直方图 知识讲解
直方图有关知识点总结高中

直方图有关知识点总结高中一、直方图的定义直方图是一种用于展示数据分布的图形,通常用矩形条形表示不同类别的频数或频率。
在直方图中,横轴代表数据的类别或范围,纵轴代表频数或频率。
每个矩形条的高度代表相应类别的频数或频率,宽度表示类别的间距。
二、直方图的特点1. 表示数据分布:直方图常用来展示数据的分布情况,能够直观地显示数据的集中程度、偏态和离散程度。
2. 用于连续变量:直方图适合表示连续型数据的分布情况,比如身高、体重等数据。
3. 可以比较不同类别:直方图可以用来比较不同类别的数据分布情况,从而进行对比分析。
4. 易于理解:直方图是一种直观的图形表示方法,能够让人们快速理解数据的分布情况。
三、直方图的绘制步骤1. 确定类别:根据数据的特点,确定合适的类别范围。
2. 计算频数或频率:根据类别范围,统计每个类别内的数据个数或频率。
3. 绘制直方图:将每个类别的频数或频率用矩形条表示在坐标系中,横轴表示类别范围,纵轴表示频数或频率。
4. 添加标题和标签:为直方图添加标题和坐标标签,以说明图表的含义。
四、直方图的应用1. 数据分析:直方图是一种常用的数据分析工具,可以用来发现数据的分布特点,如集中程度、偏态和离散程度。
2. 决策支持:直方图能够直观地展示数据的分布情况,帮助决策者做出合理的决策。
3. 教学辅助:直方图可以用于教学中的数据可视化和统计学习,帮助学生更好地理解数据分布的特点。
五、直方图的注意事项1. 类别选择:类别的选择应适当,过多或过少的类别都会影响直方图的解读。
2. 纵轴标尺:纵轴的标尺必须清晰明了,避免模糊或不准确的标示。
3. 图形比例:直方图的比例必须合适,避免过大或过小的矩形条影响图形的解读。
4. 数据真实性:直方图所展示的数据必须真实可靠,不能出现造假或误导性的数据。
六、直方图的衍生类型1. 累积频数直方图:将每个类别的频数依次叠加得到的直方图,用于展示数据的累积分布情况。
2. 相对频率直方图:将每个类别的频数除以总频数得到的直方图,用于展示数据的相对分布情况。
QC七大手法-直方图

QC七大手法-直方图一、什么是QC七大手法QC(Quality Control)七大手法是一种常用于解决质量问题和提高产品质量的方法。
它包含了七种常用的统计学手法,分别是:直方图、控制图、散点图、因果图、帕累托图、箱线图和流程图。
这些手法可以帮助我们分析和解决质量问题,以达到质量改进的目的。
本文将重点介绍其中一种手法——直方图。
二、直方图的基本概念直方图是一种用于显示数据分布情况的图表。
它通过将数据划分为一系列间隔,然后统计每个间隔内数据出现的频率,最终通过矩形条来呈现数据的分布情况。
直方图通常用于展示连续变量或离散变量的频率分布,可以帮助我们了解数据的分布规律和集中趋势。
三、绘制直方图的步骤1. 数据收集首先,我们需要收集相关的数据。
这些数据可以是产品的尺寸数据、质量数据或其他与质量有关的数据。
2. 数据整理在绘制直方图之前,我们需要对数据进行整理和分类。
将数据按照一定的规则进行分组,并记录每组数据的频数。
3. 确定间隔和组数在进行数据分组时,我们需要确定数据的间隔和组数。
间隔一般是根据数据的最大值和最小值来确定的,组数可以根据实际情况进行调整。
4. 绘制直方图绘制直方图可以使用各类数据分析软件、编程语言或绘图工具。
在绘图时,我们需要将每组数据的频数表示为相应的矩形条,并将矩形条按照一定的间隔排列。
5. 添加标题和注解为了使直方图更具可读性,我们可以添加标题和注解。
标题可以简要描述直方图的目的和内容,注解可以解释数据的分布情况和统计指标。
6. 分析直方图通过观察直方图,我们可以了解数据的分布情况和集中趋势。
例如,我们可以通过直方图来判断数据是正态分布、偏态分布还是离散分布。
同时,我们还可以通过直方图来确定数据的中位数、均值和标准差等统计指标。
