Saleae 8通道24M采样逻辑分析手册

合集下载

PAB LAH_20140622(1)

PAB LAH_20140622(1)

大众汽车康采恩-零件设计任务书副驾驶气囊技术开发, 康采恩设计任务书: LAH.DUM.880.BASchneider, Ullrich / Gerstenberger, Michael /作者Havelka, Petr / Alsleben, Uwe / Linder, Leo / Bartels, Bettina 部门EKSR-2 / 1565电话35125手机传真5735125电子邮件*******************************第一版17.10.2008更改状态27.01.2014设计任务书版本 1.4分发者:Günther, Jan (K-BI-1/1)Bosch, Jens (EKSR)Meisel, Michael (I/EK-52)Alsleben, Uwe (SE/EK-50)Kucera, Miroslav (TKP)Miodek, Thomas (Porsche AG)Jähn, Norbert (NE-KC)[I: BT-LAH-941]更改文件目录1.前言1.1总要求2.总体项目指导准则2.1 对供应商的要求2.2 目标设定2.3 零件任务分配2.3.1 目标车辆2.3.2 零件使用地点及目标市场2.3.3 零件变体形式管理2.4 产品开发及供货范围2.4.1 技术变更2.5 报价范围2.6 产品开发流程2.6.1 时间进度及里程碑节点2.6.1.1 整体进度计划2.6.1.2 团队组织及任务分工2.6.1.3 待办事项清单(待定问题清单)2.6.2 项目跟踪的一些指标2.6.3 样件版本及样件数量2.6.4 型式实验及型式认证2.7 质量及可靠性2.7.1 质量管理理念2.7.2 风险管理(FMEA和FTA)2.8专业部门和具体项目对DMU数据模型的指导准则2.9 关于产品数据管理的技能要求3.项目管理及项目组织3.1 项目管理及项目组织规划中的责任划分3.2 文档管理3.2.1 样件信息文档3.2.2 数据交换3.2.2.1 数据环境设施4.系统环境4.1 功能性系统环境4.2 物理性系统环境4.2.1 标准件及重复件的使用4.3 系统布线图5.技术要求5.1 零件名称及零件号5.1.1 零件履历5.1.2 零件标签5.1.2.1可追溯性5.1.2.2 实验样件及模型样件5.1.2.3 批量样件及替代样件5.1.2.4 惰性模块5.2 结构框图及原理图5.3 功能5.3.1 功能描述5.3.1.1 气囊点爆充满时间5.3.1.2 气体发生器5.3.1.3 气袋5.3.1.4 气囊壳体5.3.1.5 气袋盖板5.3.1.6 仪表板5.3.2 操作错误5.3.3 紧急模式5.4 结构图5.5 控制器策略5.6 电特性要求5.6.1 接插头布置5.6.2 接地连接5.6.3 惰性模块结构5.7具体特征数据5.8 安全要求5.8.1 人员及乘员安全5.8.1.1 乘员保护指标5.8.1.2 OoP(假人离位实验)时乘员所受载荷5.8.1.3 假人坐姿的变换5.8.1.4 燃烧及起火隐患5.8.2 车辆安全5.9 代用模块以及未来模块改款5.10 重量目标5.11 安装5.11.1 安装点和安装位置5.11.2 装配策略5.11.3 几何轮廓5.11.4 公差5.12 模块造型及设计5.13 人机工程学5.13.1 外观及触觉效果5.13.2 声学5.13.3 搬运5.14 技术材料要求5.15 对介质的抗性及化学要求5.15.1 清洁度要求5.15.2 清洁5.15.3 耐腐蚀保护5.15.4 保护等级5.16 环境可持续性5.16.1 材料选型5.16.2 回收方案5.16.3 生态平衡5.17 机械要求5.17.1 负载能力5.17.2 振动载荷下的表现5.17.3 刚度及弹性强度5.17.4 扭曲及变形5.17.5 压力5.18 寿命5.19 总要求5.19.1 总要求描述5.20 气候要求5.21 服务要求5.22 运输保护5.23 物流要求5.23.1 运输法规评级5.23.2 包装5.23.3 JIT零件的批量供货及系统供货5.24 质量保证要求5.24.1 产品监控及过程监控5.24.2 缺陷件分析5.24.3 批量监控6.实验要求6.1 实验器材及辅料6.1.1 定位网格6.2实验完成及合格证明6.2.1 实验文档管理6.3 实验计划6.3.1启动HWZ(辅助模具)的实验认可矩阵(P-F/X-认可)6.3.2 启动SWZ(批量模具)的实验认可矩阵(B-F认可)6.3.2.1 “Module-only”点爆实验6.3.2.2 系统点爆实验(仪表板及气囊)6.3.2.3 针对3岁假人及6岁假人的OoP离位实验矩阵(仅针对北美)6.3.3 针对TE及Q车身的实验认可矩阵6.3.4 BMG认可实验矩阵6.3.4.1 模块点爆实验6.3.4.2系统点爆实验(仪表板及气囊)6.3.4.3 气囊模块牢固性验证实验矩阵(多次装配)6.3.4.4 气袋牢固性动态验证实验矩阵6.3.4.5针对3岁假人及6岁假人的OoP离位实验矩阵(仅针对北美)6.3.5 针对右侧驾驶位车型的认可实验矩阵(RL)6.3.6 针对气囊技术更改的认可实验矩阵6.4 测量6.4.1 飞溅物测量6.4.2 点爆噪音测量6.4.3 扩展实验测量6.4.4 耐久检验6.5 实验时的数据测量6.5.1 摄像及测量技术要求6.6 实验样件的特性6.7 操作状态6.8 数字模拟及仿真计算6.9 整车试验7.定义、概念及缩写7.1 定义7.2 缩写8.参考文档8.1 图纸、规划图、轮廓图;方案变种谱图8.1.1 几何描述、CAD数据质量要求8.1.2 图纸及数据要求8.1.2.1 草案设计8.1.2.2 结构设计8.1.3 针对外部公司的CAD要求8.2 技术标准8.3 型式认证实验、规则、法规、耗用实验8.3.1 法规8.3.2 规定及耗用实验8.4 设计任务书总揽8.4.1 文档优先级8.4.2 核对清单8.5 关于专利及许可证8.6 其它文档9.附件9.1 关于气囊台架实验数据的评价表9.2 实验数据(视频及照片)9.3 开发费用表格9.4 认可程序文档9.4.1 里程碑检查表9.4.2 认可程序文档9.5 关于副驾驶气囊模块的详细描述清单9.6 气囊模块评价清单1.前言[I: BT-LAH-4]该产品设计任务书的编制(BT-LAH)基于VDA产品要求规范(www.vda-qmc.de)的模块2内容,对产品开发提出了具体要求。

