培优专题10分式总复习(含答案)
分式知识点总复习含答案

分式知识点总复习含答案一、选择题1.下列各式从左到右变形正确的是( )A .13(1)223x y x y ++=++ B .0.20.03230.40.0545a b a d c d c d --=++ C .a b b a b c c b--=-- D .22a b a b c d c d --=++ 【答案】C【解析】【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【详解】 A 、该式子不是方程,不能去分母,故A 错误;B 、分式中的分子、分母的各项没有同时扩大相同的倍数,故B 错误;C 、a-b b-a =d-c c-d故C 正确; D 、分式中的分子、分母的各项没有同时除以2,故D 错误.故选C .【点睛】本题考查了分式的基本性质,解题的关键是熟练运用性质.2.若2250(0)a ab b ab ++=≠,则b a a b +=( ) A .5B .-5C .5±D .2± 【答案】B【解析】【分析】根据题意,先得到225a b ab +=-,代入计算即可.【详解】解:∵2250(0)a ab b ab ++=≠,∴225a b ab +=-, ∴2255b a a b ab a b ab ab+-+===-; 故选:B.【点睛】本题考查了分式的化简求值,解题的关键是正确得到225a b ab +=-.3.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0【答案】B【解析】【分析】 根据分式的值为零的条件可以求出x 的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.在等式[]209()a a a ⋅-⋅=中,“[]”内的代数式为( )A .6aB .()7a -C .6a -D .7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.【详解】()01a -=Q ,则原式化简为:[]29a a ⋅=,∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.5.化简21644m m m+--的结果是( ) A .4m -B .4m +C .44m m +-D .44m m -+ 【答案】B【解析】【分析】根据分式的加减运算法则计算,再化简为最简分式即可.【详解】21644m m m+-- =2164m m -- =(4)(4)4m m m +-- =m+4.故选B.【点睛】 本题考查分式的加减.同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.熟练掌握运算法则是解题关键.6.人的头发直径约为0.00007m ,这个数据用科学记数法表示( )A .0.7×10﹣4B .7×10﹣5C .0.7×104D .7×105【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m ,这个数据用科学记数法表示7×10﹣5.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d【答案】B【解析】【分析】根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a ,b ,c ,d 的值,再比较大小即可.【详解】∵a =-0.22=-0.04,b =-2-2=14-,c =(-12)-2=4,d =(-12)0=1, -0.25<-0.04<1<4∴b <a <d <c故选B.【点睛】此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.8.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.9.已知24111P Q x x x =+-+-是恒等式,则( ) A . 2, 2P Q ==- B .2, 2P Q =-= C .2P Q == D .2P Q ==- 【答案】B【解析】【分析】 首先利用分式的加减运算法则,求得()()2111Q x x x P Q x Q P P ++-=-++-,可得方程组04P Q Q P +=⎧⎨-=⎩,解此方程组即可求得答案. 【详解】 解:∵()()()()()()22111411111P x Q x P Q x Q P P Q x x x x x x -++++-=+==+-+---, ∴()()4P Q x Q P ++-=,∴04P Q Q P +=⎧⎨-=⎩,解之得:22P Q =-⎧⎨=⎩, 故选:B .【点睛】此题考查了分式的加减运算、二元一次方程的解法以及整式相等的性质,解题的关键是掌握分式的加减运算法则.10.0000005=5×10-7故答案为:B.【点睛】本题考查的知识点是科学计数法,解题的关键是熟练的掌握科学计数法.11.若115a b =,则a b a b -+的值是( ) A .25 B .38 C .35 D .115【答案】B【解析】【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案.【详解】 解:∵115a b = ∴设11a x =,5b x = ∴11531158a b x x a b x x --==++ 故选:B【点睛】 此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.12.化简(a ﹣1)÷(1a ﹣1)•a 的结果是( ) A .﹣a 2B .1C .a 2D .﹣1 【答案】A【解析】分析:根据分式的混合运算顺序和运算法则计算可得.详解:原式=(a ﹣1)÷1a a-•a=(a ﹣1)•()1a a --•a =﹣a 2,故选:A . 点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.13.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.14.下列各分式中,是最简分式的是( ).A .22x y x y++ B .22x y x y -+ C .2x x xy + D .2xy y 【答案】A【解析】【分析】 根据定义进行判断即可.【详解】解:A 、22x y x y++分子、分母不含公因式,是最简分式; B 、22x y x y-+=()()x y x y x y +-+=x -y ,能约分,不是最简分式; C 、2x x xy+=(1)x x xy +=1x y +,能约分,不是最简分式;D 、2xy y =x y,能约分,不是最简分式. 故选A .【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.15.计算211a a a ---的正确结果是( ) A .11a -- B .11a - C .211a a --- D .211a a -- 【答案】B【解析】【分析】 先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【详解】 原式()211a a a =-+- 22111a a a a -=--- 11a =-. 