正弦和余弦教案
初中正余弦教案

初中正余弦教案一、教学目标1.知识与技能目标:使学生了解正弦和余弦的定义,理解它们在直角三角形中的作用,能够运用正弦和余弦解决实际问题。
2.过程与方法目标:通过观察、实验、推理等方法,培养学生对数学概念的理解和逻辑思维能力。
3.情感与态度目标:激发学生对数学的兴趣,培养学生的探索精神和合作意识。
二、教学内容1.正弦和余弦的定义2.正弦和余弦在直角三角形中的应用3.解决实际问题三、教学重点与难点1.教学重点:正弦和余弦的定义,正弦和余弦在直角三角形中的应用。
2.教学难点:正弦和余弦的推导过程,解决实际问题。
四、教学方法1.采用问题驱动的教学方法,引导学生通过观察、实验、推理等方法,探索正弦和余弦的定义及应用。
2.利用多媒体课件,直观展示正弦和余弦的图形,帮助学生理解概念。
3.开展小组合作活动,培养学生的团队协作能力。
五、教学步骤1.导入新课利用多媒体课件,展示直角三角形的图形,引导学生观察并提出问题:在直角三角形中,如何表示锐角的对边、邻边和斜边的关系?2.探索正弦和余弦的定义引导学生通过实验、观察、推理等方法,探索正弦和余弦的定义,并能够运用它们表示直角三角形中的对边、邻边和斜边的关系。
3.应用正弦和余弦解决实际问题出示一些实际问题,引导学生运用正弦和余弦进行解决,巩固所学知识。
4.课堂小结对本节课的正弦和余弦知识进行总结,强调重点和难点。
5.作业布置布置一些有关正弦和余弦的练习题,巩固所学知识。
六、教学反思本节课通过问题驱动的教学方法,引导学生探索正弦和余弦的定义及应用,利用多媒体课件直观展示图形,帮助学生理解概念。
在教学过程中,注意调动学生的积极性,鼓励学生发表自己的观点,培养学生的团队协作能力。
通过解决实际问题,使学生能够将所学知识应用于实际生活中,感受数学的价值。
在教学过程中,要注意关注学生的学习情况,针对不同学生的特点进行个别辅导,提高教学效果。
同时,要加强对学生的激励和评价,培养学生的自信心和自主学习能力。
正弦定理教案优秀5篇

正弦定理教案优秀5篇《正弦定理、余弦定理》教学设计篇一一、教学内容:本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。
二、教材分析:1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书。
数学必修5》(A 版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。
2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。
三、教学目标:1、知识目标:把握正弦定理,理解证实过程。
2、能力目标:(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
(2)增强学生的协作能力和数学交流能力。
(3)发展学生的创新意识和创新能力。
3、情感态度与价值观:(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。
(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。
四、教学设想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己→←所学知识应用于对任意三角形性质的深入探讨。
让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。
正弦定理和余弦定理的运用教案

正弦定理和余弦定理的运用教案正文:正弦定理和余弦定理的运用教案一、教学目标1. 理解正弦定理和余弦定理的含义和基本公式;2. 掌握正弦定理和余弦定理在解决三角形相关问题中的应用方法;3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、教学重点1. 正弦定理的推导和应用;2. 余弦定理的推导和应用。
三、教学难点1. 正弦定理和余弦定理的理解和记忆;2. 通过具体问题实际运用,使学生深入理解定理的应用方法。
四、教学准备1. 教材:三角函数学科教材;2. 工具:投影仪、黑板、粉笔、直尺、量角器。
五、教学过程Ⅰ. 导入(10分钟)1. 教师简要复习三角比的概念和计算方法;2. 教师引导学生思考:在已知某一角的情况下,如何确定三角形的边长呢?Ⅱ. 正弦定理的推导和应用(20分钟)1. 教师通过投影仪展示正弦定理的基本公式:a/sinA = b/sinB =c/sinC;2. 教师讲解正弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用正弦定理解决问题,并逐步引导学生总结出应用方法。
Ⅲ. 余弦定理的推导和应用(20分钟)1. 教师通过投影仪展示余弦定理的基本公式:c² = a² + b² - 2abcosC;2. 教师讲解余弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用余弦定理解决问题,并逐步引导学生总结出应用方法。
Ⅳ. 正弦定理和余弦定理的综合应用(25分钟)1. 教师给出一些复合问题,要求学生结合正弦定理和余弦定理解决问题;2. 学生分组讨论、解答问题,并在黑板上展示解题过程;3. 教师组织学生展示解题思路和方法,并针对不同解题方法进行及时点评。
Ⅴ. 拓展应用(15分钟)1. 教师布置一些拓展性应用题,要求学生在课后完成;2. 学生自主学习拓展内容,并在下节课讲解时与教师进行互动讨论。
