 原式111333113a b ====-+- ································································· 1分 22.(每画对一个三角形给3分)23.(1)①ADE BCF △≌△;②ADF BCE △≌△;③AEG BFG △≌△;④AEB BFA △≌△;⑤AEF BFE △≌△.(只要正确写出二对全等三角形给1分,每多写出一对全等三角形增加1分,全写对得44 3 2 1O 1- 2- 3- 4- 1-2-3-4-1234yxA BC 1C1B1A2A2B 2C分)(2)以AEB BFA △≌△为例:在矩形ABCD 中,AB CD ∥,AFE FAB ∴=∠∠.在O 中,AFE ABE =∠∠,ABE FAB ∴=∠∠.在O 中,AEB BFA =∠∠在AEB △和BFA △中,AEB BFA ABE BAF AB BA =⎧⎪=⎨⎪=⎩∠∠,∠∠,,AEB BFA ∴△≌△ ························································································ 2分 24.(每画对1条裁剪线得1分,每画对一个几何图形得1分)25.解:(1)由图1知:4810181050++++=(名) ········································ 2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人. ··················································· 1分181003650⨯=%% ·························································································· 1分 ∴最喜欢篮球活动的人数占被调查人数的36%.(3)1(302624)20-++=%%%% 200201000÷=% (人) ··························· 2分8100100016050⨯⨯=% (人) ········································································ 2分图1 矩形(非正方形)图2 正方形图3 有一个角是135°的三角形答:估计全校学生中最喜欢跳绳活动的人数约为160人. 26.解:(1)设该商场能购进甲种商品x 件,根据题意,得1535(100)2700x x +-= ·············································································· 1分 40x =乙种商品:1004060-=(件) ······································································· 1分 答:该商品能购进甲种商品40件,乙种商品60件.(2)设该商场购进甲种商品a 件,则购进乙种商品(100)a -件.根据题意,得(2015)(4535)(100)750(2015)(4535)(100)760a a a a -+--⎧⎨-+--⎩≥≤······························································ 1分 因此,不等式组的解集为4850a ≤≤ ······························································· 1分 根据题意,a 的值应是整数,48a ∴=或49a =或50a = ∴该商场共有三种进货方案:方案一:购进甲种商品48件,乙种商品52件, 方案二:购进甲种商品49件,乙种商品51件, 方案三:购进甲种商品50件,乙种商品50件. ··················································· 1分 (3)根据题意,得第一天只购买甲种商品不享受优惠条件 2002010∴÷=(件) ····························· 1分 第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,32490458÷÷=%(件) 情况二:购买乙种商品打八折,32480459÷÷=%(件) ∴一共可购买甲、乙两种商品10818+=(件) ··················································· 1分 或10919+=(件) ······················································································· 1分 答:这两天他在该商场购买甲、乙两种商品一共18件或19件. 27.(1)证明:如图1,过点F 作FM AB ⊥于点M ,在正方形ABCD 中,AC BD ⊥于点E ,12AE AC ∴=,45ABD CBD ==∠∠.AF 平分BAC ∠,EF MF ∴= ··········· 1分 又AF AF =,Rt Rt AMF AEF ∴△≌△,AE AM ∴= ·································· 1分 45MFB ABF ==∠∠.MF MB ∴=,MB EF ∴=.12EF AC MB AE MB AM AB ∴+=+=+= ·················· 1分 (2)11E F ,1112AC 与AB 三者之间的数量关系:111112E F AC AB +=···················································· 1分 证明:如图2,连接11F C ,过点1F 作11F P A B ⊥于点P ,1F Q BC ⊥于点Q ,11A F 平分11BAC ∠,111E F PF ∴=,同理11QF PF =,1111E FPF QF ∴== ············· 1分 又1111A F A F =,11111Rt Rt A E F A PF ∴△≌△,111A E A P ∴=,图1A BCDEFM同理11111Rt Rt QFC E FC △≌△,111C Q C E ∴= ··················································· 1分 由题意:11A A C C =,11112A B BC AB A A BC C C AB BC AB ∴+=++-=+=.11PB PF QF QB ===,111111112A B BC A P PB QB C Q A P C Q E F ∴+=+++=++,即1111111111222AB A E C E E F AC E F =++=+,111112E F AC AB ∴+= ······················ 1分 (3)设PB x =,则QB x =113A E =,112E C =,由(2)可知: 1113A P A E ==,1112QC C E ==在11Rt A BC △中,2221111A B BC A C +=,即222(3)(2)5x x +++=11x ∴=,26x =-(舍) ················································································ 2分1PB ∴=,111E F ∴=.