四、直方图在QC中的应用直方图在QC中有广泛的应用,可以帮助我们分析和解决质量问题。
以下是直方图在QC中的一些常见应用场景:1. 检测质量问题通过绘制产品尺寸、质量或其他相关数据的直方图,我们可以快速发现质量问题。
直方图知识培训

04
如何制作有效的直方图
选择合适的分组数量
总结词
分组数量对直方图的展示效果至关重要。
详细描述
分组数量过少会导致数据分布过于粗糙,无法准确反映数据的分布情况;分组数量过多则会使数据展示过于复杂, 难以直观地理解数据分布。因此,需要根据数据量的大小和数据的分布情况,选择合适的分组数量,以使直方图 能够准确、清晰地展示数据分布。
直方图知识培训
ቤተ መጻሕፍቲ ባይዱ
目录
• 直方图基础知识 • 直方图的应用场景 • 直方图解读技巧 • 如何制作有效的直方图 • 直方图与其他统计图的比较 • 直方图常见问题解答
01
直方图基础知识
直方图定义
总结词
直方图是一种用于表示数据分布的图形,它将数据分成若干 个区间,并用矩形的面积来表示每个区间内数据的数量。
判断数据分布
数据分布定义
数据分布是指数据在不同取值区 间或范围内的分布情况,可以通
过直方图来直观地展示。
分布类型判断
通过观察直方图的柱状高度和宽度, 可以判断数据的分布类型,如正态 分布、偏态分布、离群分布等。
分布特征分析
根据数据分布的特征,可以对数据 的整体趋势、离散程度、偏态情况 等进行深入分析,为后续的数据处 理和分析提供依据。
检测、预测分析等工作。
直方图的绘制方法
要点一
总结词
直方图的绘制方法包括确定数据范围、选择合适的分组数 量和组距、计算每个区间的数据点数或比例、绘制矩形条 等步骤。
要点二
详细描述
绘制直方图需要先确定数据的范围和范围,然后选择合适 的分组数量和组距,将数据分成若干个区间。接下来,计 算每个区间内的数据点数或所占比例,并根据这些数值绘 制矩形条。最后,按照数据值的递增或递减顺序排列矩形 条,形成一个完整的直方图。在绘制过程中,需要注意选 择合适的颜色和标签,使图形更加清晰易读。
七年级的直方图知识点归纳

七年级的直方图知识点归纳一、什么是直方图直方图是一种用图形的形式展现数据分布情况的工具。
它将数据按照一定间隔划分成若干组,然后统计每组的数据个数,最后将数据个数用柱状图的形式表示出来。
直方图通常用于统计分析,可帮助我们更好地理解和描述数据。
二、直方图的构成直方图主要由以下几个部分构成:1. 坐标轴:直方图通常有两个坐标轴,横轴代表数据分组,纵轴代表数据个数。
2. 数据分组区间:数据被分为了若干组,每组数据的范围就是一个数据分组区间,可以等距划分或不等距划分。
3. 柱状图:柱状图是直方图的主体部分,它由若干矩形组成,每个矩形的高度代表数据分组中数据个数的频数。
4. 标题和标签:直方图还需要一个具有表达力的标题和标签,可以让读者更好地理解数据集。
三、直方图的应用1. 描述性统计:直方图可以用来描述数据的分布情况,如平均值、中位数、众数、分位数等。
2. 诊断分布形态:直方图可以用来诊断数据的分布形态,如对称性、峰态和偏态等。
3. 比较分组数据:直方图可以用来比较不同组数据集的分布情况,如两种不同的花的高度分布情况。
4. 发现异常值:直方图可以用来发现异常值,如某一组数据的频数明显高于其它组。
四、练习题1. 某班学生的考试成绩如下图所示,求中位数、众数、四分位数、离散值和分布形态。
(插入一张直方图图片)答案:中位数:80 分众数:80 分四分位数:Q1=70 分,Q3=90 分离散值:偏态,左侧数据较密集,右侧数据较稀疏分布形态:偏态分布2. 某商场销售额如下图所示,求出销售最高的一天和最低的一天。
(插入一张直方图图片)答案:销售最高的一天:星期五销售最低的一天:星期二五、总结直方图是一种重要的数据分析工具,可以用来描述和分析数据分布情况,常用于统计、经济学、社会学及计算机科学等领域。
希望同学们能够认真掌握直方图的知识点,合理地使用直方图工具进行数据分析。
