数字图像处理技术
电子信息工程中的数字图像处理技术

电子信息工程中的数字图像处理技术数字图像处理技术是电子信息工程领域中的重要组成部分,它在各个领域中都有广泛的应用。
本文将从数字图像处理技术的定义、原理和应用三个方面进行论述。
首先,我们来看一下数字图像处理技术的定义。
数字图像处理是指利用计算机和数字信号处理技术对图像进行获取、处理和分析的过程。
它主要包括图像获取、图像增强、图像压缩、图像恢复和图像分析等几个方面。
通过数字图像处理技术,我们可以对图像进行各种操作,如去噪、增强细节、改变图像的亮度和对比度等,从而得到更好的图像质量。
其次,我们来了解一下数字图像处理技术的原理。
数字图像处理技术主要是基于数字信号处理的原理进行的。
在数字图像处理中,图像被分割成若干个像素点,每个像素点都有一个灰度值或颜色值。
通过对这些像素点的处理,我们可以改变图像的外观和质量。
数字图像处理的核心原理是离散傅里叶变换(DFT)和离散余弦变换(DCT)。
通过这些变换,我们可以将图像从空间域转换到频域,从而实现对图像的各种处理。
最后,我们来看一下数字图像处理技术的应用。
数字图像处理技术在各个领域中都有广泛的应用。
在医学领域,数字图像处理技术可以用于医学图像的增强和分析,帮助医生更好地诊断疾病。
在安防领域,数字图像处理技术可以用于视频监控系统,实现对图像的实时分析和识别。
在艺术领域,数字图像处理技术可以用于图像的美化和艺术创作,帮助艺术家表达自己的创意。
此外,数字图像处理技术还可以应用于遥感、无人驾驶、虚拟现实等领域。
综上所述,数字图像处理技术在电子信息工程中扮演着重要的角色。
它的应用范围广泛,可以帮助我们改善图像质量、提高图像分析的准确性,并在各个领域中发挥重要作用。
随着科技的不断发展,数字图像处理技术将会不断进步和创新,为我们的生活带来更多的便利和惊喜。
数字图像处理技术

数字图像处理技术数字图像处理技术是指利用计算机处理图像的一类技术。
把图像信息表示成像素矩阵的形式,在计算机上进行数字图像的标定、量化、存储、复原等一系列的处理,以达到图像处理的目的所使用的技术。
数字图像处理技术的发展,从磁盘存储和显示开始,矢量显示和矢量存储以及网络技术的应用,使得数字图像处理技术得以快速发展,内容和水平也有了质的飞跃。
数字图像处理技术的主要内容包括图像的分割、建模和分析。
这些技术的实现功能有:1、图像的采集,比如摄像、扫描等;2、图像的编码,把图像信息表示成一组数字;3、图像的存储,保存图像信息;4、图像的显示,将数字信息转换成图像;5、图像的滤波,用来细化图像质量;6、图像的拼接,将多个图像拼接成一张;7、图像的识别,将图像信息与标准信息进行比较;8、图像的特征提取,从图像中提取特征信息并分析,便于非低维度数据分析;9、图像的分类,将图像分成若干类,例如主题图像分割;10、图像的压缩,将图像数据压缩,减少数据量;11、图像的增强,提高图像质量,使图像更加清晰。
在数字图像处理的研究中,技术应用越来越广泛,应用场景越来越多,涉及到多个领域,有助于更好地了解大自然,更有效地处理复杂的图像信息。
随着人工智能技术的发展,数字图像处理技术也发生了巨大变化,数字图像处理技术从传统的模式分析发展到了深度学习,实现了低级特征的提取和更高维度的模式分析。
例如在机器视觉、机器人技术等方面得到了广泛的应用。
数字图像处理技术的发展已经是近些年来受到社会各界共同关注的一个新兴技术领域,它与现代社会息息相关,应用于多个行业,如医学、军事、智能家居等。
同时,数字图像处理技术也为人们的生活带来了极大的方便,比如在智能识别中,人脸识别、车牌识别等,都大大减少了流程的复杂性,提升了工作的效率。
总之,数字图像处理技术已经成为现代社会中不可或缺的一部分,它不仅能为人们的生活带来便利,还能为企业的生产效率带来重大的改变。
数字图像处理技术