又115A C =,由(2)的结论:111112E F AC AB +=得:72AB =, 722BD ∴=································································································ 1分 28.解:(1)如图1,过A 作AF BC ⊥,(42)C -,,4CE ∴=,而9BC =,5BE ∴=,(52)B ∴--,. (12)D ,,4AF ∴=.4sin 5ABC =∠,3BF ∴=,2EF ∴=,(22)A ∴-, ········································ 1分设直线AB 的解析式为y kx b =+5222k b k b -+=-⎧⎨-+=⎩ 43143k b ⎧=⎪⎪∴⎨⎪=⎪⎩41433y x ∴=+ ··················································· 1分 (2)如图1,由题意:情况一:G 在线段BE 上且不与点E 重合,图2ABCD1E1F P1A Q1C5GE t '∴=- 151(5)1222S t t ''=-⨯⨯=- ························································ 1分 情况二:G 在线段CE 上且不与点E 重合,5GE t '∴=-115(5)1222S t t ''=-⨯⨯=- ········································· 1分 情况一中的自变量的取值范围:05t '<≤ 情况二中的自变量的取值范围:59t '<≤ ······················· 1分 (3)如图2,当72t '=秒时,73522GE =-= 322G ⎛⎫∴-- ⎪⎝⎭,,直线GH 的解析式为21y x =+,(01)N ∴,.当点M 在射线HF 上时,有两种情况:情况一:当点P 运动至点1P 时,1PHM HNE =∠∠. 过点1P 作平行于y 轴的直线,交直线HE 于点1Q ,交BC 于点R . 由11BP t =,4sin 5ABC =∠,可得135BR t =,1145PR t =, 11355RE Q R t ∴==-,111755PQ t ∴=-,113245Q H t ⎛⎫∴=- ⎪⎝⎭ ··························································· 1分 由11PQ H HEN △∽△ 得111PQ HE Q H EN =, 11752533245t t -∴=⎛⎫- ⎪⎝⎭,173t ∴=.当173t =秒时,1PHM HNE =∠∠ ···································································· 1分 情况二:当点P 运动至点2P 时,2P HE HNE =∠∠. 设直线2P H 与x 轴交于点T ,直线HE 与x 轴交于点2Q . 此时,2Q TH EHN △∽△22Q T EH Q H EN ∴= 解得223Q T =, 403T ⎛⎫∴- ⎪⎝⎭,. ∴直线HT 的解析式为34y x =--,此时直线HT 恰好经过点(22)A -,.图1A B C D x y OEH G F 图2 A B C D x yO E 2()P F 1Q 1P R G H 2Q T N 3P 1M 3Q 4P M∴点2P 与点A 重合,即25BP =,25t ∴=当25t =秒时,2P HM HNE =∠∠ ···································································· 1分 若点M 在射线HE 上时(点M 记为点1M ),有两种情况:情况三:当点P 运动至点3P 时,31P HM HNE =∠∠.过点3P 作平行于y 轴的直线33P Q ,交直线HE 于点3Q ,可用求点1P 同样的方法,315t ∴=.当315t =秒时,31P HM HNE =∠∠ ·································································· 1分 情况四:当点P 运动至点4P 时,41P HM HNE =∠∠. 可得42P HE THQ △≌△,4223P E TQ ∴==,42173t ∴=. 当 42173t ∴=秒时,41P HM HNE =∠∠ ·························································· 1分 综上所述:当73t =秒或5t =秒或15t =秒或2173t =秒时,PHM HNE =∠∠.(以上各题如有不同解法并且正确,请按此步骤给分)。
2009年黑龙江省牡丹江市初中毕业九年级数学学业考试及答案(WORD版)
二○○九年某某市初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟.2.全卷共三道大题,总分120分.一、填空题(每小题3分,满分36分)1.为了加快3G 网络建设,电信运营企业将根据各自发展规划,今明两年预计完成3G 投资2800亿元左右,请将2800亿元用科学记数法表示为元. 2.函数y =中,自变量x 的取值X 围是. 3.如图,ABCD 中,E 、F 分别为BC 、AD 边上的点,要使BF DE =,需添加一个条件:.4.已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为.5.如图,一条公路的转变处是一段圆弧(图中的AB ),点O 是这段弧的圆心,C 是AB 上一点,OC AB ⊥,垂足为D ,300m AB =,50m CD =,则这段弯路的半径是m .6.五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了折优惠.7.