Ⅵ. 总结与作业(10分钟)1. 教师对本节课的要点进行总结,并强调正弦定理和余弦定理的重要性;2. 布置作业:完成课后习题,复习和巩固所学知识。
正弦定理和余弦定理教案设计

正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.3.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高);② S =12absinC =12acsinB =12bcsinA =abc 4R ;③ S =12r(a +b +c)(r 为内切圆半径);④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c).角一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换题型1 正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c.解:由正弦定理,得a sinA =b sinB ,即3sinA =2sin45°,∴ sinA =32.∵ a>b ,∴ A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =bsinC sinB =6+22;当A =120°时,C =180°-45°-120°=15°, c =bsinC sinB =6-22.变式训练 在△ABC 中,(1) 若a =4,B =30°,C =105°,则b =________. (2) 若b =3,c =2,C =45°,则a =________.(3) 若AB =3,BC =6,C =30°,则∠A =________. 答案:(1) 2 2 (2) 无解 (3) 45°或135°解析:(1) 已知两角和一边只有一解,由∠B =30°,∠C =105°,得∠A =45°.由正弦定理,得b =asinB sinA =4sin30°sin45°=2 2.(2) 由正弦定理得sinB =bsinC C =32>1,∴ 无解.(3) 由正弦定理BC sinA =AB sinC ,得6sinA =312,∴ sinA =22.∵ BC>AB ,∴ A>C ,∴ ∠A =45°或135°.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin A cos A =2,sin 2A +cos 2A =1,联立解得sin A =255, 再由正弦定理得a sin A =b sin B ,代入数据解得a =210.答案 255210双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°,由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos Bb,则B 的值为( ).A .30°B .45°C .60°D .90°解析 由正弦定理知:sin A sin A =cos Bsin B,∴sin B =cos B ,∴B =45°.答案 B余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .1.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°.答案 C2.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C 3.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________.解析 ∵a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角.答案 150° 题型2 余弦定理解三角形4 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cosB cosC =-b2a +c.(1) 求角B 的大小;(2) 若b =13,a +c =4,求△ABC 的面积.解:(1) 由余弦定理知:cosB =a 2+c 2-b22ac,cosC =a 2+b 2-c 22ab .将上式代入cosB cosC =-b 2a +c,得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c, 整理得a 2+c 2-b 2=-ac.∴ cosB =a 2+c 2-b 22ac =-ac 2ac =-12.∵ B 为三角形的内角,∴ B =23π.(2) 将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2accosB ,得b 2=(a +c)2-2ac -2accosB ,∴ 13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ ac =3. ∴ S △ABC =12acsinB =334.备选变式(教师专享)5,(2014·南京期末)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3.(1) 若△ABC 的面积等于3,求a 、b ;(2) 若sinC +sin(B -A)=2sin2A ,求△ABC 的面积.解:(1) 由余弦定理及已知条件,得a 2+b 2-ab =4.