数字图像处理技术数字图像处理技术是一种以计算机为基础,利用数学和计算机科学的知识处理图像的技术。
它可以通过改变图像的亮度、对比度、色彩等属性,从而达到美化、修复、增强等目的。
数字图像处理技术具有广泛的应用领域,如医学、智能交通、安防、视频监控、图像识别等。
在医学领域,数字图像处理技术可用于MRI、CT等检查图像的分析和诊断,为临床诊断提供可靠的依据。
在智能交通领域,数字图像处理技术可用于车牌识别、交通监测、交通信号控制等方面,提高交通安全性和便利性。
在安防领域,数字图像处理技术可用于人脸识别、火情监测、烟雾识别等方面,提高公共安全和防范能力。
数字图像处理技术具有以下几个主要步骤:获取图像、预处理、特征提取、分类识别等。
获取图像是数字图像处理技术的第一步。
图像获取可以通过数字相机、扫描仪、CCD等设备进行。
预处理是数字图像处理技术的重要环节。
预处理包括如去噪、锐化、增强、纠正变形等方面处理。
特征提取是指从处理后的图像中提取出图像的特征,用于识别分类。
特征提取包括如边缘检测、角点检测、纹理分析等方面处理。
分类识别是指将图像分为不同的类别,并进行识别。
分类识别包括如支持向量机、神经网络、决策树等方面处理。
总之,数字图像处理技术是一种将数学、计算机科学和图像处理技术结合起来的高新技术,具有广泛的应用前景。
其与其他技术的结合和发展,将极大地推动数字图像处理技术的发展和应用。
随着科技的不断进步,数字图像处理技术将在越来越多的领域得到广泛应用,成为未来科技发展的重要方向。
数字图像处理技术的未来发展随着数字技术的不断进步,数字图像处理技术应用领域的不断拓展,数字图像处理技术的未来发展前景非常广阔。
首先,数字图像处理技术的发展将进一步加速。
近年来,随着计算能力的不断提高,数字图像处理技术的速度和效果都得到了很大的提高。
随着计算能力的不断提高,数字图像处理技术将进一步发展和应用,广泛应用于医学、智能制造、智能交通等领域。
数字图像处理技术

数字图像处理技术数字图像处理技术是指利用计算机对数字图像进行处理和分析的一种技术。
随着计算机技术的不断发展和图像获取设备的普及,数字图像处理技术在各个领域得到了广泛的应用。
数字图像处理技术的原理是对图像进行采集、传输、存储、显示和输出等一系列操作,通过对图像中的像素进行处理和分析,以实现特定的目标。
数字图像处理技术的应用非常广泛,涉及到很多领域。
在医学上,数字图像处理技术可以用于医学图像的分析和诊断,帮助医生进行疾病的检测和治疗。
在工业上,数字图像处理技术可以应用于产品质量检测、表面缺陷检测等领域,提高产品的质量和生产效率。
在安全监控领域,数字图像处理技术可以用于视频监控和图像识别,实现对公共场所和个人安全的监控和保护。
在娱乐和游戏领域,数字图像处理技术可以用于人脸识别、虚拟现实和增强现实等技术,提供更加丰富和真实的娱乐游戏体验。
数字图像处理技术的核心是图像的处理和分析。
图像的处理包括图像的增强、恢复、压缩和编码等操作。
图像的增强是指通过对图像的亮度、对比度和色彩等进行调整,使图像更加清晰和鲜明。
图像的恢复是指对受损图像进行修复和重建,使其恢复到原始状态。
图像的压缩和编码是指对图像进行压缩和编码,减少图像数据的存储和传输量,提高图像的处理和传输效率。
图像的分析包括图像的特征提取、目标检测和图像识别等操作。
图像的特征提取是指从图像中提取出具有代表性和区分性的特征,用于图像的分类和识别。
目标检测是指在图像中检测出特定的目标物体,如人脸、车辆等。
图像识别是指通过对图像进行分析和比对,确定图像所代表的物体或场景。
数字图像处理技术的实现离不开计算机和图像处理算法的支持。
计算机的计算和存储能力可以提供实时和高效的图像处理操作。
而图像处理算法是实现图像处理和分析的关键,包括图像滤波、边缘检测、形态学处理、变换和模式识别等操作。
这些算法可以通过编程语言来实现,如C、C++、Python等。
数字图像处理技术的发展还面临一些挑战和问题。