现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三角形的概率是.8.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=.9.有一列数1234251017--,,,,…,那么第7个数是.B5题图8题图AB CEDF3题图10.如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CFAD =. 11.若关于x 的分式方程311x a x x--=-无解,则a =.12.矩形ABCD 中,对角线AC 、BD 交于点O ,AE BD ⊥于E ,若13OE ED =∶∶,AE =则BD =. 二、选择题(每小题3分,满分24分) 13.下列运算中,正确的个数是( )()323526023215x x x x x +==⨯-=①,②,③,④538--+=,⑤11=. A .1个 B .2个 C .3个 D .4个14.下列图形中既是轴对称图形又是中心对称图形的是( )15.如图,平面直角坐标系中,在边长为1的正方形ABCD有一动点P 沿A B C D A →→→→运动一周,则P点P 走过的路程s 之间的函数关系用图象表示大致是( )16.若01x <<,则21x x x,,的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x<< AEF DG C B 10题图A .B .C .D .A .B .C .D .17.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( )A .SASB .ASAC .AASD .SSS18.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的左视图是( )19.ABC △在如图所示的平面直角坐标系中,将ABC △向右平移3个单位长度后得111A B C △,再将111A B C △绕点O 旋转180°后得到222A B C △,则下列说法正确的是( )A .1A 的坐标为()31,B .113ABB A S =四边形C.2B C = D .245AC O ∠=°20.如图,ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( ) ①1A ∠=∠,②CD DBAD CD=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶, ⑤AC BD AC CD =··21C D BA20题图17题图OD18题图12A .B .C .D .2 3119题图A .1B .2C .3D .4三、解答题(满分60分) 21.(本小题满分5分)先化简:121a a a a a --⎛⎫÷- ⎪⎝⎭,并任选一个你喜欢的数a 代入求值. 22.(本小题满分6分)如图二次函数2y x bx c =++的图象经过()1A -,0和()30B ,两点,且交y 轴于点C . (1)试确定b 、c 的值;(2)过点C 作CD x ∥轴交抛物线于点D ,点M 为此抛物线的顶点,试确定MCD △的形状.参考公式:顶点坐标2424b ac b a a ⎛⎫-- ⎪⎝⎭,23.(本小题满分6分)有一块直角三角形的绿地,量得两直角边长分别为6m m ,8.现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.24.(本小题满分7分)为了“让所有的孩子都能上得起来,都能上好学”,国家自2007年起出台了一系列“资助贫困学生”的政策,其中包括向经济困难的学生免费提供教科书的政策.为确保这项工作顺利实施,学校需要调查学生的家庭情况.以下是某市城郊一所中学甲、乙两个班的调查结果,整理成表(一)和图(一):22题图(1)将表(一)和图(一)中的空缺部分补全;(2)现要预定2009年下学期的教科书,全额100元.若农村户口学生可全免,城镇低保的学生可减免34,城镇户口(非低保)学生全额交费.求乙班应交书费多少元?甲班受到国家资助教科书的学生占全班人数的百分比是多少?(3)五四青年节时,校团委免费赠送给甲、乙两班若干册科普类、文学类及艺术类三种图书,其中文学类图书有15册,三种图书所占比例如图(二)所示,求艺术类图书共有多少册?25.(本小题满分8分)甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地,停留表(一)甲班乙班 x (年级)图(一)文学类艺术类科普类图(二)1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离y (千米)与乙车行驶时间x (小时)之间的函数图象.(1)请将图中的( )内填上正确的值,并直接写出甲车从A 到B 的行驶速度; (2)求从甲车返回到与乙车相遇过程中y 与x 之间的函数关系式,并写出自变量x 的取值X 围.(3)求出甲车返回时行驶速度及A 、B 两地的距离.26.(本小题满分8分)已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°, EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.25题图AE CF BD图1图3ADFECBADBCE 图2 F27.(本小题满分10分)某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.28.(本小题满分8分)如图,ABCD 在平面直角坐标系中,6AD =,若OA 、OB 的长是关于x 的一元二次方程27120x x -+=的两个根,且OA OB >. (1)求sin ABC ∠的值.(2)若E 为x 轴上的点,且163AOE S =△,求经过D 、E 两点的直线的解析式,并判断AOE △与DAO △是否相似?(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、M为顶点的四边形为菱形?若存在,请直接写出F二○○九年某某市初中毕业学业考试数学试卷参考答案及评分标准一、填空题(每空3分,满分36分) 1.112.810⨯ 2.2x >3.();BE DF BF DE AF CE BFD BED AFB ADE ==∠=∠∠=∠或∥;;等 4.1,3,5或2,3,4 5.250 6.九 7.348.4 9.750-10.1211.1或-2 12.4或5说明:第4题,第11题和第12题只答一个,答对者给2分. 二、选择题(每小题3分,满分24分)13.A 14.B 15.D 16.C 17.D 18.B 19.D 20.C 三、解答题.满分60分.21. 