故选B .【点睛】 本题考查分式的通分和分式的约分的运用,解题关键在于在解答的过程中注意符号的运用及平方差公式的运用.16.一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( ) A .4510⨯﹣B .5510⨯﹣C .4210⨯﹣D .5210⨯﹣【答案】D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】150000=0.00002=2×10﹣5. 故选D .【点睛】 本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.已知1112a b -=,则ab a b -的值是 A .12 B .-12 C .2 D .-2 【答案】D【解析】分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可. 解答:解:∵, ∴a ab -=, ∴=, ∴=-2.故选D .18.把分式a a b+中的,a b 的值同时扩大为原来的10倍,则分式的值( ) A .不变 B .缩小为原来的110C .扩大为原来的10倍D .扩大为原来的100倍【答案】A【解析】【分析】 根据分式的基本性质,把分式a a b+中的x 、y 的值同时扩大为原来的10倍得:1010=101010()a a a a b a b a b=+++,即可得到答案. 【详解】把分式a a b+中的x 、y 的值同时扩大为原来的10倍得:1010=101010()a a a a b a b a b=+++, 即分式a a b+的值不变, 故选:A .【点睛】 本题考查了分式的基本性质,正确掌握分式的基本性质是解题的关键.19.已知23x y =,那么下列式子中一定成立的是 ( ) A .5x y +=B .23x y =C .32x y =D .23x y = 【答案】D【解析】【分析】 根据比例的性质对各个选项进行判断即可.【详解】A. ∵23x y =,∴3x =2y ,∴ 5x y += 不成立,故A 不正确; B. ∵23x y =,∴3x =2y ,∴ 23x y =不成立,故B 不正确; C. ∵23x y =,∴23x y =y ,∴ 32x y =不成立,故C 不正确; D. ∵23x y =,∴23x y =,∴ 23x y =成立,故D 正确; 故选D.【点睛】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键. 更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a ,b ,c ,d ,且有b ≠0,d ≠0,如果a c b d=,则有a b c d =.20.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104B .0.715×10﹣4C .7.15×105D .7.15×10﹣5【答案】D【解析】。
八年级数学下册第10章《分式》精选好题(含答案)

第10章《分式》例题精选知识梳理重难点分类解析考点1 分式的概念及性质【考点解读】分式的概念主要内容包括分式的定义、分式有意义的条件、分式的值等;分式的性质包括分式的基本性质、通分和约分.中考中对该知识点要求较低,多以基础题的形式出现.例1 (2018·盐城)要使分式12x -有意义,则x 的取值范围是 . 分析:当分母20x -≠,即2x ≠时,分式12x -有意义. 答案: 2x ≠ 【规律·技法】若分式有意义,则分母不等于零.【反馈练习】1.分式29x -在实数范围内有意义,则x 的取值范围是 . 点拨:当分母不为0时,分式有意义.2.在代数式21331,,,2x xy a x y mπ+++中,分式的个数有( ) A. 2个 B. 3个 C. 4个 D. 1个点拨:根据分式是分母中含有字母的式子进行判断即可.考点2 分式的运算【考点解读】分式的运算包括分式的加减和分式的乘除,分式的基本性质是解决分式运算问题的关键,在中考中分式的运算多以计算题出现,属于简单题.例2 (2018·泰州)化简: 22169(2)11x x x x x -++-÷+-. 分析:本题考查分式的化简,先算括号内的减法,把除式分子和分母中多项式因式分解,同时把除法变为乘法再约分化简.解答:原式= 222(1)1(1)(1)3(1)(1)1[]11(3)1(3)3x x x x x x x x x x x x x x +-+-++---⋅=⋅=++++++【规律·技法】整式与分式进行运算时,常把整式化为分式形式后再进行通分.【反馈练习】3.化简:11(2)()a a a a ++÷-.点拨:先算括号内加减法,再利用除法法则把除法运算变为乘法运算,并且因式分解分式中复杂的因式最后约分化为最简分式.4. (2018·淮安)先化简,再求值: 212(1)11a a a -÷+-,其中3a =-.点拨:先把括号中的式子通分,再把除法转化为乘法进行化简,最后把a 的值代入化简后的式子计算求值.考点3 分式方程【考点解读】分式方程的解法主要利用转化的数学思想,即把分式方程转化为整式方程,再进行求解,转化过程中可能会出现增根,故在解分式方程时一定要检验.中考中常以简单的计算题出现,遗忘检验是失分的主要原因.例3 (2018·镇江)解方程: 2121x x x =++-. 分析:两边同时乘最简公分母,将分式方程转化为整式方程,然后解答,检验后确定方程的解.解答:两边同时乘(2)(1)x x +-,得(1)2(2)(2)(1)x x x x x -=+++-.去括号,得22242x x x x x -=+++-.移项、合开同类项,得42x =-.系数化为1,得12x =-.检验:当12x =-时,(2)(1)0x x +-≠.故12x =-是原分式方程的解. 【规律·技法】分式方程的解法主要用到转化的数学思想,通过方程两边同乘最简公分母,把分式方程化为整式方程后再进行求解,检验是解分式方程必不可少的步骤.【反馈练习】5.若关于x 的分式方程1244m x x x-=---有增根,则实数m 的值是 . 点拨:先去分母转化为整式方程,利用方程有增根,使分式方程的分母为0的x 的值,代入整式方程即可解决问题.6.解方程: 14555x x x-+=--.点拨:先去分母化为整式方程,再解方程,最后检验方程的根是否是增根.考点4 列分式方程解决问题【考点解读】列分式方程解决问题的关键是要找出问题的等量关系,根据等量关系列出方程从而解决问题,在解方程时要注意进行检验.例4 (2018·徐州)徐州至北京的高铁里程约为700 km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80 km/h, A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?分析:解题关键是找出解决问题的等量关系列出方程.设B 车行驶的时间为t h ,则A 车行驶的时间为1.4t h ,根据速度=路程÷时间得出关于t 的分式方程,解此分式方程并检验即可得出结论.解答:设B 车行驶的时间为t h ,则A 车行驶的时间为1.4t h.由题意,得700700801.4t t-=,解得t = 2.5.经检验,t = 2.5是所列方程的解.则1.4t = 3.5.故A 车行驶的时间为3.5h ,B 车行驶的时间为2.5h . 【规律·技法】行程问题的等量关系主要体现在速度、时间和路程的关系,如速度×时间=路程,路程÷时间=速度,路程÷速度=时间,掌握基本的等量关系是解题的关键.【反馈练习】7.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作多少件?点拨:本题考查了分式方程的应用,解题的关键是根据题意列出符合等量关系的分式方程并正确求解检验。
