6、有理数巧算
有理数计算的六个技巧

有理数计算的六个技巧有理数计算是数学中一个重要的部分,掌握一些技巧可以帮助我们更快速、更准确地完成计算。
以下是六个有理数计算的技巧:1. 分母有理化:对于形如$\frac{a}{b}$的有理数,如果b是平方数(例如4、9、16等),则可以将分母进行有理化处理,即将分子和分母都乘以b的平方根。
例如,$\frac{1}{4} = \frac{1 \times 2}{4 \times 2} = \frac{2}{8}$。
2. 乘法分配律:对于任意三个有理数a、b和c,有$a \times (b + c) = a\times b + a \times c$。
这个技巧可以用于简化复杂的乘法运算。
3. 提取公因数:对于多个有理数的乘法,如果存在公因数,可以先提取公因数,再进行其他运算。
例如,$2 \times 3 \times 4 = 2 \times (3 \times 4) = 2 \times 12$。
4. 利用绝对值的性质:对于有理数的绝对值,如果知道某个数的范围,可以利用绝对值的性质来简化计算。
例如,如果知道$a < b$,则可以得出$-b< a < b$。
5. 利用等差数列的性质:对于等差数列中的有理数,可以利用等差数列的性质来简化计算。
例如,对于等差数列$a, b, c, d$,有$b = \frac{a +c}{2}$和$d = \frac{a + d}{2}$。
6. 利用近似值:对于一些复杂的计算,如果不需要精确结果,可以利用近似值来快速得到一个接近真实值的结果。
例如,对于$\sqrt{2}$,我们知道$ < \sqrt{2} < $,所以可以取或作为$\sqrt{2}$的近似值。
这些技巧可以帮助我们更快速、更准确地完成有理数计算。
在掌握这些技巧的基础上,通过多做练习题来提高自己的计算能力和熟练度。
有理数的巧算方法

有理数的巧算方法有理数的计算呀,就像是一场有趣的游戏!咱先来说说加法。
嘿,你想想看,这加法不就像是把一堆小积木堆在一起嘛!比如 3 和 5 相加,那就是把 3 个小积木和 5 个小积木放到一块儿,结果不就是 8 个嘛!但有时候会遇到一些带符号的有理数相加,这时候可得注意啦!同号的就像志同道合的小伙伴,加起来顺顺利利的,比如两个正数或者两个负数相加,符号不变直接加数值就行啦。
可要是异号呢,那就有点像两个意见不太一样的人凑一块儿,得看谁的力量大,数值大的那个符号就是结果的符号,然后用大的数值减去小的数值。
再说说减法,哎呀呀,减法其实就是加法的变身呀!减去一个数不就等于加上它的相反数嘛!就好比说 5 减 3,不就是 5 加上-3 嘛,这多好理解呀!乘法呢,就像是一群小伙伴手牵手一起玩。
正数乘正数,那就是大家都很开心,结果也是正数;负数乘负数,那就是负负得正,就像大家一起把不开心的都抛开了,也变成正数啦;可要是一正一负相乘,那结果可就是负数喽,就像有一个小伙伴不太高兴,把气氛都带得有点低落啦。
除法呢,和乘法也有关系呀,除以一个数不就等于乘以它的倒数嘛。
这就好像是走一条路,正着走和倒着走的关系一样。
那咱再来说说一些巧算的方法。
比如凑整法,看到那些能凑成整数的数,就赶紧把它们凑到一块儿呀,这样计算起来多方便!还有利用运算律,加法交换律、结合律,乘法交换律、结合律、分配律,这些可都是宝贝呀,能让计算变得轻松好多呢!比如说计算 25×4×8,就可以先把 25 和 4 乘起来得 100,再乘以 8,多简单呀!再比如有些算式里有相同的因数,那就可以提取出来呀,剩下的数再进行计算,这多巧妙呀!还有些特殊的数对,像 1 和-1,0 之类的,遇到它们的时候也可以巧妙利用哦。
有理数的巧算方法可多啦,只要咱多观察、多思考,就一定能把这些计算变得像玩游戏一样有趣!别再觉得有理数计算很难啦,掌握了这些巧算方法,你会发现原来计算也可以这么有意思!你还在等什么呢,赶紧去试试吧!。
有理数的运算技巧

有理数的运算技巧有理数是指可用整数比值得数,包括整数、分数以及这两者之间的有限小数或循环小数。
有理数具有很多特点和规律,掌握一些运算技巧可以帮助我们更快更准确地进行有理数的运算。