解:原式=2121a a a a a--+÷ ···································································· 1分 28题图=()211a aa a --· ············································································ 1分 =11a - ······················································································· 1分 a 取0和1以外的任何数,计算正确都可给分 ······················································ 2分22.解:(1)将A 、B 两点坐标代入解析式,有:01093b cb c=-+⎧⎨=++⎩ ····················· 1分解得:23b c =-=-, ·································································· 2分 (2)求出抛物线的顶点()14M -, ···················································· 1分 ()()03232C D CD --=,,,, ································································· 1分 CDM △是等腰直角三角形 ········································································ 1分 23.解:在Rt ABC △中,9086ACB AC BC ∠===°,,由勾股定理有:10AB =,扩充部分为Rt ACD △,扩充成等腰ABD △,应分以下三种情况.①如图1,当10AB AD ==时,可求6CD CB == ···································· 1分 得ABD △的周长为32m . ·························································· 1分②如图2,当10AB BD ==时,可求4CD =由勾股定理得:AD =························································· 1分 得ABD △的周长为(20m +. ·············································· 1分 ③如图3,当AB 为底时,设AD BD x ==,则6CD x =-,由勾股定理得:253x = ······························································ 1分 得ABD △的周长为80m 3. ·························································· 1分ADBAD ADBC24.(1)25,54,补充后的图如下:·························································································· 每项1分,共3分 (2)乙班应交费:3281004100129004⎛⎫⨯+⨯⨯-= ⎪⎝⎭元 ································· 1分 甲班受到国家资助教科书的学生占全班人数的百分比:255100%60%50+⨯= ············································································································· 1分 (3)总册数:15÷30%=50(册) ······························································· 1分 艺术类图书共有:()()50130%44%13⨯--=册. ································· 1分 25.解:(1)( )内填60 ········································································· 1分 甲车从A 到B 的行驶速度:100千米/时 ············································ 1分 (2)设y kx b =+,把(4,60)、(4.4,0)代入上式得:604044k bk b =+⎧⎨=+⎩.························································································· 1分 解得:150600k b =-⎧⎨=⎩·································································· 1分150660y x ∴=-+ ·················································································· 1分自变量x 的取值X 围是:4 4.4x ≤≤ ········································ 1分甲班乙班 x (年级)图(一)(3)设甲车返回行驶速度为v 千米/时,有0.4(60)60v ⨯+=得90(/)v =千米时 ··································· 1分A B 、两地的距离是:3100300⨯=(千米) ·················································· 1分 26.解:图2成立;图3不成立. ····································································· 2分 证明图2:过点D 作DM AC DN BC ⊥⊥, 则90DME DNF MDN ∠=∠=∠=°再证MDE NDF DM DN ∠=∠=, 有DME DNF △≌△DME DNF S S ∴=△△DEF CEF DMCN DECF S S S S ∴==+△△四边形四边形由信息可知12ABC DMCN S S =△四边形 12DEF CEF ABC S S S ∴+=△△△ ······································································· 4分 图3不成立,DEF CEF ABC S S S △△△、、的关系是:12DEF CEF ABC S S S -=△△△ ·········································································· 2分 27.