频率分布直方图优质课教案
〖2021年整理〗《春精品5.2 频数直方图》优秀教案

《频数直方图》精品教案课题频数直方图单元 5 学科数学年级八学习目标情感态度和价值观目标通过本课学习使学生在具体情境中感受统计图表与现实生活的密切联系,体会数据分析在解决实际问题中的作用能力目标通过对频数分布表和直方图特征探究学习活动,培养学生的观察、分析与读图能力,树立正确的统计思想知识目标认识频数分布表和直方图的特点和现实意义,了解组数、组距和频数布表的概念,能够读出频数分布表和直方图中所包含的信息重点列频率分布表和作频率分布直方图难点确定组距与组数和决定分点学法自主探究,合作交流教法多媒体,问题引领教学过程教学环节教师活动学生活动设计意图导入新课师:我们在听新闻的时候经常会听到这么一个词‘居民消费水平’,它,是一个反映居民家庭一般所购买的消费商品和服务价格水平变动情况的宏观经济指标学生思考问题,老师的提示引出本节课的内容通过日常生活中的信息来激发学生学习的兴趣讲授新课出示课件为了了解居民的消费水平,调查组在某社区随机调查某宿舍30户家庭6月份饮食消费的情况,数据如下表所示:学生通过分析表师:如何更直观地了解这30户家庭6月份饮食消费的分布情况呢?师:由于上述数据较多,且分布比较零散,我们需要把这些数据进行必要的归纳和整理,先进行适当分组,并借助表格将各组的频数进行统计整理,以便分析这组数据的分布规律师:同学们想一想究竟分几组比较合适呢?生:原则上100个数以内分为5~12组较为恰当,且组数一定为正整数师:组数的多少由什么决定?生:组数的多少由组距决定,组距越大组数越少,组距越小组数越多师:我们来一起看看,怎样对数据分组整理(1)分组①确定最小值m和最大值M②确定组距和组数师:什么是组距?生:把所有数据分成若干组,每个小组的两个端点数据之间的距离称为组距师:为了分组的方便,我们取略小于m 的数作为第一组的下限,例如取72021取略大于M的数作为最后一组的上限,例如取960 然后将72021960 分成若干组,假定每40元为一组(即取组距为40元),则可分为几组?学生研究30户家庭6月份饮食消费分布表,然后总结师生共同总结格,找出问题的答案,激发学生的强烈的好奇心和求知欲。
频数分布直方图的说课稿

频数分布直方图的说课稿频数分布直方图的说课稿1教学目标1、了解频数分布直方图的概念2、会读频数分布直方图。
3、会画频数分布直方图。
重点和难点本节教学的重点是频数分布直方图。
画频数分布直方图过程比较简单,是本节教学的一个难点。
教学过程一、引入新课引例:你能依据如图统计图说出有关被抽查的40张碟片播放时间的三条信息吗?请同学们小组争论然后给出结论在得到了数据的频率分布表的基础上,我们还经常需要用统计图把它直观地表示出来。
用来表示频数分布的基本统计图叫做频数分布直方图。
由此引出课题。
二、讲授新课由引例归纳出频数分布直方图概念:一般地,用来表示频数分布的基本统计图叫做频数分布直方图。
三、例题讲解例1抽查20名同学每分脉搏跳动次数,获得如下数据(单位:次)81,73,77,79,80,78,85,80,68,9080,89,82,81,84,72,83,77,79,75。
请制作表示上述数据的频数分布直方图。
分析:老师可引导同学自己完成1、确定组距、组数、组界。
2、组中值的意义和作用。
解:(1)列出频数分布表,为便利起见,我们也给出组中值的数据20名同学每分脉搏跳动次数的频数分布直方图表组别(秒)组中值频数67.5~72.570272.5~77.575477.5~82.580982.5~87.585387.5~92.5902(2)分别以横轴上每组别两边界点为端点的线段为底边,作高为相应频数的矩形,就得到所求的频数分布直方图。
注:为了使图形清楚美观,频数分布直方图的横轴上可只标出组中值,不标出组界。
2、随堂练习:P57课内练习四、辨析频数分布直方图与一般条形统计图的区分。
频数分布直方图是经过把数据分组,列频数分布表得到的.,数据分组必需连续,因些各个长方形的竖边依次相邻。
这是一般条形统计图不要求的。
五、合作学习课本P56留意:在讲解时,要让同学分析各组中的组界值是多少?怎么样求?六、课堂小结通过本节课的学习,让同学谈谈与体会七、布置作业必做题:课本“作业题”第1、2题;选做题:课本“作业题”第3、4题。