下面将介绍一些常用的有理数运算技巧。
1.整数的加减运算:a)同号相加减:将它们的绝对值相加,结果的符号与原来相同。
b)异号相加减:将绝对值较大的数减去绝对值较小的数,结果的符号与绝对值较大的数相同。
2.分数的运算:a)分数的加减:先找到两个分数的最小公倍数,然后将两个分数的分子乘以最小公倍数除以原分母,再进行相加减即可。
b)分数的乘法:将两个分数的分子乘积作为结果的分子,分母乘积作为结果的分母。
c)分数的除法:将除数分数的分子与被除数分数的分母相乘,除以除数分数的分母与被除数分数的分子的乘积。
3.有理数的混合运算:首先进行混合数的整数部分的加减运算,然后再进行分数部分的运算。
如:31/4+22/5=(3+2)+(1/4+2/5)4.有理数的乘方运算:将有理数的底数按照要求进行相应的运算,然后再求幂。
如:(-2/3)^3=(-2/3)*(-2/3)*(-2/3)5.有理数的开方运算:对于完全平方数的有理数,可以直接提取出有理数的平方根。
对于非完全平方数的有理数,可以先将其化成最简分数形式,再进行开方运算。
6.有理数的逆运算:a)有理数的相反数:改变有理数的符号即可。
如:(-5)的相反数为5b)分数的倒数:将分子与分母互换位置即可。
如:1/4的倒数为4/17.有理数的化简:a)两数的最大公约数:将两数各自分解质因数,然后将公共的质因数相乘,得到的结果即为最大公约数。
b)两数的最小公倍数:将两数各自分解质因数,将各自分解质因数中的若干个质因数按照次数最多的那一组相乘,得到的结果即为最小公倍数。
8.小数的进位和舍位:a)进位:小数的末尾数大于等于5时,前一位数进位。
b)舍位:小数的末尾数小于5时,前一位数舍去(不进位)。
以上是有理数运算的一些常用技巧,通过掌握这些技巧,我们可以更加便捷和准确地进行有理数的运算。
有理数巧算“十字诀”

有理数巧算“十字诀”一、“归”:将同类数(如正数或负数)归类计算.[例1]计算(-13)+(+28)+(-47)+(+50).解:原式=(28+50)+(-13-47)二、“消”:将相加得0的数(如互为相反数的数)对消.[例2](-107)++()+107+. 解:原式=[(-107)+107]+[+、”凑”将相加可得整数的数凑整, [例3]计算 (+54)+(-31)++(-32)++. 解:原式=(-31-32)++++( +54) =-1+5 +54 =454 4、“合”:将不同类数(如分母相同或易于通分的数)别离组合.[例4]计算1-125+51+121-2039-1513. 解:原式=(1-2039)+(121-125)+(51-1513) =-2019-31-32 =-2039. 五、“分”:将一个数分解成几个数之和的形式,或分解为它的因数相乘的形式.[例5]计算171619×15. 解:原式=(20-171)×15 =300-1715 =172299.[例6]计算(-81)××(-96) ×31. 解:原式=(81×8) ××4) ×(3×31) =1×1×1=1.六、“化”:将小数与分数或乘法与除法彼此转化.[例7]计算-3-[-5+(×53)÷(-2)]. 解:原式=-3-[-5+(1-51×53)÷(-2)] =-3-[-5+2522×(-21)] =-3-[-5-2511] =2561. 7、“变”:利用运算定律把运算顺序改变,从而简化计算.[例8]计算(47-87-127)×(-78). 解:原式=47×(-78)-87×(-78)-127×(-78 ) =-2+1+32 =-31.八、“约”:将互为倒数的数或有因数和倍数关系的数约简.[例9]计算()·(+1225)·(-43)·(). 解:原式=-10012×1225×43×1016=-103. 九、“逆”:正难那么反,逆用运算律以简化运算.[例10]计算(-125)÷17+(+315)÷17-(-166)÷17-(-171). 解:原式=(-125+315+166+1)÷17=357÷17=21.10、“观”:依照0和1在运算中的特性,注意观看算式特点,可收到事半功倍的成效.[例11]计算-2006÷×2032+(-1)2006+(-1)2007. 解:原式=0+1-1=0。