直方图有关知识点总结归纳

直方图有关知识点总结归纳一、直方图的基本概念1. 直方图的定义直方图是一种以长方形条表示数据频数分布的图形,它将数据按照不同的取值范围分组,并用矩形的高度来表示每个组别的频数,通常横轴表示数据取值范围,纵轴表示频数或频率。
2. 直方图的用途直方图主要用于展示数据的分布情况和频数分布,可以直观地反映出数据的特征。
通过观察直方图,可以了解数据的中心趋势、离散程度等重要信息,对数据的分析和解释具有重要意义。
3. 直方图与柱状图的区别直方图和柱状图都是用长方形条表示数据,但它们之间有一些明显的区别。
直方图用于展示连续变量的频数分布,通常没有间隔,而柱状图则用于展示分类变量的数据,通常有间隔。
二、直方图的绘制方法1. 数据分组绘制直方图之前,首先需要对数据进行分组处理。
一般来说,直方图的分组方式有简单随意分组、等宽分组和等频分组等方法,根据不同数据的分布情况选择合适的分组方式。
2. 绘制坐标轴在绘制直方图时,需要绘制横轴和纵轴,横轴通常表示数据的取值范围,纵轴表示频数或频率。
在绘制时需注意选择合适的刻度和轴标签,使得图形清晰易懂。
3. 绘制长方形条根据数据分组的结果,按照每个组别的频数或频率,在对应的位置上绘制长方形条,长方形条的高度代表了该组别的频数或频率。
4. 添加标题和标签最后,需要添加标题和标签,说明直方图的含义和数据的来源,使得图形更加完整和明了。
三、直方图的特点1. 易于理解直方图通过直观的图形展示了数据的分布情况,能够直观地反映出数据的特征,便于人们理解和分析数据。
2. 反映数据分布直方图能够清晰地展示数据的分布情况,包括数据的中心趋势、离散程度等重要信息,有助于人们对数据的特征有更深入的了解。
3. 对比不同组别直方图可以直接对比不同组别的频数或频率,帮助人们了解不同组别之间的差异和相似之处。
4. 难以变换直方图通常用于展示分布情况,不易对数据进行变换,因此在选择分组方式和绘制时需谨慎考虑。
七年级下册直方图知识点

七年级下册直方图知识点直方图是数学中常用的统计工具,可以用于分析一组数据的分布情况。
在七年级下册数学学习中,直方图是一个重要的知识点。
本文将详细介绍直方图的定义、制作方法、读取方法以及应用场景等内容,帮助同学们更好地掌握这一知识点。
一、直方图的定义直方图是用矩形表示数据分布情况的图表。
它的横轴表示数据的取值范围,纵轴表示数据的数量或频率。
每个矩形的宽度相等,高度表示对应数据的数量或频率。
可以用直方图来反映数据的集中趋势、离散程度等统计特征。
二、制作直方图的方法制作直方图有以下几个步骤:1. 确定数据的取值范围。
2. 将取值范围分成若干个区间。
3. 统计每个区间内数据的数量或频率。
4. 使用矩形表示每个区间内数据的数量或频率,矩形的宽度相等。
5. 在纵轴上标出矩形的高度。
6. 用垂直于横轴的线分割每个矩形,使每个矩形更加清晰。
三、读取直方图的方法读取直方图需要注意以下几点:1. 读取横轴上的刻度,确定数据的取值范围。
2. 读取纵轴上的刻度,确定数据的数量或频率。
3. 读取每个矩形的高度,分析数据在不同区间内的数量或频率。
4. 比较不同矩形的高度,分析数据在不同区间内的分布情况。
四、直方图的应用场景直方图可以用于分析各种数据分布情况,包括以下几个方面:1. 分析一个样本的分布情况,掌握数据的集中趋势、离散程度等统计特征。
2. 比较不同样本的分布情况,找出它们之间的相似和不同之处。
3. 检验数据是否符合正态分布,为之后的数据处理和分析提供基础。
4. 预测未来数据的分布情况,辅助做出合理的决策。
五、总结直方图是一种重要的统计工具,具有广泛的应用场景。
同学们在学习中应该注重理解和掌握直方图的定义、制作方法、读取方法以及应用场景等内容,为今后的数学学习和实际应用打下坚实的基础。
直方图详解