Saleae逻辑分析仪应用手册

Saleae逻辑分析仪应用手册

Saleae逻辑分析仪应用手册本教程通过图文并茂的方式来讲解,Saleae的用途和实际应用方法一、什么是逻辑分析仪:逻辑分析仪是一种类似于示波器的波形测试设备,它通过采集指定的信号,并通过图形或者数据统计化的方式展示给开发人员,开发人员通过这些图形化时序信号按照协议来分析硬件或者软件中的错误。

逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速定位错误,发现并解决问题,达到事半功倍的效果,尤其在分析时序,比如 1wire、I2C、UART、SPI、CAN等数据的时候,应用逻辑分析仪解决问题非常快速。

以下是一个 Saleae分析一个 UART通信时序和一个 IIC时序的典型例子:从图中我们可以清晰的看到, UART通信在波特率 9600下面,清晰的显示出十六进制数字 0xA9,而下边的 IIC信号一个读数据的时序过程,通道 1是 SDA,通道 2是 SCL,在 1通道中清楚的显示出来,绿点表示起始位,红点表示结束位,第一个是往 0x90这个器件地址写数据 (w是 write的意思 ),第二个表示要读取的地址是 0x40,第三个数据是重新发送器件地址并且是读数据,第 4个字节即读到的数据 0xA9。

是不是感觉非常方便快捷呢。

二、软件安装以及软件基本应用首先安装 logic software,软件在光盘里有配套,同时也可以到官方网站下载,下载地址是: /downloads。

这里有各种系统版本支持,请下载你所需要的系统支持版本:下载完后,直接双击安装。

安装完后,会在桌面出现一个快捷方式:双击快捷方式,进入后,会出现以下界面:这个逻辑分析仪软件在没有插入硬件的时候,最上边显示的是 Disconnected,可以进行模拟运行 (start simulation),用鼠标点一下后会出现一个模拟的波形,如果你提前设置协议的话 (如何设置协议,后边会讲),他还会产生符合你协议的波形呢 ~!当然,非真实测到的波形,可以让你提前体验一下,点鼠标左键放大波形,右键缩小波形,滚动鼠标滑轮也可以放大和缩小波形,没有使用硬件之前可以提前体验一下。