有理数运算常用的技巧

有理数运算常用的技巧一、归类运算进行有理数的加减运算时,运用交换律、结合律归类加减,常常可以使运算简捷.如整数与整数结合、如分数与分数结合、同分母与同分母结合等.例1、计算:-(0.5)-(-3) + 2。
75-(7)变式:计算:二、凑整求和将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度,提高解题效率.例2、计算:19+299+3999+49999.变式:计算:三、变换顺序在有理数的运算中,适当改变运算顺序,有时可以减少运算量,在具体运算过程中,技巧是恰到好处地运用交换率、结合律和分配律等运算律简化运算.例3、计算:[4+(-)]+[(-)+6].变式:计算:四、逆用运算律在处理有理数的数字运算中,若能根据题目所显示的结构、关系特征,对此加以灵活变形,便可巧妙地逆用分配律,使解题简洁明快.例4、计算:17。
48×37+174.8×1.9+8.74×88.变式1:变式2:4726342+4726352-472633×472635—472634×472636五、巧拆项(裂项相消)把一项拆成两项的和或积,使得算式可以消去某些项,使运算简捷.常见的裂项相消:①②③④例5、计算2005×-1001×.例6、变式1:变式2:变式3:计算:六、变量替换(换元法)通过引入新变量转化命题结构,这样不但可以减少运算过程,还有利于寻找接题思路,其中的新变量在解题过程中起到桥梁作用.例7、计算×(0.125+).例8、(第8届“希望杯")计算:变式1:计算(2+)×()-(2+)×()变式2:计算变式3:计算七、分组搭配(巧添括号)观察所求算式特征,巧妙运用分组搭配处理,可以简化运算.例9、计算:2-3-4+5+6-7-8+9…+66-67-68+69.变式:计算:八、倒序相加在处理多项式的加减乘除运算时,常根据所求式结构,采用倒序相加减的方法把问题简化.例10、计算+(+)+(++)+(+++)+…+(++…++).变式1:计算变式2:计算1+3+5+7+…+1997+1999的值.九、添数配对(添项法)添数配对实质上也是一种凑整运算例11、计算11+192+1993+19994+199995+1999996+19999997+199999998+1999999999.变式:计算十、错位相减对于较复杂的算式直接运算很困难,若能抓住其特征,运用整体运算的思维,创造性地加以解决,就能收到事半功倍的效果.例12、计算1-+-+-+-+.例13、计算:变式1:计算:变式2:计算:十一、分解相约对于较复的算式直接运算很困难,抓住其特征,分解化为相同的形式,将相同的部分约去。
有理数运算技巧十招

2
1 1 2 。 12 12
例 6 计算: 2008 200920092009 2009 200820082008 。 解:原式 2008 2009 100010001 2009 2008 100010001
0。
六、转化 将小数与分数或乘法与除法相互转化。 例 7 计算: 42
2 3 0.25 。 3 4
解:原式 28
3 1 4 4
3 28 4 4
28 3 25 。
七、变序 运用运算律改变运算顺序。
1 6
3 4
2009
。
3 2009 1 。 3.75 3 0 , 1 4
原式 0 1 1 。
妙用字母解题
在我们学习的过程中,常会遇到一些数据大、关系复杂的计算题,令人望而生畏,无从 着手.这时,如果我们仔细观察数据特点,探究数据规律,巧妙利用字母代替数字,将会收 到化繁为简,化难为易的效果. 例 1 计算
-2-
例 8 计算: 12.5 31
4 0.1 5
解:原式 12.5 0.1 31
4 5
1 31 31。
例 9 计算: 1
3 8 8 7 1 。 5 9 15 8
009 9。
四、组合 将分母相同或易于通分的数结合。 例 4 计算: 5
ห้องสมุดไป่ตู้
5 5 11 5 2 10 12 。 24 9 18 6