直方图详解一、直方图法的涵义在质量管理中,如何预测并监控产品质量状况?如何对质量波动进行分析?直方圆就是一目了然地把这些问题图表化处理的工具。
它通过对收集到的貌似无序的数据进行处理,来反映产品质量的分布情况,判断和预测产品质量及不合格率。
直方图又称质量分布图,是一种几何形图表,它是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方型矩形图,如下图所示。
作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。
具体来说,作直方图的目的有:①判断一批已加工完毕的产品;②验证工序的稳定性;③为计算工序能力搜集有关数据。
二、直方图的绘制方法①集中和记录数据,求出其最大值和最小值。
数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。
②将数据分成若干组,并做好记号。
分组的数量在6-20之间较为适宜。
③计算组距的宽度。
用组数去除最大值和最小值之差,求出组距的宽度。
④计算各组的界限位。
各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去组距的一半,第一组的上界为其下界值加上组距。
第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。
⑤统计各组数据出现频数,作频数分布表。
⑥作直方图。
以组距为底长,以频数为高,作各组的矩形图。
三、使用直方图来观察和分析生产过程的质量状况作直方图是的目的是为了研究产品质量的分布状况,据此判断生产过程是否处在正常状态。
因此在画出直方图后要进一步对它进行观察和分析。
在正常生产条件下,如果所得到的宣方图不是标准形状,或者虽是标准形状,但其分布范围不合理,就要分析其原因,采取相应措施。
(1)通过直方图判断生产过程是否有异常。
对直方图有些参差不齐不必太注意,主要应着服于图形的整个形状。
常见的直方固分布图形大体上有六种,如下图所示。
①理想的图形;②多是因为测量和读数有问题或是数据分组不当所引起的;③多是因加工习惯造成的;④多是加工条件的变动造成的;⑤多是两种不同生产条件的数据混在一起造成的;⑥多是由于生产过程中某种缓慢的倾向起作用所至。
图像直方图知识点总结

图像直方图知识点总结1. 直方图的概念直方图是一种统计图形,是将图像中各个灰度级别的像素数量统计出来后,以灰度级别为横坐标,像素数量为纵坐标绘制成的图形。
直方图能够直观地展示图像中像素的分布情况,可以反映图像亮度的均匀性、对比度等信息。
通过直方图,我们可以了解到图像中的主要亮度分布情况,并据此进行图像的处理。
2. 直方图的特性直方图主要包括以下几个特性:(1)灰度级别:直方图横坐标表示了图像的灰度级别,通常在0-255之间,其中0表示最暗的像素,255表示最亮的像素。
(2)像素数量:直方图纵坐标表示了该灰度级别下的像素数量,能够反映出图像中各个灰度级别的像素分布情况。
(3)峰值:直方图中的峰值表示了图像中主要的亮度分布情况,峰值越高则表示该亮度级别下的像素越多。
(4)对比度:直方图的分布情况能够反映出图像的对比度,对比度越大则直方图中的峰值越明显。
3. 直方图的应用直方图在图像处理中有着广泛的应用,主要包括以下几个方面:(1)图像增强:通过对直方图进行均衡化等处理,可以增强图像的对比度,使图像更加清晰。
(2)图像分割:通过直方图可以找到图像中不同区域的亮度分布情况,从而进行图像的分割处理。
(3)图像压缩:通过对直方图进行统计分析,可以找到图像中重复出现的像素,从而进行有效的图像压缩。
(4)图像识别:通过对直方图进行特征提取,可以对图像进行识别和分类。
4. 直方图均衡化直方图均衡化是一种常用的图像增强方法,通过对图像的直方图进行调整,使得图像的像素分布更加均匀,提高了图像的对比度和视觉效果。
直方图均衡化主要包括以下几个步骤:(1)计算灰度频率:首先需要统计图像中各个灰度级别的频率,得到原始直方图。