频数分布图与直方图教案

频数分布图与直方图教案教案标题:频数分布图与直方图教案一、教学目标:1. 了解频数分布图和直方图的定义和作用;2. 能够根据给定数据绘制频数分布图和直方图;3. 掌握如何解读频数分布图和直方图。
二、教学准备:1. 教学工具:黑板、白板、投影仪;2. 学生用品:纸张、铅笔、直尺;3. 教学资源:相关数据表格。
三、教学过程:步骤一:导入1. 介绍频数分布图和直方图的概念,并提出学生可能已经接触过的相关内容;2. 引导学生思考频数分布图和直方图在统计学中的重要性和作用。
步骤二:讲解1. 解释频数分布图和直方图的定义,频数分布图是以数据值为横轴、频数为纵轴的统计图形,直方图是将数据分成若干等距的组并表示各组频数的图形;2. 清晰说明频数分布图和直方图的绘制步骤和技巧,如数据的分组、确定组距等。
步骤三:示范1. 通过简单的实例展示绘制频数分布图和直方图的过程;2. 鼓励学生积极参与,并在黑板上协助绘制示范图。
步骤四:练习1. 提供一组数据,要求学生按照所学方法绘制频数分布图和直方图;2. 学生完成后互相交流和比较结果,讨论可能存在的差异并解释原因。
步骤五:解读与讨论1. 引导学生解读频数分布图和直方图,分析其特征和意义;2. 提出一些问题,让学生根据图形进行分析和推理,如找出众数、判断数据的分布趋势等。
步骤六:拓展与应用1. 给出多个数据集,要求学生根据问题绘制相应的频数分布图和直方图;2. 学生可以选择自己感兴趣的主题,收集相关数据进行图形展示和分析。
四、教学总结:1. 综合总结频数分布图和直方图的定义、绘制步骤和解读方法;2. 强调学生在实际生活和学习中使用频数分布图和直方图的重要性;3. 鼓励学生继续提高绘制和解读频数分布图和直方图的能力。
五、教学延伸:1. 鼓励学生使用电子表格软件进行数据处理和图形绘制;2. 引导学生学习其他统计图表,如饼图、折线图等;3. 提供更多实际问题,引导学生将统计图形应用于解决问题。
频率分布直方图教案职中

频率分布直方图教案职中教案标题:频率分布直方图教案 - 职业中学教学目标:1. 学生能够理解频率分布直方图的概念和作用。
2. 学生能够收集和整理数据,并绘制频率分布直方图。
3. 学生能够分析和解释频率分布直方图,提取有关数据的信息。
教学准备:1. 计算器或电脑上的统计软件。
2. 学生练习册和纸张。
3. 数据收集表格。
教学过程:引入活动:1. 向学生解释频率分布直方图的概念,说明它是一种用于表示数据分布情况的图形。
2. 引导学生思考频率分布直方图的作用,例如帮助我们了解数据的集中趋势和变化范围。
数据收集和整理:1. 分发数据收集表格,并要求学生在表格中记录一组数据,例如学生的身高、体重或成绩等。
2. 学生完成数据收集后,引导他们将数据按照一定的间隔进行分组,并计算每个组的频数。
3. 学生整理数据后,引导他们计算每个组的频率,并填写在表格中。
绘制频率分布直方图:1. 引导学生绘制频率分布直方图的坐标轴,横轴表示数据的范围,纵轴表示频率。
2. 根据数据的分组和频率,学生绘制相应的矩形条,每个矩形条的高度表示该组的频率。
3. 学生完成直方图的绘制后,引导他们添加适当的标题和标签,以便清晰地表示数据。
分析和解释直方图:1. 引导学生观察直方图,提取有关数据的信息,例如数据的集中趋势、范围和分布形状等。
2. 引导学生思考直方图中的异常值或离群点,并讨论可能的原因。
3. 引导学生思考如何利用直方图进行比较和预测,例如比较不同组的频率或预测未来的数据趋势。
练习和巩固:1. 分发练习册或纸张,要求学生根据给定的数据绘制频率分布直方图,并进行相应的分析和解释。
2. 学生完成练习后,进行小组讨论和整体分享,加深对频率分布直方图的理解和应用能力。
拓展活动:1. 引导学生在日常生活中寻找更多的数据,并尝试绘制相应的频率分布直方图。
2. 引导学生使用统计软件或在线工具绘制频率分布直方图,并与手绘的直方图进行比较和分析。
评估方法:1. 观察学生在数据收集、整理和绘制直方图过程中的参与和理解程度。
《频数直方图》教案

