贝塞尔函数近似表达式

合集下载

别捷尔斯公式与贝塞尔公式

别捷尔斯公式与贝塞尔公式

别捷尔斯公式与贝塞尔公式全文共四篇示例,供读者参考第一篇示例:别捷尔斯公式与贝塞尔公式是数学中常见的两个重要公式,它们在物理学、工程学、计算机科学等领域都有广泛的运用。

本文将分别介绍这两个公式的概念、历史、应用以及区别,希望能为读者更深入地了解它们的意义和作用。

一、别捷尔斯公式别捷尔斯公式是由法国数学家安贝尔-阿尔方斯·别捷尔斯(Jean-Baptiste Joseph Fourier)于19世纪提出的一种数学解析方法,用于将周期函数展开成无限三角级数的形式。

别捷尔斯公式可以将任意一个以正弦和余弦函数为基础的周期函数表示成其对应的傅立叶级数,这为我们研究和描述周期性现象提供了非常方便的工具。

历史上,别捷尔斯公式的提出对于数学和物理学的发展产生了深远的影响。

通过别捷尔斯公式,人们可以更好地理解波动现象、振动现象以及其他周期性现象,从而研究出许多重要的物理规律和方程,比如热传导方程、振动方程等。

别捷尔斯公式也被广泛用于信号处理、通信系统、图像处理等领域。

别捷尔斯公式的数学表达形式比较简单,是一个正弦和余弦函数的线性组合。

它的应用范围很广,可以用来近似描述各种周期性现象。

别捷尔斯公式也为其他数学方法和技术的发展提供了重要的思路和基础。

二、贝塞尔公式贝塞尔公式是由德国数学家弗里德里希·贝塞尔(Friedrich Bessel)提出的一种特殊函数的表示方法。

贝塞尔函数是一类重要的特殊函数,广泛应用于科学与工程中。

贝塞尔函数可以描述一些非周期性的振动和波动现象,例如在量子力学、电磁学、流体力学等领域都有重要的应用。

贝塞尔函数比较特殊的地方在于它们具有无穷多个复数根和极点,因此有时候需要采用数值计算的方法来求解。

贝塞尔函数在求解热传导方程、辐射传热方程、波动方程等偏微分方程时,具有重要的作用,可以提供更精确和更有效的解析方法。

贝塞尔函数的性质和应用远不止于此,它们还可以用来描述声波、光波、电磁波等多种波动现象,同时也可以用于图像处理、通信系统、卫星导航等领域。

贝塞尔函数 柱函数

贝塞尔函数 柱函数
再令 U ( r , j ) = R ( r ) F (j ) ,得到
(14.1.2)
F ¢¢ + n 2 F = 0 (14.1.3) 2 2 2 2 r R¢¢ + r R¢ + (k r -n ) R = 0
令 k r = x, R ( r ) = y ( x ) 于是(14.1.5)得到
) 与 是我们应该注意到:当 n = n 整数时,有 J - n ( x ) = ( -1) J n ( x ) ,故上述解中的 J n ( x J - n ( x ) 是线性相关的,所以(14.1.6)成为通解必须是n ¹ 整数. (2)当n 取任意值时: N ( x ) ,这样贝塞尔方程的通解可表示为 定义第二类贝塞尔函数 n y ( x) = AJn ( x) + BNn ( x )
(14.2.3) (14.2.4) (14.2.5) (14.2.6)
= ( -1) n å ( -1) l
l = 0
所以
J - n ( x ) = ( -1) n J n ( x )
同理可证
J - n ( x ) = J n (- x )
因此有重要关系
J n ( - x) = ( -1) n J n ( x )
d - v [ x Z v ( x)] = - x - v Z v +1 ( x ) dx
把两式左端展开, 又可改写为 (14.3.3) (14.3.4)
v Z v ( x ) = - Z v +1 ( x ) x v Zn¢ + Z v ( x) = Z v -1 ( x ) x 从(14.3.5)和(14.3.6)消去 Zn 或消去 Zn¢ 可得 Zn ¢ ( x) ¢ ( x) Z v +1 ( x ) = Z v -1 ( x ) - 2 Z v 2 v Z v +1 ( x) = - Z v -1 ( x) + Z v ( x ) x