(2)计算累积频率:对原始直方图进行累积求和等处理,得到各个灰度级别的累积频率。
(3)灰度映射:根据累积频率进行灰度级别的映射,得到新的直方图。
(4)图像重构:根据新的直方图对图像像素进行重构,得到均衡化后的图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直方图知识讲解
【学习目标】
1. 会制作频数分布表,理解频数分布表的意义和作用;
2. 会画频数分布直方图,理解频数分布直方图的意义和作用.
【要点梳理】
要点一、组距、频数与频数分布表的概念
1.组距:每个小组的两个端点之间的距离(组内数据的取值范围).
2.频数:落在各小组内数据的个数.
3.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.
要点诠释:
(1)求频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;
③确定分点;④列频数分布表;
(2)频数之和等于样本容量.
(3)频数分布表能清楚、确切地反映一组数据的大小分布情况,将一批数据分组,一般数据越多,分的组也越多,当数据在100个以内时,按数据的多少,常分成5~12组,在分组
时,要灵活确定组距,使所分组数合适,一般组数为最大值-最小值
组距
的整数部分+1.
要点二、频数分布直方图
1.频数分布直方图:是以小长方形的面积来反映数据落在各个小组内的频数的大小,直方图由横轴、纵轴、条形图三部分组成.
(1)横轴:直方图的横轴表示分组的情况(数据分组);
(2)纵轴:直方图的纵轴表示频数;
(3)条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形、底边长是这个组的组距,高为频数.
2.作直方图的步骤:
(1)计算最大值与最小值的差;
(2)决定组距与组数;
(3)列频数分布表;
(4)画频数分布直方图.
要点诠释:(1)频数分布直方图简称直方图,它是条形统计图的一种.
(2)频数分布直方图用小长方形的面积来表示各组的频数分布,对于等距分组的数据,可以用小长方形的高直接表示频数的分布.
3.直方图和条形图的联系与区别:
(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;
(2)区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数.
要点三、频数分布折线图
频数分布折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数分布折线图.
【典型例题】
类型一、组距、频数与频数分布表的概念
1. (1)对某班50名学生的数学成绩进行统计,90~99分的人数有10名,这一分数段的频数为_____.
(2)有60个数据,其中最小值为140,最大值为186,若取组距为5,则应该分的组数是________.
【答案】(1)10 (2)10.
【解析】
解:(1)利用频数的定义进行分析;(2)利用组数的计算方法求解.
【总结升华】组数的确定方法是,设数据总数目为n,一般地,当n≤50时,则分为5~8组;当50≤n<100.则分为8~12组较为合适,组数等于最大值与最小值的差除以组距所得商的整数部分加1.
举一反三:
【变式】有一个样本容量为20的样本,其数据如下:29,42,58,37,53,52,49,24,37,
解:如下表:
类型二、频数分布表或直方图
2.某地区对其所属中学八年级的英语教学情况进行期末质量调查,从中抽出的20个班级的英语期末平均成绩如下(单位:分):
80 81 83 79 64 76 80 66 70 72
71 68 69 78 67 80 68 72 70 65
试列出频数分布表并绘出频数分布直方图.