因为△ABC 的面积等于3,所以12absinC =3,得ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4, 解得a =2,b =2.(2) 由题意得sin(B +A)+sin(B -A)=4sinAcosA ,所以sinBcosA =2sinAcosA.当cosA =0时,A =π2,所以B =π6,所以a =433,b =233.当cosA ≠0时,得sinB =2sinA ,由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a , 解得a =233,b =433.所以△ABC 的面积S =12absinC =233.【训练1】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4,有12=42-bc ,则bc =4,故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例1】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断.解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )],即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cosB sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B ,即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练】 在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C .答案 B【例2】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6,a =433,b =233; 当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因 忽视三角形中“大边对大角”的定理,产生了增根. 实录 由1+2cos(B +C )=0,知cos A =12,∴A =π3,根据正弦定理a sin A =bsin B 得: sin B =b sin A a =22,∴B =π4或3π4. 以下解答过程略.正解 ∵在△ABC 中,cos(B +C )=-cos A ,∴1+2cos(B +C )=1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =bsin B, ∴sin B =b sin A a =22.∵a >b ,∴B =π4,∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A=22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 【试一试】 (2014·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c , a sin A sin B +b cos 2 A =2a . (1)求ba ;(2)若c 2=b 2+3a 2,求B .[尝试解答] (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A . 故sinB =2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =1+3a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.3.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高);② S =12absinC =12acsinB =12bcsinA =abc 4R ;③ S =12r(a +b +c)(r 为内切圆半径);④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c).角一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换题型1 正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c.变式训练 在△ABC 中,(1) 若a =4,B =30°,C =105°,则b =________. (2) 若b =3,c =2,C =45°,则a =________.(3) 若AB =3,BC =6,C =30°,则∠A =________.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =______;a=________.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2 C.1063D .5 62.在△ABC 中,若sin A a =cos Bb,则B 的值为( ).A .30°B .45°C .60°D .90°余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .1.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°2.