贝塞尔函数

贝塞尔函数

贝塞尔函数当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。

在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。

如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。

本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。

下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。

贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。

§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。

设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。

这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程(5.1)得22222()V V VT a T x y ∂∂'=+∂∂ 或22222 (0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+= (5.4)22220V V V x yλ∂∂++=∂∂ (5.5) 从(5.4)得2()a t T t Ae λ-= 方程(5.5)称为亥姆霍兹(Helmholtz )方程。

为了求出这个方程满足条件2220x y R V +== (5.6)的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得22222110,,02, (5.7)0,02, (5.8)R V v V V R V ρλρθπρρρρθθπ=⎧∂∂∂+++=<≤≤⎪∂∂∂⎨⎪=≤≤⎩再令 (,)()()V P ρθρθ=Θ,代入(5.7)并分离变量可得()()0θμθ''Θ+Θ= (5.9)22()()()()0P P P ρρρρλρμρ'''++-= (5.10)由于(,,)u x y t 是单值函数,所以(,)V x y 也必是单值得,因此()θΘ应该是以2π为周期的周期函数,这就决定了μ只能等于如下的数:2220,1,2,,,n对应于2n n μ=,有00()2a θΘ=(为常数) ()cos sin ,(1,2,)n n n a nb n n θθθΘ=+=以2n n μ=代入(5.10)得222()()()()0P P n P ρρρρλρρ'''++-= (5.11)这个方程与(2.93)相比,仅仅是两者的自变量和函数记号有差别,所以,它是n 阶贝塞尔方程。

常见幂级数展开式求和公式

常见幂级数展开式求和公式

常见幂级数展开式求和公式幂级数展开式是一种重要的数学工具,可以将各种函数表示为无穷级数的形式。

常见的幂级数展开式求和公式有泰勒级数、麦克劳林级数和幂级数的逐项积分求和公式。

下面将逐一介绍这些公式。

1.泰勒级数求和公式:泰勒级数是将一个函数在其中一点展开成无穷级数的形式,用于近似表示函数在该点的值。

对于具有充分多次可导性的函数f(x),其在x=a 处的泰勒级数展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...其中,f^n(a)表示f(x)在x=a点的n阶导数,n!表示n的阶乘。

当n 足够大时,泰勒级数可以提供较准确的函数近似。

2.麦克劳林级数求和公式:麦克劳林级数是泰勒级数在x=0处展开的特殊形式。

对于具有充分多次可导性的函数f(x),其在x=0处的麦克劳林级数展开式为:f(x)=f(0)+f'(0)x+f''(0)x^2/2!+f'''(0)x^3/3!+...麦克劳林级数将函数近似表示为多项式的形式,方便计算。

3.幂级数逐项积分求和公式:对于幂级数∑a_n(x-a)^n,可以对其逐项积分得到:∫[∑a_n(x-a)^n]dx = ∑[a_n/(n+1)(x-a)^(n+1)] + C其中,C为积分常数。

这个公式可以用于计算幂级数的积分。

除了上述三种常见幂级数展开式求和公式,还有一些其他的展开式求和公式,如:4.欧拉恒等式:欧拉恒等式表示以自然对数e为底的指数函数和三角函数的关系:e^ix = cos(x) + i·sin(x)其中,i表示虚数单位。

这个等式广泛应用于复数分析、信号处理等领域。

5.贝塞尔函数展开式:贝塞尔函数是一类特殊的函数,可以用无穷级数表示。

对于整数阶的贝塞尔函数J_n(x),其展开式为:J_n(x)=(∑[(-1)^k/(k!(n+k)!)(x/2)^(2k+n)])/(x/2)^n贝塞尔函数在物理学、工程学等领域中有广泛的应用。

贝塞尔函数

贝塞尔函数

n阶第一类贝塞尔函数()J xn第二类贝塞尔函数,或称Neumann函数()Y xn第三类贝塞尔函数汉克尔(Hankel)函数,(1)()H xn第一类变形的贝塞尔函数()I xn开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数在第二章中,用分离变量法求解了一些定解问题。