《频数直方图》教案教学目标:知识与技能:1.理解数据的收集与处理数据;2、会绘制频数直方图;3.了解频数分布的意义,能根据数据处理的结果,作出合理的判断和预测,从而解决简单的实际问题,并在这一过程中体会统计对决策的作用.。
过程与方法:1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力. 2.通过调查、统计、研讨等活动,发展学生实践能力与合作意识。
情感态度与价值观:通过学习,培养学生利用所学知识提出问题,分析问题,解决实际问题的能力。
重点: 1、针对收集到的数据,会制作这组数据的频数分布直方图、频数分布折线图;2、数据的处理。
难点: 1、决定组距与组数;2、绘制频数分布直方图教学过程:一、导入新课现实生活中,人们不仅要收集数据,还要对收集到的数据进行加工,进而作出判断。
可以说,统计已经渗透到我们生活的各个方面,这就要我们“到生活中学数学,在生活中用数学”。
问题情景:(动脑筋)为了了解居民的消费水平,调查组在某社区随机调查某宿舍30户家庭6月份饮食消费的情况,数据如下表所示:(单位:元)如何更直观地了解这30户家庭6月份饮食消费的分布情况呢?二、合作交流、解读探究由于上述数据较多,且分布比较零散,我们需要把这些数据进行必要的归纳和整理,先进行适当的分组,并借助表格将各组的频数进行整理。
对数据分组整理的步骤(1)分组①计算最大与最小值的差.最大值=956-730=26(元)这说明消费的范围是26元. ②决定组距和组数. 把所有数据分成若干个组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.为了分组的方便,我们取略小于最小值的数作为下限,例如取720;而取略大于最大值的数作为上限,例如取960。
假定每40元一组,则可分为(960-720)÷40=6(组)。
所分6组为:720∽760,760∽800,800∽840,840∽880,880∽920,920∽960,将所有数据分为多少组可以用公式: 则可将这组数据分为6组.注意:组距和组数没有固定的标准,要根据具体问题来决定,分组数的多少原则上100个数以内分为5∽12组较为恰当.(2)列频数分布表频数:落在各个小组内的数据的个数.每个小组内数据的个数(频数)在各个小组的分布状况用表格表示出来就是频数分布表,如:对上述数据列频数分布就得到频数分布表.分组 划频720 3 760 7 800 1840 4 880 1 920 1注:画记也可以写成频数累计. 根据表格画出频数直方图(如上图)师生共同归纳总结出制作频数分布直方图的步骤:(1) 计算最大值和最小值的差(极差),确定统计量的范围。
《频率分布直方图》示范公开课教案【高中数学必修第一册北师大】

《频率分布直方图》教学设计1.通过实例进一步体会分布的意义与作用,在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图,体会它们的特点.2.学习整理、分析数据,提取信息,将实际问题数据化,培养学生的分析、解决问题的能力.3.在解决统计问题的过程中,体会用样本估计总体的思想,会用祥本的频率分布估计总体分布,会用样本估计总体的思想解决一些简单的实际问题,体会统计思维与确定性思维的差异.重点:会识画频率分布表、频率分布直方图、频率折线图,能够从频率分布直方图中提取需要的数据信息.难点:体会、理解用样本估计总体的思想,识画统计图.一、新课导入情境:为了解本市居民的生活成本,同学甲利用假期对所在社区进行“家庭数”和“家庭每月日常消费额”的调查.他把调查得到的消费额按大小进行分组,并计算出每组数据在整个数据中占的百分比——频率,结果如表.思考:为什么调查结果给出的是频率表,而不是频数表?相对于频数表,频率表有什么好处?答:频率与总体关系密切,反映了相对总数而言的相对强度,其所携带的总体信息远超过频数.二、新知探究问题1:整理数据得工作通常是需要图示的,常见的统计图有哪些?它们的功能适合表◆教学目标◆教学重难点◆◆教学过程示什么?答:直方图、折线图、扇形图.直方图适合表示大小,折线图适合表示趋势,扇形图适合表示比例.追问:直观地表示频率,想到直方图,而扇形图是圆内面积占比来表示比例的.但我们想在平面直角坐标系中直观的表示这个比例该怎么办呢?