数字图像处理技术简介

数字图像处理技术简介数字图像处理技术是指利用数字计算机技术对数字图像进行各种操作和处理的过程,它将数字图像视为信号,对其进行各种分析和处理,以达到改善图像质量、提取有用信息、识别和恢复失真等目的。
目前,数字图像处理技术已广泛应用于医学、遥感、地质勘察、环境监测、安全监控等众多领域。
一、数字图像的表示方式数字图像是以点阵形式存储在计算机中的,每个点称为像素(Pixel),每个像素有一个灰度值或彩色值。
灰度图像每个像素仅有一个数值,代表图像的亮度;彩色图像每个像素有三个数值,代表图像的红、绿、蓝三个通道的值。
数字图像的表示方式主要有以下两种:1.二值图像:每个像素只有两种取值,分别为黑和白。
二值图像常用于文字、边缘提取等领域。
2.灰度图像/彩色图像:每个像素有多种取值,分别表示亮度或颜色的不同程度。
灰度图像和彩色图像常用于人脸识别、医学图像等领域。
二、数字图像处理的基本步骤数字图像处理主要包括以下四个基本步骤:1.图像获取:通过传感器、摄像机等设备采集图像。
2.预处理:对获取的图像进行预处理,包括图像去噪、增强、几何校正等。
3.图像分析与处理:对预处理后的图像进行各种分析和处理,包括图像分割、特征提取、模式识别等。
4.后处理:对处理后的图像进行后处理,可根据具体需求进行目标检测、修改、输出等处理。
三、常用的数字图像处理技术1.图像增强:图像增强是指改善图像质量,使其更符合人眼视觉要求的一系列操作。
包括直方图均衡化、各种滤波、彩色平衡等。
2.图像分割:图像分割是将图像分成多个互不重叠的区域,每个区域内的像素具有类似的特征。
常用的分割方法包括阈值分割、区域增长、边缘检测等。
3.特征提取:特征提取是指从图像中识别出各种特征,用于图像分类、目标检测等。
常用的特征提取方法包括形状特征、纹理特征、颜色特征等。
4.模式识别:模式识别是通过对已知图像的学习,准确地识别新图像所属的类别。
常用的模式识别方法包括神经网络、最近邻算法等。
数字图像处理技术解析

数字图像处理技术解析第一章:数字图像处理基础知识数字图像处理是一门研究如何处理和操作数字图像的学科。
数字图像是离散的表示了光的强度和颜色分布的连续图像。
数字图像处理技术可以应用于许多领域,如医学影像、机器视觉、遥感图像等。
1.1 数字图像表示与存储数字图像可以使用像素(pixel)来表示,每个像素包含一定数量的位元(bit),用于表示图像的灰度值或颜色信息。
常见的像素表示方法有灰度图像和彩色图像。
在计算机中,数字图像可以以不同的方式进行存储,如位图存储、压缩存储等。
1.2 数字图像处理的基本操作数字图像处理的基本操作包括图像增强、图像恢复、图像压缩和图像分割等。
图像增强可以改善图像的质量,使其更适于人眼观察或用于其他应用。
图像恢复是指通过去除图像中的噪声、模糊等不良因素,使图像恢复到原始清晰状态。
图像压缩可以减少图像的存储空间和传输带宽。
图像分割是将图像分成几个具有独立特征的区域,用于目标检测、目标跟踪等应用。
第二章:数字图像增强技术数字图像增强技术可以提高图像的质量和信息内容,使其更适合进行后续处理或人眼观察。
常用的图像增强方法包括灰度变换、直方图均衡化和空域滤波等。
2.1 灰度变换灰度变换是通过对图像的灰度值进行变换,来改变图像的对比度和亮度。
常见的灰度变换方法包括线性变换、非线性变换和直方图匹配等。
线性变换通过对灰度值进行线性和平移变换,可改变图像的对比度和亮度。
非线性变换使用非线性函数对灰度值进行变换,如对数变换、反转变换等。
直方图匹配是将图像的直方图变换为期望直方图,以达到对比度和亮度的调整。
2.2 直方图均衡化直方图均衡化是一种常用的图像增强方法,可以通过对图像的直方图进行变换,使得图像的灰度分布更加均匀。
直方图均衡化可以增加图像的对比度,使得图像细节更加清晰。
该方法适用于灰度图像和彩色图像。