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 33.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 题型2 余弦定理解三角形4 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cosB cosC =-b2a +c.(1) 求角B 的大小;(2) 若b =13,a +c =4,求△ABC 的面积.备选变式(教师专享)5,(2014·南京期末)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3.(1) 若△ABC 的面积等于3,求a 、b ;(2) 若sinC +sin(B -A)=2sin2A ,求△ABC 的面积.【训练1】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.考向三 利用正、余弦定理判断三角形形状【例1】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. .【训练】 在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形【例2】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.【试一试】 (2014·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c , a sin A sin B +b cos 2 A =2a .实用文档(1)求b a; (2)若c 2=b 2+3a 2,求B .。
江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案一、教学目标1. 让学生掌握正弦定理和余弦定理的定义及表达式。
2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。
3. 引导学生通过观察、分析、归纳和验证等方法,深入理解正弦定理和余弦定理的内在联系。
二、教学内容1. 正弦定理:在三角形中,各边的长度与其对角的正弦值成比例。
2. 余弦定理:在三角形中,各边的平方和等于其他两边平方和与这两边夹角余弦值的乘积的两倍。
三、教学重点与难点1. 教学重点:正弦定理和余弦定理的定义及应用。
2. 教学难点:正弦定理和余弦定理的推导过程及其在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳和验证等方法,探索正弦定理和余弦定理。
2. 利用多媒体课件,直观展示正弦定理和余弦定理的推导过程。
3. 设计具有代表性的例题,讲解正弦定理和余弦定理在解决实际问题中的应用。
4. 组织学生进行小组讨论和探究,提高学生的合作能力和解决问题的能力。
五、教学过程1. 导入新课:通过展示三角形模型,引导学生思考三角形中的几何关系。
2. 探究正弦定理:让学生观察三角形模型,引导学生发现各边长度与对角正弦值的关系,进而总结出正弦定理。
3. 验证正弦定理:让学生运用正弦定理解决具体问题,验证其正确性。
4. 探究余弦定理:引导学生观察三角形模型,发现各边平方和与夹角余弦值的关系,总结出余弦定理。
5. 验证余弦定理:让学生运用余弦定理解决具体问题,验证其正确性。
6. 总结正弦定理和余弦定理:引导学生对比总结两个定理的异同点。
7. 巩固练习:设计具有针对性的练习题,让学生巩固正弦定理和余弦定理的应用。
8. 拓展与应用:引导学生运用正弦定理和余弦定理解决实际问题,提高学生的应用能力。
六、教学评价1. 课堂讲解:评价学生对正弦定理和余弦定理的理解程度,以及运用这两个定理解决问题的能力。
2. 练习题:通过布置练习题,检验学生对正弦定理和余弦定理的掌握情况。
高中数学正余弦定理教案模板(精选7篇)-最新

高中数学正余弦定理教案模板(精选7篇)作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。
下面是的为您带来的7篇《高中数学正余弦定理教案模板》,希望能够对困扰您的问题有一定的启迪作用。
余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。
下面我分别从教材分析。
教学目标的确定。
教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。
平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。
本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。
引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
正弦和余弦教案初中

正弦和余弦教案初中教学目标:1. 了解正弦和余弦的定义及应用。
2. 学会使用正弦和余弦解决实际问题。
3. 培养学生的空间想象能力和逻辑思维能力。
教学重点:1. 正弦和余弦的定义。
2. 正弦和余弦在实际问题中的应用。
教学难点:1. 正弦和余弦的定义及理解。
2. 灵活运用正弦和余弦解决实际问题。
教学准备:1. 教学课件或黑板。
2. 实际问题案例。
教学过程:一、导入(5分钟)1. 引导学生回顾锐角三角函数的概念,复习正切、余切等函数。