分式专题(含答案)

.分式专题一、分式定义,注意:判别分式的依据是分母中还有字母,分母不等于零。
1、在式子y x y x x c ab y a 109,87,65,43,20,13+++π中,分式的个数是( )个2.下列式子:x y a y x ab x 73),(51,89,97222++-,yx 2915-中,是分式的有( )个 二、分式基本性质1、填空:()yx xy ba -=---..............;2.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y; 322()x xy x y --=()x x y -. 3、把分式xyyx -中的x 、y 的值都扩大2倍,则分式的值( )A 不变B 扩大2倍C 扩大4倍D 缩小一半4、已知31=b a ,分式ba ba 52-+的值为 ;5、若32,234a b c a b ca b c-+==++则=_______. 6、不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) 三、分式无意义与有意义,1、当x 时,分式3213+-x x 无意义;2.在分式2242x x x ---中,当x ______时有意义.3.当x____时,分式||2x x -有意义.4.2(3)--x 的取值范围是_______.5. 当x_____________时,式子23+x x ÷322--x x 有意义 四、分式值为零,1、当x 时,分式392--x x 的值为0;2.使分式234x ax +-的值等于零的条件是x____.3.在分式2242x x x ---中,当x ____时分式值为零..__01||87.42=---x x x x ,则的值为若分式五、分式约分1.约分:34522748a bx a b x , 532164abc bc a - 22923a a a ---, xx x 52522--2.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( )个六、通分 1、分式222439xx x x --与的最简公分母是___ ___________. 2、分式yx 21,323x y,232xy x +的最简公分母是( ) 3、把下列各组分式通分 (1)243,2bac bd c (2),412-a 21-a七、分式运算 1、化简xy x x 1⋅÷的结果是( ) 2、22332p mn p n nm÷⎪⎪⎭⎫ ⎝⎛⋅; 3、aa a -+-21422; 4、112---x x x ; 5、⎪⎪⎭⎫ ⎝⎛--÷-x y xy x x y x 2222, 6.339322++--m m m m7 、先化简,再对a 取一个你喜欢的数,代入求值.221369324a a a a a a a +--+-÷-+-.8、先化简:⎪⎭⎫ ⎝⎛--÷-aa a aa 121 并任选一个你喜欢的数a 代入求值.9、先化简,再求值:1312-÷+x xx x ,其中31+=x .10、已知220x -=,求代数式222(1)11x x x x -+-+的值.11、 先化简,再求值: 3x +3 x ·⎝ ⎛⎭⎪⎫ 1 x -1 + 1 x +1 ÷ 6x ,其中x =1.12、先化简,再求值:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.八、分式方程,易错点:分式方程检验 1、解方程: (1)256x x x x -=--. (2)21411x x x +---=1. (3)12212+=++-x xxx x ,(4)6122x x x +=-+. (5)14143=-+--x x x ,(6)22333x x x -+=--,2、已知23(1)(2)12x A Bx x x x -=+-+-+,求A ,B 的值.3、已知分式方程21x ax +-=1的解为非负数,求a 的范围.4、已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围。
分式培优练习题(完整标准答案)

分式培优练习题(完整标准答案)分式(一)选择1.下列运算正确的是()。
A。
-4=1 B。
(-3)-1=1 C。
(-2m-n)2=4m-n D。
(a+b)-1=a-1+b-12.分式 y-z/x+z+x-y 的最简公分母是()。
A。
2 B。
C。
D。
23.用科学计数法表示的数-3.6×10-4写成小数是()。
A。
0. B。
-0.0036 C。
-0. D。
-0.若分式 x-2/x-5x+6 的值为 k,则 x 的值为()。
A。
2 B。
-2 C。
2或-2 D。
2或35.计算 |1+(1/x-1)/(x-1)| 的结果是()。
A。
1 B。
x+1 C。
x+1/x-1 D。
x/(x-1)6.工地调来 72 人参加挖土和运土,已知 3 人挖出的土 1 人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派 x 人挖土,其它的人运土,列方程①72-x=3x+72④=3.上述所列方程,正确的有()个。
A。
1 B。
2 C。
3 D。
47.在分式a/(x^2+2πx+y)+m/(x-2) 中,分式的个数是()。
A。
2 B。
3 C。
4 D。
58.若分式方程 (1-a)/(x-2)+(a+x)/(x-1)=3 有增根,则 a 的值是()。
A。
-1 B。
C。
1 D。
29.若 1/(11-ba)=1/(ab+ba)=-3,则 (a-b)/(a+b) 的值是()。
A。
-2 B。
2 C。
3 D。
-310.已知 b0,且ab≠0,其中第 7 个式子是 1/(a+7b),一组按规律排列的式子:-b^2/a,-b^5/a^2,-b^8/a^3,-b^11/a^4,……,其中第 n 个式子是 -b^(3n-2)/a^n。
若 7m=3,7n=5,则 72m-n=()。
A。
-1 B。
1 C。
2 D。
311.化简 (a^2-ab+b^2)/(a-b)^2.2.若 0<x<1,且 x+1/x=6,求 x-1/x 的值。
专题10 分式章末重难点题型(举一反三)-2019-2020学年八年级上册数学举一反三系列(人教版)(原卷版)

(2)当小刘出发时,求小张离 B 市还有多远.