答:那就需要在平面直角坐标系中用面积表示频率.选用矩形面积去表示,将矩形横向宽度就是每组数据所在区间宽度,那么自然纵向就是频率与组距的比值.问题2:将情境中的数据,按照上面方法制图,并总结这种图有哪些优点呢?答:图中每个小矩形的底边长是该组的组距,每个小矩形的高是该组的频率与组距的比,从.我们把这样的图叫而每个小矩形的面积等于该组的频率,即每个小矩形的面积=组距×频率组距作频率分布直方图.频率分布直方图以面积的形式反映了数据落在各个小组的频率的大小.频率分布直方图的好处在于:能清楚直观地显示各组频率分布情况及各组频率之间的差别;当考虑数据落在若干个组内的频率之和时,可以用相应矩形面积之和来表示.问题2:前面,我们根据频率表,画出了频率分布直方图,那么如何根据样本数据画出频率分布直方图呢?答:实际上,我们如果能得到频率分布表,频率分布直方图按照上面的方法即可.一般来讲我们分为五步:(1)求极差;(2)决定组距和组数;(3)将数据分组;(4)列频率分布表;(5)绘制频率分布直方图.实例分析.1895年,在英国伦敦有106块男性头盖骨被挖掘出土.经考证,这些头盖骨的主人死于1665年─1666年的大瘟疫.人类学家分别测量了这些头盖骨的宽度,数据如下(单位:mm):146 141 139 140 145 141 142 131 142 140 144 140138 139 147 139 141 137 141 132 140 140 141 143134 146 134 142 133 149 140 140 143 143 149 136141 143 143 141 138 136 138 144 136 145 143 137142 146 140 148 140 140 139 139 144 138 146 153148 152 143 140 141 145 148 139 136 141 140 139158 135 132 148 142 145 145 121 129 143 148 138149 146 141 142 144 137 153 148 144 138 150 148138 145 145 142 143 143 148 141 145 141请你估计在1665年─1666年,英国男性头盖骨宽度的分布情况.总体是1665年─1666年的英国男性头盖骨的宽度,我们要通过上面挖掘出土得到的样本信息,来估计总体的分布情况.因为总体分布是指总体中每类(组)个体所占的比例(百分比),所以我们需要将样本中每类(组)个体所占的比例整理、表达出来.首先将数据排序,得到宽度的最大值是158mm,最小值是121mm.为了更深入地挖掘数据蕴含的信息,得到总体分布信息,我们按照如下步骤处理数据.(1)计算极差:158-121=37mm.这说明样本观测数据的变化范围是37mm.]=8,即可以将数据分为(2)确定组距与组数:若取所有的组距为5mm,则组距[3758组,这说明这个组距是比较合适的.合适的组距和组数对发现数据分布规律有重要意义.组数过少会将很多分布的信息丢失;组数过多则可能会出现很多空档,无法反映实际的分布.当数据在120个以内时,通常按照数据的多少分成5组~12组.在实际操作中,一般要求各组的组距相等.分组时,可以先确定组距,也可以先确定组数.(3)分组:所以本例中的106个数据可按如下方式分为8组:[120,125),[125,130),[130,135),[135,140),[140,145),[145,150),[150,155),[155,160).由于组距为5mm,8个组距的总长度超过极差,因此可以使第一组的左端点略小于数据中的最小值,最后一组的右端点略大于数据中的最大值.(4)列表:统计各组的信息(5)画频率分布直方图:思考:前面我们学习过平均数、众数、中位数,在频率分布直方图中,这些数据如何体现?答:在频率分布直方图中,平均数的估计值等于频率分布直方图中每个小矩形的面积乘小矩形底边中点的横坐标之和;中位数的估计值,应使其左右两边的直方图面积相等;最高小矩形的中点所对应的数据值即为这组数据的众数.探究:对于某一个总体来说,频率分布表中的数字及频率分布直方图的形状是否唯一确定?