2.3 空域滤波空域滤波是一种基于像素的图像处理方法,通过对图像的局部像素进行加权平均或非线性操作,来改变图像的特征。
数字图像处理技术

数字图像处理技术近年来,随着数字技术的发展,数字图像处理技术也在不断地发展壮大,并得到了广泛的应用。
下面结合数字图像处理技术的历史背景及其应用领域,探讨其发展历程及未来发展趋势。
一、数字图像处理技术概述数字图像处理技术是利用计算机对数字图像进行处理的技术。
它可以通过使用技术工具、算法和策略,快速、准确地处理摄像头捕捉到的图像。
它的功能优势在于可以将模糊的图像变成清晰的图像,并将模糊的图像转换为具有良好可视性的图像。
二、数字图像处理技术的历史背景1970年代,数字图像处理技术被科学家们发现和实现。
这项技术结合了计算机科学和图像处理技术,将数字图像转化为可以被处理、分析和可视化的数据。
由于其特殊的数字处理能力,数字图像处理技术开始被广泛应用于多个行业,如制造业、医疗卫生和军事等。
三、数字图像处理技术的应用领域1.疗卫生:数字图像处理技术可以用于诊断,例如CT和MRI模拟等,可以帮助医生判断病情的严重程度。
此外,它还可以用于治疗,例如用于显示核磁共振成像和数字减影成像。
2.造业:工业企业利用数字图像处理技术来检测工件内部缺陷,以及控制产品质量。
这样可以减少工件错误和损坏,有效提高产品质量。
3.事:军事领域也大量使用数字图像处理技术。
它可以用来监控敌方活动、监视战略要点和识别非常低的图像,以准确掌握战术状况。
此外,它还可以用于航空监视和航空攻击,使用导弹识别准确、真实的目标图像,以有效控制攻击力度。
四、数字图像处理技术的未来发展趋势1.泛应用:数字图像处理技术已经在多个行业中得到了广泛应用,未来会有更多行业开始使用这项技术。
2.细化处理:数字图像处理技术将会更加精细,可以更快、更准确地进行处理,以确保输出的图像是更加精确、逼真的。
3.能化:未来数字图像处理技术将更加智能化,使用人工智能来实现图像识别和分析,从而替代人类人工分析图像。
综上所述,数字图像处理技术在近年来蓬勃发展,并得到了多领域的广泛应用,将进一步拓展使用范围并被更多的行业所使用。
数字图像处理技术

数字图像处理技术数字图像处理技术是一种针对数字图像进行处理和分析的技术。
随着计算机技术的不断发展和普及,数字图像处理技术在图像处理领域中扮演着越来越重要的角色。
本文将详细介绍数字图像处理技术的概念、原理、应用及未来发展方向。
概念数字图像处理技术是指利用计算机对数字图像进行处理和分析的技术。
数字图像是通过像素表示的图像,而像素是图像最小的单元,每个像素都有其特定的数值表示颜色和亮度。
数字图像处理技术可以对图像进行各种操作,如增强图像的质量、提取图像特征、恢复图像信息等。
原理数字图像处理技术的原理主要包括图像获取、图像预处理、图像增强、图像分割、特征提取和图像识别等基本步骤。
1.图像获取:通过相机或扫描仪等设备获取数字图像,将图像转换为数字信号。
2.图像预处理:对原始图像进行去噪、几何校正、尺度变换等预处理操作,以提高后续处理的效果。
3.图像增强:通过直方图均衡化、滤波等方法增强图像的对比度、亮度等特征。
4.图像分割:将图像分割成若干个区域或对象,以便更好地分析和处理图像。
5.特征提取:提取图像中的特征信息,如颜色、纹理、形状等,为图像识别和分类提供依据。
6.图像识别:利用机器学习、深度学习等算法对图像进行分类、识别和分析。
应用数字图像处理技术在各个领域都有广泛的应用,如医疗影像分析、无人驾驶、安防监控、智能交通等。
以下列举一些典型的应用场景:•医疗影像分析:利用数字图像处理技术分析医学影像,辅助医生进行疾病诊断和治疗。
•安防监控:通过视频监控系统、人脸识别技术等实现对安全领域的监控和警报。
•智能交通:通过交通监控系统、车辆识别技术等提高交通管理效率和道路安全。