【变式 9-1】(2019•云南模拟)在“要致富先修路”的思想指导下,近几年云南的交通有了快速的变化,特
别是“高铁网络”延伸到云南以后,许多地区的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们
外出旅行的重要交通工具.假期里小明和爸爸从昆明到某地去旅游,从昆明到该地乘汽车行驶的路程约为
A B
A( x B(x
1)2 1)2
D.
A B
A( x 2 B(x2
1) 1)
【变式 4-1】(2019 秋•龙口市期中)下列各式从左到右变形正确的是 ( )
A.
0.2a b a 0.2b
2a b a 2b
B.
3x 2x
2
3 1
y y
18x 4x
;(4)
x2 9 x3
.
【变式 2-2】(2019 秋•夏津县校级月考)若分式 x 1 x 3 有意义,求 x 的取值范围. x2 x4
【变式 2-3】(2018 秋•宜都市期末)若式子 2x 1 无意义,求代数式 ( y x)( y x) x2 的值. 3y 1
5
(1)求乙骑自行车的速度; (2)当甲到达学校时,乙同学离学校还有多远? 【考点 10 分式方程的应用之工程问题】 【例 10】(2019 秋•滦州市期中)列方程解应用题 某工程队修建一条1200m 的道路,由于施工过程中采用了新技术,所以工作效率提高了 50% ,结果提前 4 天完成任务. (1)求这个工程队原计划每天修建道路多少米? (2)这项工程,如果要求工程队提前两天完成任务,那么实际的工作效率比原计划增加百分之几? 【变式 10-1】(2018 秋•徽县期末)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改 造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数 的 1.5 倍.如果由甲、乙队先合作施工 15 天,那么余下的工程由甲队单独完成还需 5 天. (1)这项工程的规定时间是多少天? (2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙 两队合作完成该工程需要多少天? 【变式 10-2】(2018 秋•江北区期末)在我市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算: 甲队单独完成这项工程需要 30 天,若由甲队先做 10 天,剩下的工程由甲、乙合做 12 天可完成. (1)乙队单独完成这项工程需要多少天? (2)甲队施工一天,需付工程款 3.5 万元,乙队施工一天,需付工程款 2 万元.若该工程计划在 35 天内完 成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该 工程省钱? 【变式 10-3】(2019 春•西湖区校级月考)第 19 届亚洲运动会将于 2022 年 9 月 10 日至 25 日在杭州举行, 杭州奥体博览城将成为杭州 2022 年亚运会的主场馆.某工厂承包了主场馆建设中某一零件的生产任务,需 要在规定时间内生产 24000 个零件,若每天比原计划多生产 30 个零件,则在规定时间内可以多生产 300 个 零件. (1)求原计划每天生产的零件个数和规定的天数. (2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进 5 组机器人生产流水线 共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比 20 个工人原计划每天生产的零件总 数还多 20% ,按此测算,恰好提前两天完成 24000 个零件的生产任务,求原计划安排的工人人数. 【考点 11 分式方程的应用之利润问题】
分式培优练习题(完整标准答案)

分式 (一)一 选择1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 11-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 47 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 58 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 29 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -3 10 已知k b a c c a b c b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是2 7m =3,7n =5,则72m-n =3 ()2312008410-+⎪⎭⎫ ⎝⎛--+-= 4 若2222,2ba b ab a b a ++-=则= 三 化简 1 ()d cd b a c ab 234322222-∙-÷ 2 111122----÷-a a a a a a 3 ⎪⎭⎫ ⎝⎛---÷--225262x x x x 四 解下列各题1 已知b ab a b ab a b a ---+=-2232,311求 的值2 若0<x<1,且xx x x 1,61-=+求 的值 五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程 1 12332-=-x x 2 1412112-=-++x x x 七 2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式(二)一、选择题:1.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.132.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.473.已知226a b ab +=,且0a b >>,则a b a b +-的值为( ) A .2 B .2± C .2 D .2±二、填空题:4. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 5.若分式231-+x x 的值为负数,则x 的取值范围是__________. 6. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:7. 计算: ()3322232n m n m --⋅8. 计算 (1)168422+--x x x x (2)mn n n m m m n n m -+-+--2 9. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==- 10. 解下列分式方程.1412112-=-++x x x 11. 计算:(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++- 12.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值. 13.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).14. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速. 分式(三)一、填空题1、在有理式22xy ,πx ,11+a ,y x +1,122-m 中属于分式的有 .2、分式3-x 的值为0,则x= .3、分式x x 2-和它的倒数都有意义,则x 的取值范围是 .4、当_____=x 时,x --11的值为负数;当x 、y 满足 时,)(3)(2y x y x ++的值为32; 5、若分式y x y-3的值为4,则x,y 都扩大两倍后,这个分式的值为6、当x= 时,分式11+x 与11-x 互为相反数.7、若分式方程=-1x m 1-x -11有增根,则m= .8、要使方程=-11x a x -2有正数解,则a 的取值范围是9、+++)2)(1(1 x x )3)(2(1++x x +)2007)(2006(1.....+++x x =_____________10、若=a 3b 4=c 5,则分式222c b a acbc ab +++-=____________二、选择题11、已知m 、n 互为相反数,a 、b 互为倒数,|x|=2,则ab x x nm -++2的值为() A 、2 B 、3 C 、4 D 、512. 下列式子:(1)y x y x yx -=--122;(2)c a b a a c a b --=--;(3)1-=--b a ab ;(4)y x yx y x yx +-=--+-中正确的是 ( )A 、1个B 、2 个C 、3 个D 、4 个13. 下列分式方程有解的是( )A 、++12x 13-x =162-x B 、012=+x x C 、0122=-x D 、111=-x14. 若分式m x x ++212不论m 取何实数总有意义,则m 的取值范围是( )A 、m ≥1B 、m >1C 、m ≤1D 、m <115、晓晓根据下表,作了三个推测:①3-x-1x(x>0)的值随着x 的增大越来越小; ②3-x-1x (x>0)的值有可能等于2;③3-x-1x (x>O)的值随着x 的增大越来越接近于2.则推测正确的有( )A 、0个B 、1个C 、2个D 、3个16. 已知分式xyy x -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系( ) A 、相等 B 、互为相反数 C 、互为倒数 D 、乘积为-1 三、解答题17、化简:[22222a b a ab b -+++2ab ÷(1a +1b )2]·2222a b ab-+. 18、当21,23-==b a 时,求⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a +44的值. 19、A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a -1)米的正方形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高? (2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题20、观察以下式子:1112122132+→=+>,5527544264+→=+<,3354355555+→=+>, 773722232+→=+<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论.21、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?22、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,①这个八年级的学生总数在什么范围内?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?。
培优专题10 分式总复习(含答案)

13、分式总复习【知识精读】分式定义:(、为整式,中含有字母)性质通分:约分:分式方程定义:分母含有未知数的方程。
如解法思想:把分式方程转化为整式方程方法:两边同乘以最简公分母依据:等式的基本性质注意:必须验根应用:列分式方程解应用题及在其它学科中的应用A B A B A M B M M A B A M B M M x x A B B =⨯⨯≠=÷÷≠⎧⎨⎪⎪⎩⎪⎪-=+⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪()()005113【分类解析】1. 分式有意义的应用例1. 若ab a b +--=10,试判断1111a b -+,是否有意义。
分析:要判断1111a b -+,是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断a b -+11,与零的关系。
解: ab a b +--=10∴+-+=a b b ()()110即()()b a +-=110∴+=b 10或a -=10∴-+1111a b ,中至少有一个无意义。
2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。