解:(1)设生产A 型冰箱x 台,则B 型冰箱为()100x -台,由题意得:47500(28002200)(30002600)(100)48000x x -+-⨯-≤≤ ······················· 2分 解得:37.540x ≤≤ ········································································ 1分x 是正整数 x ∴取38,39或40.有以下三种生产方案:图2ADBCE M NF············································································································ 1分(2)设投入成本为y 元,由题意有:22002600(100)400260000y x x x =+-=-+ ······································· 1分 4000-<y ∴随x 的增大而减小∴当40x =时,y 有最小值.即生产A 型冰箱40台,B 型冰箱50台,该厂投入成本最少 ······················· 1分 此时,政府需补贴给农民(280040300060)13%37960()⨯+⨯⨯=元 ·········· 1分 (3)实验设备的买法共有10种. ························································· 2分28.解:(1)解27120x x -+=得1243x x ==,OA OB >43OA OB ∴==, ·············································································· 1分 在Rt AOB △中,由勾股定理有5AB =4sin 5OA ABC AB ∴∠== ········································································ 1分 (2)∵点E 在x 轴上,163AOE S =△11623AO OE ∴⨯= 83OE ∴=880033E E ⎛⎫⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭,或, ········································································ 1分由已知可知D (6,4)设DE y kx b =+,当803E ⎛⎫ ⎪⎝⎭,时有 46803k b k b =+⎧⎪⎨=+⎪⎩解得65165k b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴61655DE y x =- ················································································ 1分同理803E ⎛⎫- ⎪⎝⎭,时,6161313DE y x =+ ······················································· 1分 在AOE △中,89043AOE OA OE ∠===°,, 在AOD △中,9046OAD OA OD ∠===°,,OE OAOA OD=AOE DAO ∴△∽△ ············································································ 1分 (3)满足条件的点有四个123475224244(38)(30)1472525F F F F ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,;,;,;, ····························· 4分说明:本卷中所有题目,若由其它方法得出正确结论,可参照本评分标准酌情给分.。
2007年哈尔滨市初中升学考试数学试卷(含答案及评分标准)
哈尔滨市2007年初中升学考试数学试卷第I 卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分)1.一天早晨的气温是7-℃,中午的气温比早晨上升了11℃,中午的气温是( )A .11℃B .4℃C .18℃D .11-℃ 2.下列计算中,正确的是( ) A .325a b ab += B .44a a a =gC .623a a a ÷=D .3262()a b a b =3.下列图形中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.4.计算:101|5|20072-⎛⎫-+- ⎪⎝⎭的结果是( )A . 5B .6C .7D .85.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为( ) A .12B .13C .14D .156.如图是某一立体图形的三视图,则这个立体图形是( )主视图 左视图 俯视图 A .正三棱柱 B .三棱锥 C .圆柱 D .圆锥7.哈尔滨市为迎接第24届世界大学生冬季运动会,正在进行城区人行道路翻新,准备选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是( )正三角形 正方形 正五边形 正六边形 A. B. C. D.8.2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )9.如图,矩形纸片ABCD 中,8cm AB =,把矩形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,若25cm 4AF =,则AD 的长为( ) A .4cmB .5cmC .6cmD .7cm10.下列说法中,正确的说法有( ) ①对角线互相平分且相等的四边形是菱形;②一元二次方程2340x x --=的根是14x =,21x =-;③依次连接任意一个四边形各边中点所得的四边形是平行四边形; ④一元一次不等式2511x +<的正整数解有3个; ⑤在数据1,3,3,0,2中,众数是3,中位数是3. A .1个 B .2个 C .3个 D .4个第II 卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11.