未来发展数字图像处理技术在人工智能、物联网等新兴技术的推动下不断发展和创新,未来的发展方向主要包括以下几个方面:1.深度学习在图像处理中的应用:深度学习技术在图像分类、目标检测等方面取得重大突破,将在数字图像处理领域得到更广泛的应用。
2.虚拟现实与增强现实:数字图像处理技术将与虚拟现实、增强现实技术结合,实现更加沉浸式的用户体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理技术
机器视觉技术
姓名:
学号:
专业:
数字图像处理技术
数字图像处理(Digital Image Processing)是将图像信号转换成数字信号并利用计算机对其进行处理。
起源于20世纪20年代,20世纪60年代-70年代随着计算机技术与数字电视技术的普及和发展而迅速发展。
在80年代-90年代才形成独立的科学体系。
早期数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
目前该技术已广泛用于科学研究、工农业生产、生物医学工程、航空航天、军事、工业、机器人产业、政府职能机关文化文艺等多领域。
并在其中发挥着越来越大的作用,已成为一门引人注目、前景广阔的新型学科。
一、数字图像处理技术的起源
数字图像处理技术最早出项于20世纪50年代,当时的电子计算机已经发展到一定的水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量。
它以人为对象,以改善人的视觉效果为目的。
图像处理中输入的是质量低的图像,输出的是改善质量后的图像。
首次获得实际成功应用的是美国喷气推进实验室(JPL)。
他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了数字图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳的位置和月球的环境影响,由计算机成功的绘制出了月球表面地图,获取了巨大的成功。
随后又对探测飞船发回的近万张图片进行了更为复杂的图像处理,由此获得了月球的地形图、彩色图以及全景镶嵌图、获得了非凡的成果为人类登月活动奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。
二、数字图像处理的过程
图像的数字化是通过取样和量化将一个以自然形态存在的图像变换为适于计算机处理的数字形式。
用矩阵的形式来表示图像的各种信息。
图像的编码目的是在不改变图像的质量基础上压缩图像的信息量,以满足传输与存储的要求。
编码多采用数字编码技术对图像逐点的进行加工。
图像增强的目的是将图像转换为更适合人和机器的分析的形式。
常用的增强方法有:灰度等级直方图处理;干扰抵制;边缘锐化;伪彩色处理。
图像复原的目的与图像增强相同,其主要原则是为了消除或减少图像获取和传输过程中造成的图像的损伤和退化,这包括图像的模糊、图像的干扰和噪声等,尽可能的获得原来的真实图像。
无论是图像增强还是图像的复原,都必须对整副图像的所有像素进行运算,出于图像像素的大数量考虑,其运算也十分的巨大。
图像的分割是将图像划分为一些不重叠的区域。
每个区域是像素的一个连续集。
利用图像的纹理特性,通过把像素分入特定的区域并寻求区域之间的边界来实现图像的分割。
图像的分析是从图像中抽取某些有用的度量、数据和信息,以的到某种数值结果。
图像分析用图像分割方法抽取图像的特征然后对图像进行符号化的描述,这种描述不仅能对图像是否存在某一特定的对象进行回答,还能对图像内容进行详细的描述。
图像处理的各个内容是有联系的,一个实用的图像处理系统往往结合了几种图像处理技术才能得到需要的结果,而图像数字化则是讲一个图像变换为适合计算机处理的第一步。
图像编码可用以传播和储存图像。
图像增强和复原可以使图像处理的最后目的也可以为进一步的处理准备。
通过图像分割得出的图像特征也可以作为最终的结果,也同样可以作为进一步图像分析的基础。