例2. 计算:a a a a a a 2211313+-+--+-分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分离分式法”简化计算。
解:原式=+-+--+-a a a a a a ()()111313=-+-+-=-+--=--+++-=--+-a a a a a a a a a a a a a 1113111331132213()()()()()()()例3. 解方程:11765556222-++=-+-+x x x x x x 分析:因为x x x x 27616++=++()(),x x x x 25623-+=--()(),所以最简公分母为:()()()()x x x x ++--1623,若采用去分母的通常方法,运算量较大。
苏科新版八年级下册第10章《分式》培优训练题(含答案)

苏科新版八年级下册第10章《分式》培优训练试题一.选择题(共8小题)1.﹣3x()A.是一次二项式C.是整式B.是二次二项式D.不是整式2.某项工程,x人做需a天完成,若增加y人,则完成此工程所需天数是()A.ax+y 3.解分式方程A.x=2+3B.ax﹣y C.D.,去分母后得到()B.x=2(x﹣1)+3C.x(x﹣1)=2+3(x﹣1)D.x=3(x﹣1)+2 4.能使分式的值为正整数的所有x的值的和为()A.105.若关于x的方程A.k>0B.0=B.k<0C.﹣8D.﹣10有解,则k的取值范围是()C.k≠﹣1且k≠2D.k≠﹣1且k≠﹣26.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算7.如果x2﹣4x+1=0,那么的值为()A.B.C.D.8.已知不等式组至少有3个整数解,且分式方程则满足条件的所有整数a的绝对值之和为()=﹣4的解为非负数,A.16B.13C.17D.20二.填空题(共8小题)9.若分式的值为零,则x=.10.甲、乙两人做机械零件.甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.若设甲每小时做x个,则可列方程.11.对和进行通分,需确定的最简公分母是.12.若关于x的方程=无解,则a的值是.13.已知a+b=5,ab=3,14.已知+=3,求15.观察下列各等式:0<a<1,计算:=.=.,,…根据你发现的规律,=(n为正整数).16.已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则=﹣;②若c≠0,则(1﹣a)(1﹣b)=是.(填序号)三.解答题(共6小题);③若c=5,则a2+b2=15.其中正确的结论17.化简(数式的值.﹣)÷,并从﹣1,0,1,2中选择一个合适的数代入求代18.(1)先化简再求值:当a=2时求:(a﹣)÷的值.(2)已知,求实数A﹣B的值.19.(1)化简:(2)设S=都有一个S的值对应,可得下表:,a为非零常数,对于每一个有意义的x值,x S ……﹣3﹣2﹣11232567……仔细观察上表,能直接得出方程的解为.20.某商店3月份购进一批T恤衫,进价合计12万元.因畅销,商店又于4月份购进一批同品牌T恤衫,进价合计18.75万元,数量是3月份的1.5倍,但每件进价涨了5元.这两批T恤衫开始都以每件180元出售,到5月初,商店把剩下的100件打八折出售,很快售完.问商店共获毛利润(销售收入减去进价总计)多少元?21.甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?“ y z =22.材料:思考的同学小斌在解决连比等式问题: 已知正数 x 、 、 满足 = = ,求 2x ﹣y ﹣z 的值”时,采用了引入参数法 k ,将连比等式转化为了三个等式,再利用等式的基本性质求出参数 k 的值,进而得出 x 、y 、z 之间的关系,从而解决问题.过程如下:解:设= = =k ,则有 y +z =kx ,z +x =ky ,x +y =kz ,将以上三个等式相加,得 2(x +y +z )=k (x +y +z )∵x 、y 、z 都为正数∴k =2,即=2∴2x ﹣y ﹣z =0.仔细阅读上述材料,解决下面的问题:(1)若正数 x 、y 、z 满足= = =k ,求 k 的值;(2)已知 = ,a 、b 、c 互不相等.求证:8a +9b +5c =0.参考答案一.选择题(共8小题)1.【解答】解:是分式,故﹣3x不是整式,故选:D.2.【解答】解:每人的工作效率=,则(x+y)个人完成这项工程的工作效率是(x+y)•.故(x+y)个人完成这项工程所需的天数是1÷[(x+y)•]=(天).故选:D.3.【解答】解:去分母得:x=2(x﹣1)+3,故选:B.4.【解答】解:===,∵分式的值是正整数,∴当x=1时,原式=10;当x=0时,原式=5;当x=﹣3时,原式=2;当x=﹣8时,原式=1;1+0﹣3﹣8=﹣10.故选:D.5.【解答】解:方程的两边都乘以x(x﹣1),得x﹣1+2x=k,整理,得3x=k+1,所以x=由于x≠0,x≠1,∴≠0,≠1,∴k≠﹣1且k≠2.故选:C.6.【解答】解:设第一次大米的单价为a,第二次大米的单价为b,张阿姨两次购买的平均单价为,李阿姨两次购买的平均单价为则﹣=≥0.所以无论米价怎样变化都是李阿姨买的合算.故选:C.7.【解答】解:把x2﹣4x+1=0方程两边都除以x得,x+=4,两边平方得,x2++2=16,所以,x2+故选:C.=14,===.8.【解答】解:不等式组整理得:至,,由不等式组至少有3个整数解,得到a<4,=﹣4,分式方程去分母得:3x﹣a=﹣4(x﹣1),解得:x=,由分式方程的解为非负数,得到≥0,解得a≥﹣4,∵a<4且≠1,∴a=﹣4,﹣3,﹣2,﹣1,0,1,2,则满足条件的所有整数a的绝对值之和为4+3+2+1+0+1+2=13.故选:B.二.填空题(共8小题)9.【解答】解:由题意得:x2﹣1=0,且x﹣1≠0,解得:x=﹣1,故答案为:﹣1.10.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,故答案是:==..11.【解答】解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).12.