图的代数连通度

合集下载

基于网络拓扑图的树的代数连通度

基于网络拓扑图的树的代数连通度

基于网络拓扑图的树的代数连通度周后卿;徐幼专【摘要】代数图谱理论方法在网络设计中发挥重要作用.网络拓扑图的Laplacian 矩阵的谱与网络的同步能力有关,代数连通度就是一个刻画同步能力的重要参数.采用移接变形方法,讨论了树的代数连通度和直径之间的关系,获得了下面的结论:当树的顶点数固定时,树的代数连通度随着树的直径的增加而减少.进一步地,讨论了树的代数连通度的上界和下界.%Algebraic graph theory methods play an important role in the network design. Spectrum of Laplacian matrix is associated with the synchronous ability of network. The algebraic connectivity is a depict important parameter of synchronous ability. In this paper, using a grafting method, it discusses the relationship between algebraic connectivity and diameter of a tree. For a special class of trees, the algebraic connectivity of the tree with a fixed number of vertices, is decreasing along with the increase of diameter. Moreover, using the Cauchy-Schwarz inequality as a guide, it also obtains bounds for the algebraic connectivity of a tree.【期刊名称】《计算机工程与应用》【年(卷),期】2017(053)003【总页数】5页(P106-109,163)【关键词】树;拉普拉斯矩阵;代数连通度;直径【作者】周后卿;徐幼专【作者单位】湖南邵阳学院数学系,湖南邵阳 422000;邵阳广播电视大学,湖南邵阳 422000【正文语种】中文【中图分类】O157.5ZHOU Houqing,XU Youzhuan.Computer Engineering andApplications,2017,53(3):106-109.图论是研究网络结构的强有力工具,网络的结构参数和性质可以抽象为图的结构参数与性质。

图论第一章课后习题解答

图论第一章课后习题解答

bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。

图的连通度问题

图的连通度问题

图的连通度问题研究1.图的连通度的定义图要么是连通的,要么是不连通的。

但对于任意连通图来说,它们的连通程度也可能是不同的。

为了精确地体现连通的程度,下面将引入两个概念:边连通度和顶点连通度。

设G = (V, E)是一个n阶图。

如果G是完全图K n,那么我们定义它的顶点连通度为κ(K n) = n– 1否则,定义它的顶点连通度为κ(G) = min{|U| : G v-u是非连通的}即最小顶点数,删除这些顶点便是非连通图。

图G的边连通度定义为从图G中删除边而使G非连通的最小边数,用λ(G)表示。

这里的图G=(V, E)代表无向图或有向图,且没有自环和重边。

下面将主要讨论无向图的边连通度,有向图的边连通度和顶点连通图可以以此类推。

2.无向图的边连通度在无向图G中,令顶点v的度数deg(v)表示与顶点v相连的边的数目。

无向图G的最小度δ(G)定义为:δ(G) = min{deg(v) | v属于G}。

考虑有向图G中,v 的入度表示为in-deg(v),v的出度表示为out-deg(v),相应的最小度为:δ(G) = min{in-deg(v), out-deg(v)| v属于G}。

在整篇文章中,图的点数用n表示,边数用m表示。

另u和v表示图G中的一对不相同的点。

定义λ(u, v)表示从图G中删除最少的边,使得u和v之间不存在任何路径。

在有向图G中,λ(u, v)表示从G中删除最少的弧(有向边),使得不存在任何从u到v的有向路径。

注意到,在无向图中,有λ(u, v) =λ(v, u),在有向图中却不符合这个等式。

显然,λ(u, v)就是图中u和v的最小割。

求两点之间的最小割,根据最大流最小割定理,可以用最大流算法求解:令u为网络的源点,v为网络的汇点,每条边的容量为1,u到v的最大流便是u和v之间的最小割。

预流推进算法可以在O(nm)时间复杂度下求出最大流。

另外,每条边的容量都为1,可以用Hoproft算法在)O的时间复杂度下求出单位容量网络的最大流。

图论及其应用综述

图论及其应用综述

图论综述一、简介图论是数学的一个分支。

它以图为研究对象。

图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。

图G=(V,E)是一个二元组(V,E)使得E⊆[V]的平方,所以E的元素是V的2-元子集。

集合V中的元素称为图G的定点(或节点、点),而集合E的元素称为边(或线)。

通常,描绘一个图的方法是把定点画成一个小圆圈,如果相应的顶点之间有一条边,就用一条线连接这两个小圆圈,如何绘制这些小圆圈和连线时无关紧要的,重要的是要正确体现哪些顶点对之间有边,哪些顶点对之间没有边。