从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。

在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。

如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。

本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。

下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。

贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。

§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。

设有半径其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。

这个问题可以归结为求解下述定解问题:用分离变量法解这个问题,先令或(5.4)(5.5) 从(5.4)得方程(5.5)称为亥姆霍兹(Helmholtz )方程。

为了求出这个方程满足条件(5.6)的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得再令代入(5.7)并分离变量可得(5.9)(5.10)5.10)得(5.11)这个方程与(2.93)相比,仅仅是两者的自变量和函数记号有差别,若再作代换并记则得由条件(5.8(5.12)因此,原定解问题的最后解决就归结为求贝塞尔方程(5.11)在条件(5.12)下的特征值与特征函数((5.12。

在下一节先讨论方程(5.11)的解法,然后在§5.5中再回过头来讨论这个特征值问题。

第4章-贝塞尔函数

第4章-贝塞尔函数

级数解的导数为: y '
k 0
(
k )ck
x k1
y"
k 0
(
k
)(
k
1)ck
x k 2
20
y x cn xn n0
( c0 0, 为常数)
代入方程(2),
y 1 y (1 2 ) y 0 (2)
x
x2
( v 为任意实数)
得到
(n )(n 1)cn xn2 (n )cn xn2 cn xn
利用级数的比值判别法(或达朗贝尔判别法)
可以判定这个级数在除 x=0 点外的整个实数轴 上收敛,因此,级数式是贝塞尔方程的解.
28
下面我们分两种情况,找出方程贝塞尔的两个线性无 关的解,得到方程贝塞尔的通解:
(1) 1 及 2 不是整数, 将 1 代入式
y(x) (1)n
1
( x)2n
n0
n!(n 1) 2
18
由定理2知, 在 x=0点的邻域 x 0 内至少存在
一个下面形式的级数解
y x cn xn n0
( c0 0, 为常数)
将此式代入方程
y
1 x
y
2
(1 x2
)y
0
(2)
( v 为任意实数)
19
y
1 x
y
(1
x
2 2
)y
0
(2)
( v 为任意实数)
y x cn xn n0
( c0 0, 为常数)
31
我们可用
J
(x)
(1) n
n0
1
n!(n
( x )2n 1) 2
统一表示第一类贝塞尔函数(也称为第一类柱函数)。

第四章贝塞尔函数精品PPT课件


v)(m
v)
一个特解为
y
Ck xck
k 0
C0
m0
22m
m!(1
v)(2
(1)m v)(3
v)
(m
v)
x2mv
C0为任意常数,通常取
C0
1 2v (1
v)
深圳大学电子科学与技术学院
C2m
(1)m
22m m
!
C0 (1 v)(2 v)(3 v)
(m 1 v)(m v)
2v
1 (1
v)
深圳大学电子科学与技术学院
德国天文学家,数学家,天体测量学的奠基人。1784 年7 月22日生于 明登 ,1846 年3月17日卒于柯尼斯堡。15岁辍学到布莱梅一家商行学徒,业 余学习天文、地理和数学。20岁时发表了有关彗星轨道测量的论文。1810年 任新建的柯尼斯堡天文台台长,直至逝世。1812年当选为柏林科学院院士。
m=0
勒让德方程:
d dx
(1
x
2
)
dy dx
2
y
0
柱坐标下:
z
r
x
y
2u k 2u 0
深圳大学电子科学与技术学院
1
(
u )
1
2
2u
2
2u z2
k 2u
0
深圳大学电子科学与技术学院
''() m2() 0
Z''(z) 2Z(z) 0
2
d 2R
d 2
dR
d
(k 2
2 ) 2
m2
深圳大学电子科学与技术学院

y1
Jv (x)
um (x)

第7章贝塞尔(Bessel)函数


(4) 三类函数的关系:

(x)
=
1 2
⎡⎣ Hν(1)
(x)
+
Hν( 2 )
( x) ⎤⎦

(x)
=
1 2i
⎡⎣Hν(1) (x)