当样本确定以后,频率分布表中的数字及频率分布直方图的形状是否就确定了?如果是变化的,这个变化与什么有关?当样本容量逐渐增大时,直方图的分布有无规律可循?答:由于样本的随机性,频率分布表中的数字及频率分布直方图的形状都会随着样本的改变而改变;样本确定后频率分布表中的数字和频率分布直方图的形状都与分组数有关,频率分布直方图的形状还与平面直角坐标系的单位长度选取有关.频率分布是有规律的,若固定分组数,随着样本容量的增加,频率分布表中的各个频率会稳定在相应分组的某个数值上.频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加上一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到频率折线图.想一想:频率折线图能否大致反映总体的情况?如果不断增大样本容量,分组数也随之增多,频率折线图会有怎样的变化?答:一般地,样本容量越大,用样本的频率分布去估计总体的分布就越精确.随着样本容量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.三、应用举例例1:某中学为了了解九年级学生中女生的身高(单位:cm)情况,对部分九年级女生的身高进行了一次测量,所得数据整理后列出的频率分布表如下:例2:如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布解:样本中平均气温低于22.5 ℃的城市的频率为0.10×1+0.12×1=0.22,样本中的城市由频率分布直方图进行相关计算时,需掌握下列关系式: (1)小长方形的面积=组距×频率组距=频率;(2)各小长方形的面积之和等于1;(3)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数.四、课堂练习1.如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率是( )A .75%B .25%C .15%D .40%2.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图所示),由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.参考答案:1.75%.解析:大于或等于60分的共四组,它们是[59.5,69.5),[69.5,79.5),[79.5,89.5),[89.5,99.5],故样本中60分及以上的频率为(0.015+0.03+0.025+0.005)×10=0.75.由此可估计这次数学竞赛的及格率为75%.2.0.030;3.五、课堂小结1.本节我们学习了频率分布直方图,对于给定的样本,画频率分布直方图的步骤是:(1)求极差;(2)决定组距和组数;(3)将数据分组;(4)列频率分布表;(5)绘制频率分布直方图.2.在频率分布直方图中,横轴表示样本数据和分组情况;纵轴表示频率与组距的比;数据落在各小组内的频率用小矩形的面积表示,所有小矩形面积的总和等于 1.平均数的估计值等于每个小矩形的面积乘小矩形底边中点的横坐标之和;中位数的估计值,应使其左右两边的直方图面积相等;最高小矩形的中点所对应的数据值即为这组数据的众数.3.在频率分布直方图中,按照分组原则,再在左边和右边各加上一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到频率折线图.如果样本容量不断增大,分组的组距不断缩小,频率折线图就越来越接近于一条光滑曲线.4.通过提取频率分布直方图、频率折线图中的数据,我们可以对总体相应的数据进行估计.由于提取样本的随机性,这种估计可能会有偏差.频率分布一般随着样本容量的增大而更加接近于总体分布.六、布置作业教材第164页,练习第1题.教材第165页,习题6—3A组第1题.。
【授课教案】频率分布直方图---教学设计

讲稿导图
(自带设备)
3
课题 授课班级
教材
§10.4.1 频率分布直方图
课时
1 课时
17 会计
执教者
S
李广全,李尚志. 北京:高等教育出版社. 数学(基础模块)下册. 2013 年.142-145.