我国淡水面积大约为66 000千米2,用科学记数法表示为 千米2. 12.分解因式:2233ax ay -= .13.函数34x y x -=-的自变量x 的取值范围是 . 14.已知反比例函数ky x=的图象经过点(36)A --,, 则这个反比例函数的解析式是 .15.如图,PA 是O e 的切线,A 为切点,PO 交O e 于点B ,8PA =,6OB =,则tan APO ∠的值是 .16.柜台上放着一堆罐头,它们摆放的形状见右图:第一层有23⨯听罐头, 第二层有34⨯听罐头, 第三层有45⨯听罐头, ……根据这堆罐头排列的规律,第n (n 为正整数)层 有 听罐头(用含n 的式子表示). 17.(此题只要求南岗区、道里区、道外区、香坊区、平房区的考生答)有4支球队要进行篮球比赛,赛制为单循环形式(每两队之间都赛一场),则一共需比赛 场. *17.(此题只要求呼兰区、阿城区、松北区、双城市、五常市、尚志市、方正县、延寿县、Ot /小时 1 2 3 600400 200 S /千米A .O t /小时 1 2 3 600400 200S /千米B .O t /小时 1 2 3 600400 200S /千米C .O t /小时 1 2 3 600400 200S /千米D .B P AO 第15题图第16题图ABCE FD第9题图巴彦县、木兰县、通河县、宾县、依兰县的考生答)直线y kx b =+经过点(20)A -,和y 轴正半轴上的一点B ,如果ABO △(O 为坐标原点)的面积为2,则b 的值为 . 18.圆锥的底面直径是8,母线长是12,则这个圆锥侧面展开图的扇形圆心角是 度. 19.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的 长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).20.在ABC △中,10BC =,AB =30ABC ∠=o,点P 在直线AC 上,点P 到直线AB 的距离为1,则CP 的长为 .三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共60分) 21.(本题6分)先化简,再求代数式22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭的值,其中3tan 301a =+o,45b =o .22.(本题6分)ABC △在平面直角坐标系中的位置如图所示. (1)作出与ABC △关于y 轴对称的111A B C △;(2)将ABC △向下平移3个单位长度,画出平移后的222A B C △.23.(本题6分)如图,AB 是O e 的弦,矩形ABCD 的边CD 与O e 交于点 E F AF ,,和BE 相交于点G ,连接AE BF ,.(1)写出图中每一对全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明. 24.(本题6分)现将三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图1、图2、图3).AB CD (第19题图)菜园墙(第23题图)(第22题图)分别在图1、图2、图3中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形. 要求:(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形;(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙; (3)所画出的几何图形的各顶点必须与小正方形的顶点重合.25.(本题8分)据2007年5月26日《生活报》报道,我省有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少? (3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图1矩形(非正方形)图2正方形图3有一个角是135°的三角形(第24题图)26.(本题8分)青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3)在“五·一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果) 27.(本题10分)如图1,在正方形ABCD 中,对角线AC 与BD 相交于点E ,AF 平分BAC ∠,交BD 于点F .(1)求证:12EF AC AB +=; (2)点1C 从点C 出发,沿着线段CB 向点B 运动(不与点B 重合),同时点1A 从点A 出发,沿着BA 的延长线运动,点1C 与1A 的运动速度相同,当动点1C 停止运动时,另一动点1A 也随之停止运动.如图2,11A F 平分11BA C ∠,交BD 于点1F ,过点1F 作1111F E AC ⊥,垂足为1E ,请猜想11E F ,1112AC 与AB 三者之间的数量关系,并证明你的猜想; (第25题图)图2图1最喜欢的体育活 动项目的人数/人最喜欢的体育活动项目(3)在(2)的条件下,当113A E =,112C E =时,求BD 的长.28.(本题10分)如图,梯形ABCD 在平面直角坐标系中,上底AD 平行于x 轴,下底BC 交y 轴于点E ,点C (4,2-),点(12)D ,,9BC =,4sin 5ABC ∠=. (1)求直线AB 的解析式;(2)若点H 的坐标为(11)--,,动点G 从B 出发,以1个单位/秒的速度沿着BC 边向C 点运动(点G 可以与点B 或点C 重合),求HGE △的面积S (0S ≠)随动点G 的运动时间t '秒变化的函数关系式(写出自变量t '的取值范围); (3)在(2)的条件下,当72t '=秒时,点G 停止运动,此时直线GH 与y 轴交于点N .另一动点P 开始从B 出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B 到A ,然后由A 到D ,再由D 到C ,最后由C 回到B (点P 可以与梯形的各顶点重合).设动点P 的运动时间为t 秒,点M 为直线HE 上任意一点(点M 不与点H 重合),在点P 的整个运动过程中,求出所有能使PHM ∠与HNE ∠相等的t 的值.图1BD图2AB CDA 1(第27题图)(第28题图)(第28题备用图)。
2007年全国各地中考试题130多份标题汇总
2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年牡丹江市课程改革实验区初中毕业学业考试
数学试卷
考生注意:
1.考试时间120分钟.