图论本身是应用数学的一部份,因此,历史上图论曾经被好多位数学家各自独立地建立过。

关于图论的文字记载最早出现在欧拉1736年的论著中,他所考虑的原始问题有很强的实际背景。

目前,图论已形成很多分支:如随机图论、网络图论、代数图论、拓扑图论、极值图论等。

图论的应用已经涵盖了人类学、计算机科学、化学、环境保护、非线性物理、心理学、社会学、交通管理、电信以及数学本身等。

二、基本内容2.1 图的基本概念本章首先介绍了图的一些基本性质和一些不同模型的图,包括偶图,完全图和补图,引入了定点度的来描述图的性质。

其次介绍了子图的相关概念,介绍了图的一些基本运算规则,对图的路和连通性进行了阐释。

紧接着讲解了最短路算法,定义设G为边赋权图。

u与v是G中两点,在连接u与v的所有路中,路中各边权值之和最小的路,称为u与v间的最短路。

图的代数表示,包括图的邻接矩阵和图的关联矩阵。

最后对极图理论进行了简介,主要介绍了极值图论中的一个经典结论——托兰定理。

2.2 树本章主要介绍了树的概念与性质,阐述了生成树与最小生成树的基本概念与一些常用结论与定理。

树是不含圈的无圈图,也是连通的无圈图。

树是图论中应用最为广泛的一类图。

在理论上,由于树的简单结构,常常是图论理论研究的“试验田”。

图-连通的概念

图-连通的概念

三、连通性3.1 连通性和Whitmey定理定义V真包含于V(G), G[V(G)-V'不连通,而G是连通图,则称V是G的顶剖分集。

最小顶剖分集中顶的个数,记成K (G)叫做G的连通度;规定K (Kv)=-U; K不连通图)=平凡图)=0。

由一个顶组成的顶剖分集叫割顶。

没有割顶的图叫做块,G中的成块的极大子图叫做G的块。

定义E包含于E(G),G为连通图,而G-E'从G中删除E'中的边)不连通,则称E'为G的边剖分集,若G中已无边剖分集E〃,使得|E 〃|v|E则称|E '为G的边连通度,记成K' (G归’|=时,E'中的边叫做桥。

规定K不连通图)=0,K' (Kv)= u1。

定义K (G)>=k时,G叫做k连通图;K' (G)>=k,G称为k边连通图。

k连通图,当k>1时,也是k-1连通图。

k边连通图,当k>1时,也是k-1边连通图。

上面就是顶连通与边连通的概念,好象不指明的就是指顶连通了。

定理1 K (G)=< K' 2)=可以复习一下第一章的1.2:S =min{d(v)})证:设d(v)=,则删除与v边关联的S条边后,G变不连通图,所以这S 条边形成一个边剖分集,故最小边剖分集边数不超过即K' (G)=<T证K =<K'分情形讨论之。

若G中无桥,则有K' >条边,移去它们之后,G变成不连通图。

于是删除这K条中的K'条后,G变成有桥的图。

设此桥为e=uv,我们对于上述K'条删去的每条边上,选取一个端点,删除这些(不超过K'个)端点,若G变得不边能,则K =<K-1;若仍连通,则再删去u或v,即可使G变得不连通,于是K =<K'证毕。

这个定理很好理解,图论中的一些定理常以这种友好”的面目出现。

F面就是Whitmey定理定理2(Whitney,1932) u >的图是2连通图的充要条件是任二顶共圈(在一个圈上)。

图谱简介

图谱简介

图谱简介图论与组合是一门历史悠久而在近四十年又获得蓬勃发展的应用数学学科,是处理离散问题的强有力的工具,是整个离散数学的一个重要组成部分。

图论与组合包含着十分丰富的内容,按其所研究的问题的侧重点不同,可以分为图论、计数理论、组合矩阵论、最优化理论、组合设计等几个方面。

近五十年来,随着计算机科学、信息科学和系统科学的发展,图论组合及其应用的研究越来越引起人们的关注。

无论从其理论价值和实际应用的广度和深度来看,图论与组合正处于一个具有强大生命力的迅速发展的新时期。

一.图的矩阵在图论中,为了研究图的性质,人们引进了各种各样的矩阵,诸如图的邻接矩阵,拉普拉斯矩阵,规范拉普拉斯矩阵等,这些矩阵与图都有着自然的联系,代数图论的一个主要问题就是研究图的性质能否以及如何由这些矩阵的代数性质反映出来,这里所指的矩阵的代数性质,主要指矩阵的特征值。