-1-
解:原式 12
5 5 5 11 5 2 10 6 24 9 18
中考数学专题讲练 有理数的巧算(解析版)

有理数的巧算一.结合律加法结合律:三个数相加,先把前面两个数相加,再加第三个数,或者先把后面两个数相加,再和第一个数相加,它们的和不变.乘法结合律:三个数相乘,先把前面两个数相乘,先乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变.二.分配律乘法分配律:两个数的和同一个数相乘,等于把两个加 数分别同这个数相乘,再把两个积加起来,结果不变.三.裂项法在一些题型中,需要运用拆项法(也称裂项法)进行简便运算,运用拆项法使得拆项后的一些数能够互相抵消,达到简化运算的目的.常用拆项公式:(1)()11111n n n n =-++; (2)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭; (3)()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦,或()()()()()21112112n n n n n n n =-+++++;(4)11a ba b a b+=+⨯,11b aa b a b-=-⨯.四.换元法我们经常会遇到一些数据大、关系复杂的计算题,令人望而生畏,无从下手.这时,如果我们仔细观察数据特点,探究数据规律,巧妙利用字母代替数字(换元法),能够达到化繁为简,化难为易的效果.探索算式的结构往往是解决这类问题的突破口,其步骤大致分为三步:(1)比对观察:寻找并发现题目中的结构与规律;(2)总结归纳:把数字转化为字母,化繁为简;(3)代数计算:利用代数的方法,仔细地将冗长的题目化难为易,解决问题.一.考点:结合律、分配律、裂项法、换元法.二.重难点:裂项法、换元法.三.易错点:裂项法要注意相邻两数之差是多少.题模一:结合律例1.1.1151515 8124292929⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】0【解析】该题考查的是有理数巧算.观察该题,发现都含有共同的因数1529-.因此先提取公因数 原式()15812429⎛⎫=-+-⨯- ⎪⎝⎭, 15029⎛⎫=⨯- ⎪⎝⎭ 0=例1.1.2 计算:()()()3.2289 3.7729 1.59⨯-+-⨯--⨯【答案】 49.5- 【解析】 ()()()3.2289 3.7729 1.59⨯-+-⨯--⨯ 3.2289 3.7729 1.59=-⨯-⨯+⨯ ()3.228 3.772 1.59=--+⨯5.59=-⨯49.5=-.题模二:分配律例1.2.1 计算:1﹣24×(﹣311836+-). 【答案】 6.【解析】 原式=1+9﹣8+4=6.例1.2.2 阅读下列材料: 计算(﹣130)÷(23﹣110+16﹣25) 解法①:原式=(﹣130)÷23﹣(﹣130)÷110+(﹣130)÷16﹣(﹣130)÷25=﹣120+13﹣15+112=16解法②:原式=(﹣130)÷[(23+16)﹣(110+25)]=(﹣130)÷(56﹣12)=﹣130×3=﹣110 解法③:原式的倒数为(23﹣110+16﹣25)÷(﹣130)=(23﹣110+16﹣25)×(﹣30)=﹣20+3﹣5+12=﹣10故原式=﹣110(1)上面得出的结果不同,其中肯定有错误的解法,你认为解法_____是错误的.在正确的解法中,你认为解法_____最简便,该解法运用的运算律是_____.(2)请计算:(﹣142)÷(16﹣314+23﹣37). 【答案】 (1)①;③;乘法分配律(2)﹣18【解析】 (1)上面得出的结果不同,有错误的解法,我认为解法①是错误的.在正确的解法中,我认为解法③最简便,该解法运用的运算律是乘法分配律.