三、数字图像处理技术的优点
再现性好:数字图像处理不会应为图像的存储、传输或复制等一
系列动作而导致图像质量的退化。
处理精度高:目前计算机技术的发展使得任何一副模拟图像均可转化为任意大小的栈数组,这就以为着数字化精度可已满足大多数应用的要求。
灵活性高,适用面宽:数字处理不仅能完成线性的运算还能实现非线性的处理,图像可以来自多种信息源。
这就使得数字图像处理技术可以用于各种图像处理的产业中。
四、数字图像处理技术的应用领域
(1)生物医学工程方面。
数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。
除了上面介绍的CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。
此外,在X光肺部图像增晰、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。
(2)通信工程方面当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。
具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。
其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s 以上。
要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。
在一定意义上讲,编码压缩是这些技术成败的关键。
除了已应用较广泛的熵编码、DPCM编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。
(3)工业和工程方面。
在工业和工程领域中图像处理技术有着广泛的应用,如自动装配线中检测零件的质量、并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。
(4)军事公安方面。
在军事方面图像处理和识别主要用于导弹的
精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。
目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。
(5)文化艺术方面。
目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术--计算机美术。
(6)机器人视觉。
机器视觉作为智能机器人的重要感觉器官,主要进行三维景物理解和识别,是目前处于研究之中的开放课题。
机器视觉主要用于军事侦察、危险环境的自主机器人,邮政、医院和家庭服务的智能机器人,装配线工件识别、定位,太空机器人的自动操作等。
(7)视频和多媒体系统。
目前,电视制作系统广泛使用的图像处理、变换、合成,多媒体系统中静止图像和动态图像的采集、压缩、处理、存贮和传输等。
(8)科学可视化。
图像处理和图形学紧密结合,形成了科学研究各个领域新型的研究工具。
(9)电子商务。
在当前呼声甚高的电子商务中,图像处理技术也大有可为,如身份认证、产品防伪、水印技术等。
总之,图像处理技术应用领域相当广泛,已在国家安全、经济发展、日常生活中充当越来越重要的角色,对国计民生的作用不可低估。
五、数字图像处理技术的研究方向
自20世纪60年代第三代数字计算机问世以后,数字图像处理技术出现了空前的发展,在该领域中需要进一步研究的问题主要有如下五个方向:1)在进一步提高精度的同时着重解决处理速度问题;2)加强软件研究,开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法;3)加强边缘学科的研究工作,促进图像处理技术的发展;4)加强理论研究,逐步形成处理科学自身的理论体;5)时刻注意图像处理领域的标准化问题。