教材分析
本课内容选自高等教育出版社的国家规划新教材《数学(基础模块)》下册第 10 章第 4 节。中职数学教学 大纲(2009)指出:本单元教学中应注重结合实例分析来掌握概念,强调了使用信息技术处理数据的技能。
教学环境
本课的教学实施地点是 学校的多媒体教室,教室具备 A/V 系统,教师端具有控制管 理功能,学生端有 8 台 60 寸 的触屏式教学一体机,安装有 Window 7 系统以及 WPS 和 GeoGebra 等软件,所有计算机 都能连接互联网。校内提供了 多个无线网络热点可供电子 设备连接使用。
6
教学设计思路与教学方法
根据绿色教育的理念,着眼于学生的可持续发展,数学教学不仅要帮助学生获得有用的知识,还应该让他 们利用这些知识理解生活。依据以学定教,以教促学的教学原则,结合认知负荷理论,本课将采用任务驱动的 教学策略和混合式教学方式开展教学。
本课以“我市将举办一场国际马拉松比赛,请为举办时间提出你的建议”为核心任务。学生以小组合作与 个人独立思考相结合的方式,通过互联网收集资料、数据,利用电子表格软件和频率分布直方图对数据进行整 理和分析,经历数据的收集、整理和分析的过程,学习“用数据说话”的方法,培养理性思维和勇于探索的科 学精神,提升数据分析素养。为降低学生的内在认知负荷,我们基于学生的最近发展区实行小步子教学,把核 心任务进行分解,不断的缩小学生的经验与教学目标的差距。使用学生的成果生成问题,激发学生的学习兴趣。
《频率分布直方图》教学设计

《频率分布直方图》教学设计【学情分析】1.本节是人教A版数学必修3第二章统计§2.2用样本估计总体中的一小节内容。
2.上节学生已经学习了简单随机抽样、系统抽样、分层抽样三种随机抽样方法,所以对于我们分析的数据是如何通过随机抽样得来,学生并不感到陌生;3.对于频率的概念,在初中都有讲过,可能极小部分学生仍有问题;4.学生的计算能力足以能够解决本节的简单计算问题,只是要注意学生可能会出现的计算错误。
【教学目标】1.会列频率分布表,会画频率分布直方图、频率分布折线图;会用样本频率分布直方图估计总体分布;2.理解频率分布直方图的含义及特点,并会频率分布直方图相关的计算问题;3.了解分布的意义与作用;4.培养学生利用数学方法分析数据、解决实际问题的能力;5.通过画频率分布直方图的过程,培养学生耐心细致,严谨认真的科学态度。
【教学重难点】1.本节重点在于如何画频率分布直方图,理解频率分布直方图的含义及特点,并会频率分布直方图相关的计算问题;2.难点在于列出频率分布表。
【教学方法】本节主要采用例题教学法.通过一个具体的题目引入,讲解极差、频率等概念,教师带领学生一步步列出例题的频率分布表,画出频率分布直方图.随着教师的讲解,学生分步练习,真正掌握画频率分布直方图的各个步骤;同时本节会结合多媒体软件,主要是SMART NOTEBOOK来辅助教学。
【教学过程】e.g.1为了了解一大片经济林的生长情况,随机测量其中的100株的底部周长,得到如下数据表(长度单位:cm)要看样本的频率分布,具体做法如下:1.求极差:135-80=552.决定组距与组数:注:组距与组数确实定没有固定的标准,常常需要一个尝试和选择的过程,将数据分组时,组数应力求合适,以使数据的分布规律能清楚地呈现出来;组数太多或太少,都会影响我们了解数据的分布情况;一般样本容量越大,所分组数越多,当容量不超过100时,按数据的多少,常分成5~12组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1 用样本的频率分布估计总体分布
漯河二高马欣慧
三维目标
1.通过实例体会分布的意义和作用,通过对现实生活的探究,感知应用数学知识解决问题的方法.
2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图,理解数形结合的数学思想和逻辑推理的数学方法.
3.通过对样本分析和总体估计的过程,感受数学对实际生活的需要,通过实例体会频率分布直方图、频率折线图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地作出总体估计,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.
重点难点
教学重点:会列频率分布表,画频率分布直方图、频率折线图.
教学难点:能通过样本的频率分布估计总体的分布.
课时安排1课时
教学过程
导入新课
讨论:我们要了解我校学生每月零花钱的情况,应该怎样进行抽样?
提问:学习了哪些抽样方法?一般在什么时候选取什么样的抽样方法呢?
讨论:通过抽样方法收集数据的目的是什么?(从中寻找所包含
的信息,用样本去估计总体)
指出两种估计手段:一是用样本的频率分布估计总体的分布,二是用样本的数字特征(平均数、标准差等)估计总体的数字特征.这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.
新知探究
提出问题
(1)我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)
(2)什么是频率分布?
(3)画频率分布直方图有哪些步骤?
(4)频率分布直方图的特征是什么?
讨论结果:
(1)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.
分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表
格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.
下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚地看到整个样本数据的频率分布情况.