【解答】解:分式方程去分母,可得a(x+1)=2x,即(a﹣2)x=﹣a,( +当 a =2 时,方程(a ﹣2)x =﹣a 无解;当 a ≠2 时,若 x =1,则 a ﹣2=﹣a ,即 a =1; 若 x =﹣1,则 2﹣a =﹣a (无解); 综上所述,a =2 或 1, 故答案为:2 或 1. 13.【解答】解:当 a +b =5、ab =3 时,原式====,故答案为:.14.【解答】解:∵ + =3,∴=3,则 a +b =3ab ,所以原式====﹣,故答案为:﹣.15.【解答】解:∵= ﹣ ,= ( ﹣ ),所以= (1﹣ ), = ( ﹣ ),…,= (﹣),∴原式= (1﹣ + ﹣ +…+﹣ )= (1﹣)=.16.【解答】解:∵实数 a 、b 、c 满足 a +b =ab =c ,∴若 c ≠0,则若 c ≠0,,即 = = = =﹣ ,故①正确;,故(1﹣a ) 1﹣b )=1﹣(a +b ) ab =1﹣ab +ab =1=,故②正确;若 c =5,则(a +b )2=c 2=25,即 a 2+2ab +b 2=25,故 a 2+b 2=25﹣2ab =25﹣2×5=15,故③正确;故答案为:①②③.三.解答题(共6小题)17.【解答】解:(﹣)÷===,当x=2时,原式=18.【解答】解:(1)(a﹣=.)÷===a﹣1,当a=2时,原式=2﹣1=1;(2)∵∴∴,,,∴解得,,,A﹣B=1﹣2=﹣1.19.【解答】解:(1)原式=[﹣]•=•==•;(2)将x=1、S=2代入S=,得:a=2,则分式方程为=,∴(x﹣3)2=16,则x﹣3=4或x﹣3=﹣4,解得x=7或x=﹣1,经检验x=7或x=﹣1均为分式方程的解,故答案为:x=7或x=﹣1.20.【解答】解:设3月份购进T恤衫x件,由题意得,﹣=5,解得;x=1000,经检验:x=1000是原分式方程的解,且符合题意,即:3月份购进T恤衫1000件;设3月份购进T恤衫的价格为y元/件,由题意得,1.5×=;解得y=120经检验:y=120是原分式方程的解,且符合题意,即:3月份购进T恤衫的价格为120元/件,所以4月份购进T恤衫的价格为125元,购买1500件,由题意得,(180﹣120)×1000+(180×0.9﹣125)×(1500﹣100)+(180×0.8﹣125)×100=13700(元),答:商店共获毛利润13700元.21.【解答】解:(1)设乙骑自行车的速度为xm/min,则公交车的速度是3xm/min,甲步行速度是xm/min,由题意得:﹣8=+.解得x=200.经检验x=200原方程的解答:乙骑自行车的速度为200m/min.(2)当甲到达学校时,乙同学还要继续骑行8分钟,所以8×200=1600(m).答:乙同学离学校还有1600m.22.【解答】解:(1)∵正数x、y、z满足===k,∴x=k(2y+z),y=k(2z+x),z=k(2x+y),∴x+y+z=3k(x+y+z),∵x、y、z均为整数,∴k=;(2)证明:设===k,则a+b=k(a﹣b),b+c=2k(b﹣c),c+a=3k(c﹣a),∴6(a+b)=6k(a﹣b),3(b+c)=6k(b﹣c),2(c+a)=6k(c﹣a),∴6(a+b)+3(b+c)+2(c+a)=0,∴8a+9b+5c=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13、分式总复习【知识精读】分式定义:(、为整式,中含有字母)性质通分:约分:分式方程定义:分母含有未知数的方程。
如解法思想:把分式方程转化为整式方程方法:两边同乘以最简公分母依据:等式的基本性质注意:必须验根应用:列分式方程解应用题及在其它学科中的应用A B A B A M B M M A B A M B M M x x A B B =⨯⨯≠=÷÷≠⎧⎨⎪⎪⎩⎪⎪-=+⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪()()005113【分类解析】1. 分式有意义的应用例1. 若ab a b +--=10,试判断1111a b -+,是否有意义。
分析:要判断1111a b -+,是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断a b -+11,与零的关系。
解: ab a b +--=10∴+-+=a b b ()()110即()()b a +-=110∴+=b 10或a -=10 ∴-+1111a b ,中至少有一个无意义。
2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。
例2. 计算:a a a a a a 2211313+-+--+- 分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分离分式法”简化计算。
解:原式=+-+--+-a a a a a a ()()111313=-+-+-=-+--=--+++-=--+-a a a a a a a a a a a a a 1113111331132213()()()()()()()例3. 解方程:11765556222-++=-+-+x x x x x x 分析:因为x x x x 27616++=++()(),x x x x 25623-+=--()(),所以最简公分母为:()()()()x x x x ++--1623,若采用去分母的通常方法,运算量较大。
由于x x x x x x x x x x 222225556561561156-+-+=-+--+=--+故可得如下解法。
解: x x x x x x 222561561156-+--+=--+ 原方程变为1176115622-++=--+x x x x ∴++=-+∴++=-+∴=176156765602222x x x x x x x x x经检验,x =0是原方程的根。
3. 在代数求值中的应用例4. 已知a a 269-+与||b -1互为相反数,求代数式()42222222222a b a b ab a b a ab b a b ab b a -++-÷+-++的值。
分析:要求代数式的值,则需通过已知条件求出a 、b 的值,又因为a a a 226930-+=-≥(),||b -≥10,利用非负数及相反数的性质可求出a 、b 的值。