图谱理论主要研究图的邻接矩阵、拉普拉斯矩阵和规范拉普拉斯矩阵的特征值及其特征向量,是当前代数图论、组合矩阵论和代数组合论共同关注的一个重要研究课题,极大地丰富和促进了图论和组合学的研究内容。

假设),(E V G =是一个无向无环的图(简单图或多重图),其中{}n v v v V ,,,21 =,{}m e e e E ,,,21 =。

定义1 G 的邻接矩阵是一个n n ⨯的矩阵n n ij a G A ⨯=)()(,其中ij a 是连接顶点i v 与j v 的边的条数。

图的邻接矩阵的特征值,是代数图论的一个基本研究课题,已经形成相当成熟的理论。

图谱的第一篇论文发表于1957 年,其结果是.定理1 令G 是n 个结点的简单连通图,则1)(1cos 2-≤≤+n G n ρπ,左边的等号成立,当且仅当G 是一路;右边的等号成立,当且仅当G 是一个完全图。

在国内该方面的研究直到1979年才出现了第一篇论文,该论文由李乔和冯克勤合写并发表在1979年的《应用数学学报》上。

代表人物: C. D. Cvetkovic.专 著:D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of graph-theory and applications, VEB Deutscher Verlag d. Wiss. Berlin, 1979; Acad. Press, New York, 1979. 1995注:1.)()(),(k ijk ij k a a A = 表示 G 中点 i v 到 j v 长为 k 的路的数目—数学归纳法。

图论课件第三章图的连通性

图论课件第三章图的连通性

Bellman-Ford算法
总结词
Bellman-Ford算法是一种用于查找带权图中单源最短路径的算法。
详细描述
Bellman-Ford算法的基本思想是从源节点开始,通过不断更新节点之间的距离,逐步找到从源节点到 其他节点的最短路径。该算法可以处理带有负权重的边,并且在图中存在负权重环的情况下也能正确 处理。
THANKS
感谢观看
Floyd-Warshall算法
总结词
Floyd-Warshall算法是一种用于查找所有节点对之间最短路 径的动态规划算法。
详细描述
Floyd-Warshall算法的基本思想是通过动态规划的方式,逐 步构建最短路径矩阵。该算法首先初始化一个距离矩阵,然 后通过一系列的转移操作,逐步更新距离矩阵,直到找到所 有节点对之间的最短路径。
欧拉回路
总结词
欧拉回路是指一个路径的起点和终点是同一点,且经过图中的每条边且仅经过 一次的路径,并且该路径闭合。
详细描述
欧拉回路是欧拉路径的一种特殊情况,它不仅满足欧拉路径的所有条件,而且 起点和终点是同一点,形成一个闭合的路径。在图论中,欧拉回路具有重要的 应用价值。
欧拉回路的判定
总结词
判断一个图是否存在欧拉回路是一个NP 难问题,目前没有已知的多项式时间复 杂度的算法。
连通度
总结词
连通度是描述图中任意两点之间可达性的度量,表示图中节点之间的连接紧密程度。
详细描述
在图论中,连通度是衡量图连通性的一个重要参数。对于一个无向图,连通度通常用K表示,表 示图中任意两点之间是否存在路径。对于有向图,连通度分为入度和出度,分别表示从一个节 点到另一个节点是否存在路径和从另一个节点到这个节点是否存在路径。

拉普拉斯矩阵的约当形式

拉普拉斯矩阵的约当形式

拉普拉斯矩阵的约当形式拉普拉斯矩阵的约当形式拉普拉斯矩阵(Laplacian Matrix)是图论中的一个重要概念,它描述了无向图的拓扑结构和节点之间的关系。

在图的分析和网络科学中,拉普拉斯矩阵被广泛应用于图的划分、聚类、嵌入等问题。

本文将着重讨论拉普拉斯矩阵的约当形式,并介绍其应用。

1. 拉普拉斯矩阵简介在无向图中,拉普拉斯矩阵定义为:$L = D - A $其中,D是度数矩阵(Degree Matrix),A是邻接矩阵(Adjacency Matrix)。