(2)频率分布是指一个样本数据在各个小范围内所占比例的大小;一般用频率分布直方图反映样本的频率分布.
(3)其一般步骤为:
①计算一组数据中最大值与最小值的差,即求极差;
②决定组距与组数;
③将数据分组;
④列频率分布表;
⑤画频率分布直方图.
(4)频率分布直方图的特征:
①从频率分布直方图可以清楚地看出数据分布的总体趋势.
②从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.
同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象.
提出问题
(1)什么是频率分布折线图?
(2)什么是总体密度曲线?
(3)对于任何一个总体,它的密度曲线是否一定存在?是否可以被非常准确地画出来?
讨论结果:
(1)连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.
(2)在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映总体在各个范围内取值的百分比,它能给我们提供更加精细的信息. (3)实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.
应用示例
例1有一个容量为50的样本数据的分组的频数如下:
[12.5, 15.5) 3 [15.5, 18.5)8
[18.5, 21.5)9 [21.5, 24.5)11
[24.5, 27.5)10 [27.5, 30.5) 5
[30.5, 33.5) 4
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少? 解略
例 2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如下图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1. 解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:
391517424+++++=0.08; 又因为频率=样本容量
第二小组频数, 所以样本容量=08
.012=第二小组频率第二小组频数=150.
(2)由图可估计该学校高一学生的达标率约为
3
9151742391517++++++++×100%=88%. 当堂检测
A 组(知能训练)
1.从一堆苹果中任取了20只,并得到了它们的质量(单位:g )数据分布表如下:
则这堆苹果中,质量不小于120g 的苹果数约占苹果总数的__________%.
2.关于频率分布直方图,下列说法正确的是( )
A.直方图的高表示该组上的个体在样本中出现的频率
B.直方图的高表示取某数的频率
C.直方图的高表示该组上的个体在样本中出现的频率与组距的比值
D.直方图的高表示该组上的个体在样本中出现的频数与组距的比值 3.已知样本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,10,那么频率为0.2的范围是( )
A 、5.5-7.5
B 、7.5-9.5
C 、9.5-11.5
D 、11.5-13.5
4.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a ,b )是其中的一组,抽查出的个体在该组上的频率为m ,该组上的直方图的高为h ,则b a -=______.
5. (2009湖北卷B )下图是样本容量为200的频率分布直
方图。
根据样本的频率分布直方图估计,样本数据落在【6,
10】内的频数为 ,数据落在(2,10)内的概率约
为 。
(1)列出样本频率分布表;
(2)画出频率分布直方图;
(3)估计身高小于134 cm 的人数占总人数的百分比.
图3(度)B 组(拓展、延伸)
1. 一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图)。
为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则
[2500,3000)(元)月收入段应抽取 人。
2、(2011广东理)为了了解某地居民月均用电的基本情况, 抽取出该地区若干户居民的用电数据, 得到频率分布直方图如图3所示, 若月均用电量在区间[)110,120上共有150户, 则月均用电量在区间[)120,150上的居民共有 户.
3、一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如下
图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭____________万盒.
快餐公司个数情况图 快餐公司盒饭年销售量的平均数情况图
课堂小结
总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.频率分布的表现形式有三种:频率分布表、频率分布直方图、频率分布折线图。
作业:完成当节创新设计的《课时作业》
附:说课
本节课是高一新课程必修三第二章《统计》中的第二节《用样本估计总体》的第一节课,尽管用样本估计总体是一种实用性很强,操作烦琐、麻烦的工作,但却是统计学中常用的方法,在生产、生活中应用非常广泛.用样本估计总体,其实就是一种“以偏概全”“以部分代替全部”的思想.虽然有贬义的成分,但我们还是要认真去教好学好,而且,这也是平时考试和高考中的重点内容之一.
本节要解决的问题就是:为何要用样本估计总体——社会生产、生活的实际需要(必要性),如比赛、竞技中预测结果,评判质量谁好谁差,水平谁高谁低经常要用到.如何去用样本估计总体——用样本的频率分布去估计总体的频率分布;怎样用样本估计总体——作出样本频率分布表或频率分布直方图,懂得用“数据”语言说话.为巩固学习效果,根据学生的基础设计了A、B两组练习题,旨在消化知识,提高应用。
另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育并增强学生的自信心,使学生养成良好的学习态度.。