Hν(2) (x)⎤⎦
15
7.2 贝塞尔函数的母函数,递推关系等
1. 母函数
P68, 例3.4.2
∑ ∑ ∑ f
( x, t )
=
x (t−1)
e2 t
=
∞ n=−∞
k =0
s=0
k =0
s=0
k =0
要使上式在 z < R 的区域内成立,左边 z 的各次幂的系数必须等于零。
5
由 z 的最低次幂的系数为零得:
C0[ρ(ρ −1) + a0ρ + b0 ] = 0
( a0 , b0 已知)
C0 ≠ 0 ⇒ ρ(ρ −1) + a0 ρ + b0 = 0
(10)
—— ρ 的二次方程,指标方程
k =0
k+v
=

C2n X
n=0
2n+v
=
∞ n=0
(−1)n Γ(ν 22n n!Γ(ν
+ 1)C0 + n +1)
X
2 n +ν
另一个特解为: (ρ2 = −ν )
∑ ∑ ∑ y2(x) =

Ck X k −ν
k =0
=

C2n X 2n−ν
n=0
=
∞ (−1)n Γ(−ν +1)C0 n=0 22n n!Γ(−ν + n +1)

《数学物理方法》第七章 贝塞尔函数

24
§7.1.4 研究波的问题时,方程的通解常用汉克 尔函数表示 1.汉克尔函数的定义
既然Jv(x)和Nv(x)是贝塞尔方程的线性无关的
易见级数解y1(x)的收敛范围是0≤|x|<∞; 10
5. 另一个特解
同理,令r=r2=-v,可得另一特解
级数解y2(x)的收敛范围是0<|x|<∞
11
§7.1.2 当vn(整数),方程的通解是贝塞尔函 数J±v(x)的线性组合 (1)贝塞尔函数J±v(x)的定义. 若在特解y1(x)中取
便得到v阶贝塞尔函数(3.4节),
若在特解y2(x)中取 即得一阶贝塞尔函数(3.4节)
(7.1.10) (7.1.11)
12
图7.1 自变量为实数时头几个Jv(x)的函时Jv(x)与J-v(x)是线性无关的。 实际上,当x→0时
因为当x → 0时,级数只保留n=0项.易见
23
(5) 结论. 当v不为整数和零时,由Nn(x)的定义式可见,
它是Jv(x)和J-v(x)的线性组合。 既然Jv(x)与J-v(x)线性无关,所以Nn(x)与
Jv(x)也是线性无关的。
由此可见,无论v是否整数和零,贝塞尔方程 的解均可表示为
y(x) = C1Jv(x)十C2Nv(x) (7.1.23)
①汪德新.理论物理学导论第二卷:电动力 学.北京:科学出版社,2005.157-163
②汪德新.理论物理学导论第三卷:量子力 学.武汉:湖北科学技术出版社,2003.316323
2
§7. 1 贝塞尔方程与贝塞尔函数
本节首先用级数解法求解贝塞 尔方程,得到两个特解 Jn(x)和J-n(x) ,称为第一类贝塞 尔函数,简称贝塞尔函数.
19

5.2-贝塞尔函数的递推公式


k
1)
9
d
dx
xn J n (x)
x n J n1 (x),
(25)
d
dx
xn J n (x)
x n J n1 (x).
(26)
事实上,在(18)式的两边乘上 x n ,然后对 x
求导,得
d
dx
xn J n (x)
(1) k 1
k 0
x 2k1 2n2k1 k!(n 1 k
1)
19
J1
2
2 sin x
x
2
1
x2
sin
x
.
x
J1 2
2 cos x
x
2
1
x2
cos x .
x
J 3 (x)
2
23 x2
1
d
sin x .
x dx x
J 3 (x) 2
23 x2
1
d
cosx .
x dx x
一般的,有
J 2m1 (x) (1)m
2
2
x
m
1 2
x
(27) (30)
同样可得
J1 2
2 cos x.
x
(31)
应用公式(27)得
1
J 3 (x)
2
x
J
1 2
(x)
J
1 2
(x)
2 ( cos x 1 sin x)
x
x
23 x2
1
d
sin x .
x dx x
18
Jn (x)
(1) m
m0
x n2m 2n2m m!(n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档