度数矩阵是一个对角矩阵,其每个元素都表示该节点的度数。

邻接矩阵则记录了图中节点之间的连接关系。

拉普拉斯矩阵描述了节点之间的距离和相互作用,因此可以看作是图的一种特殊表示。

对于一个无向图G=(V,E),其中V是节点集,E是边集,拉普拉斯矩阵的大小为|V|×|V|。

其中,对角线元素为每个节点的度数,非对角线元素则表示节点之间的连接关系。

具体来说,如果节点i和节点j相邻,则$L_{i,j}=-1$;否则,$L_{i,j}=0$。

同时,拉普拉斯矩阵是一个对称半正定矩阵。

2. 拉普拉斯矩阵的性质与应用拉普拉斯矩阵有以下性质:(1) 对于任意的向量f,都有$f^T L f\ge 0$。

(2) $L_{i,j}$表示节点i和节点j之间的“相似度”,当$i=j$时,$L_{i,j}$表示该节点与其他节点的“不相似度”。

(3) 对于无向图G,它的拉普拉斯矩阵的特征值和特征向量都非负。

(4) 图的连通性与拉普拉斯矩阵的特征值有关。

具体来说,图G的拉普拉斯矩阵$L$的特征值为$\lambda_1=0<\lambda_2\le\lambda_3\le\cdots\le\lamb da_{n-1}\le\lambda_n$,其中$n$为图的节点数。

当且仅当图G连通时,$\lambda_2>0$,此时$\lambda_2$即为图G 的代数连通度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图的代数连通度
图代数,又称为离散数学(discrete mathematics),是数学的一个分支,主要研究由一组节点和联系这些节点的边组成的网络,也称为图。

其中图的一种重要性质是连通性,它表明图中节点之间是否都可以相互访问。

因此,如何检测图中节点之间的联系,以及如何衡量图中节点之间的联系强度,成为离散数学研究的重要内容。

在此背景下,图的代数连通度受到了广泛关注。

图的代数连通度是指图中节点之间的联系强度,它可以通过图的邻接矩阵(adjacency matrix)来衡量。

例如,当图中有 n 个节点时,可以建立一个 nxn的二元矩阵,它的每一个元素 aij示节点 i 节点 j 之间的边的权重,如果这条边存在,则 aij 为 1,反之为 0。

图的代数连通度是一种度量图节点间联系强度的量化指标。

有一种常用的方法,称为^1度量,它表示图中任何两个节点之间的联系强度。

在具体的计算中,它可以使用图的邻接矩阵来求解,其计算公式为:
A1(i,j)=aij
其中,aij为节点i到节点j之间的边的权重,如果节点i与节点j存在边,则aij的值为1,反之aij的值为0。

这一度量的计算,可以直接表示节点之间的联系强度,这样就可以度量图中任意两个节点之间的联系强度。

除此之外,还有其他度量方法,包括特征值度量、最大边度量等。

特征值度量是利用图的邻接矩阵,求解图的连通特征值而得到的。


最大边度量则是利用最大边权重来衡量图的连通性。

这些度量方法都可以有效地量化图的连通性,但也存在一定的局限性。

特征值度量只能度量图中任意两个节点之间的联系强度,而无法衡量图中不同节点组合的联系强度;而最大边度量又因为不能有效的衡量图的连通性,因此,可以说这些度量方法都有其局限性。

另一方面,图的代数连通度可以有效地提供图中节点间联系强度的量化指标。

它可以通过一组不同的系数和一系列矩阵运算来实现,并且可以有效地衡量图中任意几个节点之间的联系强度,而不受两个节点之间的边的数量的限制。

因此,可以说图的代数连通度是一种计算图连通性的非常有效的方法。

综上所述,图的代数连通度是一种量化图节点间联系强度的有效方法,它可以让我们更有效地去衡量图中节点之间的联系强度,从而更好地了解图中不同节点组合之间的关系。

通过它,我们还可以更准确地预测图结构中各节点之间的联系,从而为图的建模和分析提供有力的依据。

相关文档
最新文档