解:由已知得a b -=-=3010,,解得a b ==31,原式=+-++-÷+-++[()()()]()42222a b a b a b ab b a a ab b ab a b b a=---+÷-+-++=---+⋅+-++=-++[()()()]()()()()()()()a b ab a b a b a b ab b ab a b b aa b ab a b a b ab a b a b a b b aa b a b222222221 把a b ==31,代入得:原式=1124. 用方程解决实际问题例5. 一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了倍,结果准时到达目的地,求这列火车的速度。
解:设这列火车的速度为x 千米/时根据题意,得450312450312x x x=+-. 方程两边都乘以12x ,得540042450030=+-x x解得x =75经检验,x =75是原方程的根答:这列火车原来的速度为75千米/时。
5. 在数学、物理、化学等学科的学习中,都会遇到有关公式的推导,公式的变形等问题。
而公式的变形实质上就是解含有字母系数的方程。
例6. 已知x y y =+-2332,试用含x 的代数式表示y ,并证明()()323213x y --=。
解:由x y y =+-2332,得3223xy x y -=+ ∴-=+∴-=+∴=+-322332232332xy y x x y x y x x ()()()()()323233226964321332323213x y y y y y y x y -=+--=+-+-=-∴--= 6、中考原题:例1.已知M x y xy y x yx y x y 222222-=--+-+,则M =__________。
分析:通过分式加减运算等式左边和右边的分母相同,则其分子也必然相同,即可求出M 。
解: 2222xy y x yx y x y --+-+ =-+-+-=-=-222222222222xy y x xy y x y x x y Mx y ∴=M x 2例2.已知x x 2320--=,那么代数式()x x x --+-11132的值是_________。
分析:先化简所求分式,发现把x x 23-看成整体代入即可求的结果。
解:原式=--+=-+--=-()()x x x x x x x 112113222x x x x 2232032--=∴-=∴=-=原式x x 2327、题型展示:例1. 当x 取何值时,式子||x x x -++2322有意义当x 取什么数时,该式子值为零 解:由x x x x 232120++=++=()()得x =-1或-2所以,当x ≠-1和x ≠-2时,原分式有意义由分子||x -=20得x =±2当x =2时,分母x x 2320++≠当x =-2时,分母x x 2320++=,原分式无意义。
所以当x =2时,式子||x x x -++2322的值为零 例2. 求x m n x mn x m n x mn x m x n 222222---+--⋅--()()的值,其中x m n ===-2312。
分析:先化简,再求值。
解:原式=-++-⋅+-+-()()()()()()()()x m x n x m x n x m x m x n x n =--()()x m x n 22 x m n x m x n m n ===-∴===-=-2312231416,,,∴=--=--原式()()()()x m x n m m n n 222223 ==-⨯-=m n 2222414416916()()【实战模拟】1. 当x 取何值时,分式2111x x+-有意义2. 有一根烧红的铁钉,质量是m ,温度是t 0,它放出热量Q 后,温度降为多少(铁的比热为c )3. 计算:x y y x y x y y x ++-+-2424422224. 解方程:x x x x x x x x ++-++=++-++214365875. 要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天。
现在甲、乙两人合作2天后,再由乙单独做,正好按期完成。
问规定日期是多少天6. 已知43602700x y z x y z xyz --=+-=≠,,,求x y z x y z+--+2的值。
【试题答案】1. 解:由题意得x x≠-≠⎧⎨⎪⎩⎪0110 解得x ≠0且x ≠1∴当x ≠0且x ≠1时,原式有意义2. 解:设温度降为t ,由已知得:Q mc t t t t Qmct t Q mc =--==-()000答:温度降为()t Q mc0-。
3. 分析:此题的解法要比将和后两个分式直接通分计算简便,它采用了逐步通分的方法。
因此灵活运用法则会给解题带来方便。
同时注意结果要化为最简分式。
解:原式=+-+-++-()()()()x y x y y x y x y y x y x 224242222 =--+-=+-+-=-+-=+x x y x y x y x y x x y x y x y x y x x y x y x y x x y2232222242224222222()()()()()()()4. 解:原方程化为111113115117++--+=++--+x x x x ∴+-+=+-+11131517x x x x 方程两边通分,得213257()()()()x x x x ++=++ ∴++=++()()()()x x x x 5713化简得832x =-解得x =-4经检验:x =-4是原方程的根。
说明:解分式方程时,在掌握一般方法的基础上,要注意根据题目的特点,选用简便的方法,减少繁琐计算。
5. 分析:设规定日期是x 天,则甲的工作效率为1x ,乙的工作效率为13x +,工作总量为1解:设规定日期为x 天根据题意,得2113231()x x xx +++-+=解得x =6经检验x =6是原方程的根答:规定日期是6天。
6. 解: 436012702x y z x y z --=++=()(), 由(1)(2)解得x zy z ==⎧⎨⎩32∴+--+=+--+=x y zx y z z z z z z z 23232243。