2.全卷共三道大题,总分120分.
一、填空题(每小题3分,满分30分) 1.我国陆地面积居世界第三位,约为9597300平方千米,用科学记数法可表示为 平方千米(结果保留三个有效数字). 2.函数2
1
x y x +=
-中,自变量x 的取值范围是 . 3.从1,2,3这三个数字中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是 .
4.如图,已知矩形ABCD 中()AD AB >,EF 经过对角线的交点O ,且分别交AD BC ,于E F ,,请你添加一个条件: ,使四边形EBFD 是菱形.
5.某商店老板将一件进价为800元的商品先提价50%,再打8折卖出,则卖出这件商品所获利润是 元.
6.抛物线2y ax bx c =++过点(10)A ,,(30)B ,,则此抛物线的对称轴是直线x = .
7.有一人患了流感,经过两轮传染后,共有121人患了流感,若设每轮传染中平均每人传
染了x 人,那么可列方程为 .
8.如图,等腰直角三角形ABC 直角边长为1,以它的斜边上的高AD 为腰做第一个等腰直角三角形ADE ;再以所做的第一个等腰直角三角形ADE 的斜边上的高AF 为腰做第二个等腰直角三角形AFG ;……以此类推,这样所做的第n 个等腰直角三角形的腰长为 .
9.如图,分别是由若干个完全相同的小正方体组成的一个物体的主视图和俯视图,则组成这个物体的小正方体的个数是 个.
10.已知Rt ABC △中,90C =∠,6AC =,8BC =,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于E ,交斜边于F ,则tan CDE ∠的值为 .
二、单选选择题(每小题3分,满分30分) 11.下列运算中,正确的是( )
(第4题)
A B
C
D
E F
O
(第8题) A B C D E
F
G
主视图 俯视图 (第9题)
A .233255+=
B .842
a a a -÷=- C .236(3)27a a =
D .2242()a b a b -=-
12.在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积v 时,气体的密度ρ也随之改变,ρ与v 在一定范围内满足m
v
ρ=,当7kg m =时,它的函数图象是( )
13.一组数据由五个正整数组成,中位数是3,且唯一众数是3,则这五个正整数的平均数是( ) A .4 B .5 C .6 D .8
14
.下列图形中,既是轴对称图形又是中心对称图形的是( ) 15.如图,在等腰梯形ABCD 中,AD BC ∥,3AD =,5BC =,AC BD ,相交于O 点,且60BOC =∠,顺次连结等腰梯形各边中点所
得四边形的周长是( )
A .24
B .20
C .16
D .12 16.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度(cm)h 与注水时间(min)t 的函数图象大致为( )
17.若关于x
的分式方程
1
21m x -=-的解为正数,则m 的取值范围是( ) A .1m >-
B .1m ≠
C .1m >且1m ≠-
D .1m >-且1m ≠
18.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品:大绳,
A . O 3(m )v 3(kg /m )ρ
B . O
3(m )v
3(kg /m )ρ C . O
3(m )v
3(kg /m )ρ D . O
3(m )v
3(kg /m )ρ
A .
B .
C .
D .
(第15题) A B C D
O
(第16题)
A .
O (min)t
(cm)h B .