【思路点拨】按照作直方图的四个步骤进行解答.解答时,应注意每个步骤中需要注意的事
项.
【答案与解析】
解:(1)计算最大值与最小值的差:83-64=19(分).
(2)决定组距与组数:
若取组距为4分,则有19
4
≈5,所以组数为5.
(3)列频数分布表:
(4)画出频数分布直方图.如图所示.
【总结升华】按步骤进行操作.因选取的组距不同,所列的频数分布表及直方图也不一样,在统计时,数据不能出现重复或遗漏的现象.
【高清课堂:数据的描述369923 例1】
举一反三:
【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().
A.100,55% B.100,80% C.75,55% D.75,80%
【答案】B.
类型三、频数分布折线图
3.抽样检查40个工件的长度,收集到如下一组数据(单位:cm):
23.26 23.27 23.52 23.51 23.43 23.42 23.54 23.55 23.66
23.67 23.31 23.30 23.27 23.28 23.41 23.40 23.55 23.56
23.44 23.43 23.38 23.39 23.63 23.64 23.54 23.56 23.46
23.44 23.48 23.46 23.50 23.53 23.55 23.46 23.44 23.45
23.47 23.49 23.50 23.46
试列出这组数据的频数分布表.画出频数分布直方图和频数折线圈.
【思路点拨】利用频数分布直方图画频数折线图时,折线图的两个端点要与横轴相交,其方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到轴两端假想组的组中点,就形成了频数折线图.
【答案与解析】
解:列频数分布表如下:
根据上表,画出频数分布直方图;连接各小长方形上面一条边的中点及横轴上距直方图左右相距半个组距的两个频数为0的点得到频数折线图(如图所示).
【总结升华】本例分组采用了“每组端点比数据多一位小数”,即第一组的起点比数据的最小值再小一点的方法.体会这种分组方法的优势,对我们今后的学习很有帮助.
类型四、综合应用
4. 低碳发展是今年深圳市政府工作报告提出的发展理念,近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动,根据调查数据制作了频数分布直方图(每组均含最小值,不含有最大值)和扇形统计图,下图中从左到右各长方形的高度之比为2:8:9:7:3:1.
(1)已知碳排放值5≤x<7(千克/平方米·月)的单位有16个,则此次行动共调查了________个单位;
(2)在图②中,碳排放值5≤x<7(千克/平方米·月)部分的圆心角为_________度;
(3)小明把图①中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,依此类推,若每个被检查单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为________吨.
【思路点拨】
(1)先算出碳排放值在5≤x<7范围内所对应的比例,再求一共调查了多少个单位;
(2)由碳排放值在5≤x<7范围内所占的比例,可计算出圆心角度数;
(3)先计算碳排放值4≤x<5的单位、碳排放值5≤x<6的单位,碳排放值6≤x<7的单位个数,再算出碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值.
【答案与解析】
解:(1)16÷4
30
=120(个),故填120;
(2)4÷30×360°=48°,故填48;
(3)碳排放值x≥4(千克/平方米·月)的被检单位是第4,5,6组,分别有28个、12个、4个单位,10000×(28×4.5+12×5.5+4×6.5)÷1000=10×(126+66+26)=2180(吨).所以,碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为2180吨.【总结升华】解答本题的关键是将直方图提供的信息转化为频数分布表.这种“转化”过程对解题大有帮助,值得学习和借鉴.
举一反三:
【变式】 (山东德州)2011年5月9日至14日,德州市订共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A 、B 、C 、D 表示)四个等级进行统计,并绘制成下面的扇形图和统计表:
请你根据以上图表提供的信息,解答下列问题:
(1)m =________,n =________,x =________,y =________; (2)在扇形图中,C 等级所对应的圆心角是________度;
(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人? 【答案】
解:(1)20,8,0.4,0.16; (2)57.6;
(3)由上表可知达到优秀和良好的共有19+20=39(人),500×39
39050
(人).。