2. 提问:同学们,我们已经学习了锐角三角函数中的正切和余切,那么正弦和余弦又是怎样的函数呢?二、新课讲解(20分钟)1. 讲解正弦和余弦的定义:正弦:在直角三角形中,锐角的对边与斜边的比值称为正弦。
余弦:在直角三角形中,锐角的邻边与斜边的比值称为余弦。
2. 举例说明正弦和余弦的运用:问题1:在直角三角形中,若一个锐角的正弦值为0.5,求这个角的度数。
问题2:在直角三角形中,若一个锐角的余弦值为0.6,求这个角的度数。
3. 引导学生观察、分析问题,总结正弦和余弦的性质。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固正弦和余弦的概念。
四、拓展与应用(10分钟)1. 出示实际问题案例,让学生运用正弦和余弦解决实际问题。
案例1:一根绳子以一定的角度抛出,求绳子落地时的长度。
案例2:一个货物通过斜面滑下,求货物滑到斜面底部的速度。
2. 引导学生分组讨论,合作解决问题。
五、课堂小结(5分钟)1. 回顾本节课所学内容,总结正弦和余弦的定义及应用。
2. 强调正弦和余弦在实际问题中的重要性。
教学反思:本节课通过讲解、练习、实际问题解决等方式,使学生掌握了正弦和余弦的概念及应用。
在教学过程中,注意引导学生观察、分析问题,培养学生的空间想象能力和逻辑思维能力。
同时,通过实际问题案例,让学生感受到数学与生活的紧密联系,提高学生的学习兴趣。
但在课堂练习环节,可以增加一些具有挑战性的题目,让学生更好地巩固所学知识。
《三角形的正弦、余弦、正切公式》教案

《三角形的正弦、余弦、正切公式》教案一、教学目标1. 了解三角形的正弦、余弦和正切的定义和性质。
2. 学会运用三角形的正弦、余弦和正切公式解决实际问题。
二、教学内容1. 三角形的正弦公式:$$\sin A = \frac{a}{c}$$其中,$$A$$ 为角$$A$$ 的正弦值,$$a$$ 为对边的长度,$$c$$ 为斜边的长度。
2. 三角形的余弦公式:$$\cos A = \frac{b}{c}$$其中,$$A$$ 为角$$A$$ 的余弦值,$$b$$ 为临边的长度,$$c$$ 为斜边的长度。
3. 三角形的正切公式:$$\tan A = \frac{a}{b}$$其中,$$A$$ 为角$$A$$ 的正切值,$$a$$ 为对边的长度,$$b$$ 为临边的长度。
三、教学步骤1. 引入三角形的定义和性质。
2. 介绍三角形的正弦、余弦和正切的概念,并阐述其公式。
3. 给出几个例题,让学生通过应用三角形的正弦、余弦和正切公式解答问题。
4. 对学生的答题进行评价和讲解。
5. 练与巩固:布置一些练题,让学生自主练和巩固所学内容。
6. 拓展与应用:让学生思考和讨论更复杂的实际问题,如利用三角形的正弦、余弦和正切解决航空、测量等问题。
四、教学评价1. 观察学生在课堂上的参与和表现。
2. 批改练题和作业,评价学生的掌握程度。
3. 针对学生存在的问题进行个别辅导和指导。
五、教学资源1. 教材:三角学教材。
2. 练题目。
3. 教学投影仪等教学设备。
六、教学反思1. 需要提前准备充足的例题和练题,以便学生能够更好地理解和应用三角形的正弦、余弦和正切公式。
2. 注意引导学生将公式与实际问题联系起来,培养学生的应用能力。
3. 帮助学生理解公式的推导过程,增强对三角形性质的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦和余弦教案
教案标题:正弦和余弦教案
教案目标:
1. 理解正弦和余弦的概念,并能够在数学问题中应用。
2. 掌握正弦和余弦的基本性质,包括周期、幅值、相位等。
3. 能够通过图像和公式表示正弦和余弦函数。
4. 运用正弦和余弦函数解决实际问题。
教学资源:
1. 教科书和课本
2. 白板/黑板和彩色粉笔/白板笔
3. 计算器
4. 幻灯片或投影仪(可选)
教学步骤:
引入(5分钟):
1. 创造一个引人入胜的问题,例如:“你是否曾经观察到日出或日落时天空中出现的一些规律性变化?”
2. 引导学生思考这些变化可能与数学中的正弦和余弦函数有什么关系。
概念讲解(15分钟):
1. 通过简单的图像和实例向学生介绍正弦和余弦函数的概念。
2. 解释正弦和余弦函数的周期性、幅值和相位的含义。
3. 强调正弦函数与余弦函数之间的关系。
公式推导(15分钟):
1. 利用三角形和单位圆的概念,推导出正弦和余弦函数的公式。
2. 通过具体的数值示例,帮助学生理解公式中各个参数的含义。
图像展示(15分钟):
1. 利用白板/黑板或幻灯片展示正弦和余弦函数的图像。
2. 解释图像中的周期、幅值和相位等特征。
3. 引导学生观察图像中的规律,并与概念进行对应。
练习与应用(20分钟):
1. 分发练习题,让学生通过计算和图像分析来解决问题。
2. 引导学生将正弦和余弦函数应用于实际问题,例如测量物体的运动、声音的
振动等。
总结(5分钟):
1. 回顾正弦和余弦函数的概念和性质。
2. 强调学生在解决数学问题和实际应用中的重要性。
3. 鼓励学生继续探索和应用正弦和余弦函数。
作业:
1. 布置相关的练习题,巩固学生对正弦和余弦函数的理解和应用能力。
2. 鼓励学生自主查找更多关于正弦和余弦函数的实际应用,并写下自己的思考
和观察。
教学扩展:
1. 鼓励学生通过互动讨论和小组合作等方式,探索更多正弦和余弦函数的性质
和应用。
2. 引导学生使用计算器或数学软件绘制正弦和余弦函数的图像,并观察其变化。
3. 鼓励学生研究更高级的三角函数,如正切、余切等,并探索它们的应用。
注:以上教案仅供参考,具体教学内容和步骤可根据实际教学情况和学生水平进行调整。