O (min)t
(cm)h C .
O (min)t
(cm)h D .
O (min)t
(cm)h
小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,小绳的买法共有( ) A .9种 B .8种 C .6种 D .5种
19.如图,已知ABCD 中,E 是AB 边的中点,DE 交AC 于点F ,AC DE ,把ABCD 分成的四部分的面积分别为1S ,2S ,3S ,4S ,下面结论: ①只有一对相似三角形
②:1:2EF ED =
③1234:::1:2:4:5S S S S = 其中正确的结论是( ) A .①③ B .③ C .①
D .①②
20.已知半径为5的O 中,弦52AB =,弦5AC =,则BAC ∠的度数是( ) A .15
B .210
C .105或15
D .210或
30
三、解答题(满分60分) 21.(本小题满分5分)
先化简,再求值:2443x x x
x x
--÷+,其中0(21)x =-.
22.(本小题满分6分)
如图,方格纸中,每个小正方形的边长都是单位1.ABC △与111A B C △关于O 点成中心对称.
(1)画出将111A B C △沿直线DE 方向向上平移5个单位得到222A B C △; (2)画出将222A B C △绕点O 顺时针旋转180得到333A B C △; (3)求出四边形312CC C C 的面积.
23.(本小题满分6分)
小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m .请你帮小
(第19题)
A B
C
D
E
F
1S 2S
3S
4S
(第22题) A B
C E
O D 1C
1A 1B
强计算这块菜地的面积(结果保留根号). 24.(本小题满分7分)
九年级一班的两位学生对本班的一次数学成绩(分数取整数,满分为100分)进行了一次初步统计.看到80分以上(含80分)有17人,但没有满分.也没有低于30分的.为更清楚了解本班考试情况,他们分别用两种方式进行了统计分析,如图1和图2所示,请根据图中提供的信息回答下列问题:
(1)班级共有多少名学生参加了考试? (2)填上两个图中的空缺部分;
(3)问85分到89分的学生有多少人?
25.(本小题满分8分)
已知:甲、乙两车分别从相距300千米的A B ,两地同时出发相向而行,其中甲到B 地后立即返回,下图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象. (1)求甲车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围;
(2)当它们行驶到与各自出发地的距离相等时,用了
9
2
小时,求乙车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围; (3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
人数 分数 2 3 5 10 11 29.5 39.5 49.5 59.5 69.5 79.5 89.5 99.5 (第24题图1) (第24题图2) 85分
~100分
60分以下
60分~85分
62%
20% % 图中的各部分都只
含最低分不含最高分 O ()y 千米
()x 小时 274
3
300 甲 乙 甲
26.(本小题满分8分)
已知四边形ABCD 中,A B A D ⊥,BC CD ⊥,AB BC =,120ABC =∠,
60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)于E F ,.
当MBN ∠绕B 点旋转到AE CF =时(如题图1),易证AE CF EF +=.
当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系?请写出你的
猜想,不需证明.
27.(本小题满分10分)
下岗职工王阿姨利用自己的一技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元. (1)问服装厂有哪几种生产方案? (2)该服装厂怎样生产获得利润最大?
(3)在(1)的条件下,40套服装全部售出后,服装厂又生产6套服装捐赠给某社区低保户,这样服装厂仅获利润25元钱.请直接写出服装厂是按哪种方案生产的. 28.(本小题满分10分)
如图,在平面直角坐标系中,已知点(36)A -,
,点B ,点C 分别在x 轴的负半轴和正半轴上,OB OC ,的长分别是方程2
430x x -+=的两根()OB OC <.
(第26题图1) A
B C D E
F M
N (第26题图2) A
B
C
D E F M
N (第26题图3)
A
B
C D E F M N
(1)求B C ,两点的坐标.
(2)在坐标平面内是否存在点Q 和点P (点P 在直线AC 上),使以O P C Q ,,,为顶点的四边形是正方形?若存在,请直接写出Q 点的坐标;若不存在,请说明理由.
(3)若平面内有(12)M -,,D 为线段OC 上一点,且满足DMC BAC =∠∠,求直线AD
的解析式.
(第28题)
y
x
A
B O
D C M。