(2)∵(16﹣314+23﹣37)÷(﹣142) =(16﹣314+23﹣37)×(﹣42) =16×(﹣42)﹣314×(﹣42)+23×(﹣42)﹣37×(﹣42) =﹣7+9﹣28+18=﹣8 ∴(﹣142)÷(16﹣314+23﹣37)=﹣18题模三:裂项求和例1.3.1 已知220ab a -+-=,求()()()()()()1111112220132013ab a b a b a b ++++++++++的值.【答案】 20142015【解析】 由220ab a -+-=知,2a =,1b =. 原式11111111111201411223342014201522334201420152015=++++=-+-+-++-=⨯⨯⨯⨯ 例1.3.2 计算:15791113151261220304256-+-+-+ 【答案】 98 【解析】 15791113151261220304256-+-+-+ 1223344556677812233445566778+++++++=-+-+-+⨯⨯⨯⨯⨯⨯⨯ 111111111111112233445566778⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-+++-+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 111111111111112233445566778=+--++--++--++ 118=+ 98=. 题模四:换元法例1.4.1 计算:11111111111111232012232011232012232011⎛⎫⎛⎫⎛⎫⎛⎫+++++++-+++++++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【答案】 12012【解析】 设111232012a =+++,111232011b =+++.则原式()()1112012a b b a a ab b ab a b =+-+=+--=-=.随练1.1 计算:()()()32419151515171717-⨯+-⨯--⨯ 【答案】 15-【解析】 提取公因数.()()()32419324191515151515171717171717⎛⎫-⨯+-⨯--⨯=-⨯+-=- ⎪⎝⎭. 随练1.2 3571491236⎛⎫--+÷ ⎪⎝⎭ 【解析】 该题考查的是实数的混合运算. 3571491236⎛⎫--+÷ ⎪⎝⎭ 357364912⎛⎫=--+⨯ ⎪⎝⎭()395473=-⨯-⨯+⨯272021=--+26=-随练1.3 计算:1517()(36)126369-+--⨯- 【答案】 2【解析】 该题考查的是有理数的综合运算.原式()()()()151736363636126369=-⨯-+⨯--⨯--⨯- 330128=-++=2随练1.4 计算:()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【答案】 91216- 【解析】 ()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()91285416⎛⎫=-⨯---+⎡⎤ ⎪⎣⎦⎝⎭ 912116⎛⎫=-⨯ ⎪⎝⎭ 91216=-.随练1.5 阅读材料:计算:12112()()3031065-÷-+- 解法1:原式=1211215111()()()()()3303610530623010⎡⎤-÷++--=-÷-=-⨯=-⎢⎥⎣⎦; 解法2:原式的倒数为:()21121211230310653031065⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭20351210=-+-+=-, 故原式=110-。
有理数的计算方法与技巧

有理数的计算方法与技巧
1. 嘿,你知道吗,有理数计算有个超棒的方法叫凑整法!就好像搭积木一样,把能凑成整数的数字放在一块儿。
比如算 37+63,这不是很明显能凑成 100 嘛!这样计算起来多轻松呀,是不是很妙啊?
2. 还有哦,转化法也很厉害呀!把分数呀小数呀转化成容易计算的形式。
比如说不就等于四分之一嘛,这样一转换,计算就简单多啦。
就像给数字变个魔法一样,多有趣呀!
3. 哇塞,裂项相消法也绝对不能错过!当遇到那种一连串可以拆分的式子,就像拆礼物一样把它拆开。
比如算 1/2+1/6+1/12,把它们拆成
1/(12)+1/(23)+1/(34),然后一消,结果就出来啦,神奇吧!
4. 特殊值法也超好用的呀!有时候不用费劲去算复杂的式子,找个特殊值代入试试。
比如说要研究一个式子的规律,随便找个方便的数带进去,不就大概能知道啦,多快捷呀!
5. 整体代入法也非常酷哦!当式子中有相同的部分,就像发现宝藏一样把它拎出来整体代入。
比如前面算出一个值后面又用到,直接代入,多省力呀!
6. 倒推法有时候也能派上大用场呢!从结果反推回去找答案。
就好像走迷宫从出口往入口找路一样,是不是很特别啊!
7. 分类讨论法也很关键呢!根据不同情况分别去算。
好比走不同的路去寻找答案,每一条路都可能有惊喜呢!
总之,有理数的计算方法和技巧那可真是丰富多彩呀,掌握了这些,计算起来就像玩游戏一样有趣又轻松!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
老师
姓名
学生姓名教材版本________版
学科
名称
年级七上课时间月日 _ : -- _ : 课题
名称
第六讲有理数巧算
教学
目标
及重
难点
巧算练习
教学过程复习检查
知识梳理
裂项法
零点分段法
1.零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.绝对值的几何意义的拓展
1.a的几何意义:在数轴上,表示这个数的点离开原点的距离.
2.a b
的几何意义:在数轴上,表示数a、b对应数轴上两点间的距离.
典型例题
1.利用裂项技巧计算()×33时,最恰当的方案可以是()
A.(100﹣)×33 B.(﹣100﹣)×33
C.﹣(99+)×33 D.﹣(100﹣)×33
2.在计算=﹣×(﹣24)….①=12+6+4=22中①运用了()
A.加法结合律B.加法交换律C.乘法分配律D.加法分配律
3.阅读下面计算+++…+的过程,然后填空.
解:∵=(﹣),=(﹣),…,=(﹣),
∴+++…+
=(﹣)+(﹣)+(﹣)+…+(﹣)
=(﹣+﹣+﹣+…+﹣)
=(﹣)
=.
以上方法为裂项求和法,请参考以上做法完成:
(1)+=;
(2)当+++…+x=时,最后一项x=.
4.计算:++…+(提示:裂项法)
5.阅读下面文字:
对于(﹣5)+(﹣9)+17+(﹣3)
可以如下计算:
原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]
=[(一5)+(﹣9)+17+(一3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1
上面这种方法叫拆项法,你看懂了吗?
仿照上面的方法,请你计算:(﹣1)+(﹣2000)+4000+(﹣1999)
6.请你观察:
=﹣,=﹣;=﹣;…
+=﹣+﹣=1﹣=;
++=﹣+﹣+﹣=1﹣=;…
以上方法称为“裂项相消求和法”
请类比完成:
(1)+++=;
(2)++++…+=.
(3)计算:++++的值.
7.阅读下列计算方法,再用这种方法计算下面一题.
计算:(﹣9)+17+(﹣3).
解:原式=[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣9)+17+(﹣3)]+[(﹣)++(﹣)]=5+0=5.
上面这种解题方法叫做拆项法,根据拆项法计算:(﹣1999)+4000+(﹣1)
8.阅读下面文字:
对于(﹣5)+(﹣9)+17+(﹣3)
可以如下计算:
原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]
=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]
=0+(﹣1)
=﹣1
上面这种方法叫折项法,你看懂了吗?
仿照上面的方法,计算:(1)﹣1+(﹣2)+7+(﹣4)=
计算:(2)(﹣2017)+2016+(﹣2015)+16.
9.阅读下面的材料:
高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.
解:设S=1+2+3+…+100,①则S=100+99+98+…+1.②
①+②,得2S=101+101+101+ (101)
(①②两式左右两端分别相加,左端等于2S,右端等于100个101的和)
所以2S=100×101,S=(100×101)÷2 ③
所以1+2+3+…+100=5 050.后来人们将小高斯的这种解答方法概括为“倒序相加法”.解答下面的问题:
(1)请你运用高斯的“倒序相加法”计算:1+2+3+ (1000)
(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:1+2+3+…+n=.
(3)请你利用(2)中你猜想的结论计算:1+2+3+ (2013)
10.要求几个连续整数的和,例如:求1+2+3+4+5的和,我们可以采用如下方法:设s=1+2+3+4+5 ①把上式倒序排列得s=5+4+3+2+1 ②
①与②两边分别相加得:2s=(1+5)+(2+4)+…+(5+1)=(1+5)×5
所以s==15 这种求和的方法叫做倒序求和法
(1)方法运用:请你用上面方法求1+2+3+4…+99+100的和
(2)问题解决:某校初一(2)班共有60名学生,放寒假当天60名学生每两人握手一次进行道别,那么全班同学共握手多少次?
(3)拓展延伸:如图,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,…,按此规律,求第n个图有多少个的小正方形.
同步练习
11.一股民在上星期五买进某公司股票1000股,每股27元,下表为本星期内每日该股票的涨跌情况(单位:元)
星期一二三四五
每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6
(1)星期三收盘时,每股多少元?
(2)本星期内每股最低价多少元?
(3)本周星期几抛售,获利最大,最大是多少?
12.计算
(1)(﹣3)﹣(﹣2)﹣(﹣2)﹣(+1.75)﹣(﹣1)
﹣4×(﹣2)﹣6×(﹣2)+17×(﹣2)﹣19÷
(2)
(3)﹣12+×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2
13.若“三角形”表示运算a﹣b+c,若“方框”表示运算x﹣y+z+w,求的值,列出算式并计算结果.
14.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:
二三四五六站次
人数
下车(人) 3 6 10 7 19
上车(人)12 10 9 4 0
(1)求本趟公交车在起点站上车的人数;
(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?
15.阅读下面解题过程:
计算:
解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;
(3)正确的结果是.
16.计算
(1)(﹣1.5)+(﹣)﹣(﹣)﹣(+1)(2)(+)﹣(﹣)﹣|﹣3|
(3)﹣99×99(用简便方法计算)(4)﹣÷(﹣+)
(4)﹣54×2÷(﹣4)×(6)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3)
(7)﹣32××[(﹣5)2×(﹣)﹣240÷(﹣4)×]
(8)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].
巩固练习
17.“十•一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)
日期1日2日3日4日5日6日7日
+1.8 ﹣0.6 +0.2 ﹣0.7 ﹣1.3 +0.5 ﹣2.4 人数变化
单位:万人
(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为万人;
(2)七天中旅客人数最多的一天比最少的一天多万人
(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?
18.王老师在一节数学课上讲解了二道例题:Array
请你参考黑板上王老师的讲解,用运算律简便计算:
(1)99×15;
(2)999×118+999×(﹣)﹣999×.
19.计算:
(1)﹣3+8﹣7﹣15;(2)1÷()×;
(2)(﹣0.25)×0.5×(﹣70)×4;(4)(+﹣)÷(﹣);
(5)﹣18×19;(6)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].
20.计算
(1)(﹣)+﹣(2)2﹣(﹣4)+8÷(﹣2)+(﹣3)
(3)(﹣24)×(﹣1﹣)(4)﹣9×(﹣11)÷(﹣3)÷(﹣3)
(5)42×(﹣)+(﹣)÷(﹣0.25);(6)﹣23﹣[﹣3+(﹣3)2÷(﹣)].
21.计算
(1);(2)[﹣42﹣(﹣3)2]÷(﹣5)
(3);(4).
课后
小结。