逻辑分析仪使用教程

逻辑分析仪使用教程

声明: 本文来自另外,将68013制作逻辑分析仪的原理说明简单整理了一下,大家可以看看,如果想DIY也就不难了。

点击此处下载ourdev_578200.pdf(文件大小:203K)(原文件名:逻辑分析仪开发手册.pdf)前言一、什么是逻辑分析仪二、使用介绍三、安装说明四、Saleae软件使用方法五、逻辑分析仪硬件安装六、使用Saleae分析电视红外遥控器通信协议七、使用Saleae分析UART通信八、使用Saleae分析IIC总线通信九、使用Saleae分析SPI总线通信十、Saleae逻辑分析仪使用问题和注意事项/item.htm?id=6293581805淘宝地址:/item.htm?id=6293581805 (原文件名:21.jpg)前言:工欲善其事,必先利其器。

逻辑分析仪是电子行业不可或缺的工具。

但是由于一直以来,逻辑分析仪都属于高端产品,所以价格居高不下。

因此我们首先要感谢Cypress公司,提供给我们68013这么好的芯片,感谢俄罗斯毛子哥将这个Saleae逻辑分析仪开源出来,让我们用平民的价格,就可以得到贵族的待遇,获得一款性价比如此之高的逻辑分析仪,可以让我们在进行数字逻辑分析仪的时候,快速查找并且解决许多信号、时序等问题,进一步提高我们处理实际问题的能力。

原本计划,直接将Saleae的英文版本使用手册直接翻译过来提供给大家,我花费半天时间翻译完后,发现外国人写的东西不太符合我们国人的思维习惯,当然,也是由于我的英语水平有限,因此,我根据自己摸索这个Saleae的过程,写了一份个人认为符合中国人习惯的Saleae,提供给大家,希望大家在使用过程中少走弯路,快速掌握使用方法,更快的解决自己实际遇到的问题。

由于个人水平有限,因此在文章撰写的过程中难免存在问题和错误,如果有任何问题,希望大家能够提出来,我会虚心接受并且改进,希望通过我们的交流,给越来越多的人提供更加优秀的资料,共同进步。

ZRtech Saleae 24M 8CH 逻辑分析仪 使用说明

ZRtech Saleae 24M 8CH 逻辑分析仪 使用说明

一,软件的安装以及基本使用1,首先安装软件Logic Setup 1.1.4 (32-bit),可从/downloads 下载,还有支持其他操作系统的软件版本,可对应下载。

2,安装完毕之后启动一下我们可以到可以看到以下界面:这个软件在没有接入硬件的时候可以模拟运行,我们可以看到。

点一下START SIMULATION就可以看到波形,这时候的只是软件根据你设置的要分析的协议(如果你已经设置的话)模拟出来的,随机产生的。

如下图:用鼠标的左键点图形将实现ZOOM IN 放大,右键是ZOOM OUT 缩小,如果使用的是三论鼠标,可以使用中键进行放大缩小。

我们也可以移动底部的滑动条来查看波形。

3,安装完毕后插入硬件,出现找到新硬件提示,如下点自动搜索驱动。

之后就能完成驱动加载。

在安装驱动的最后一步,询问你是否从新启动系统,你可以点否,不用重新启动就可以使用。

此时驱动安装完毕。

4,再次启动软件会发现,我们看到现在按钮的名字变成了START 而不是没有接硬件之前的START SIMULATION。

这时候点START 将实现8 路逻辑信号的采集。

二,关于采样深度和采样率在软件的左上方有两个下拉选项,左边一个是采样深度,右边一个是采样速率。

采样深度就是你总共要采集多少数据,图上的25M 标示每路都采集25MBIT ;采样速率更好理解,就是一秒采集多少次。

比方说我们采集深度是1M 采样速率也是1M,那总的采集时间就是1 秒。

采集一秒后自动停止采集,并在界面上显示波形。

三,关于波形信息1 在软件界面的右上方有波形信息,可以通过点击(齿轮图标)来选择自己感兴趣的参数。

如下图:2,以下图为例,看一下具体参数都是什么含义:Width :是图中的时间长度.Period :是图中的周期,也就是说将这个电平单独分析,其周期是多少。

而接下来的DUTY Cycle 自然就是这个电平作为一个周期来分析,其占空比为多少。

FREQUENCY,当然就是周期的倒数。

Logic4, 8 , Pro8及Pro16逻辑分析仪规格

Logic4, 8 , Pro8及Pro16逻辑分析仪规格

42×42×10mm 31g
松川智能技术
1
Logic 8 / Logic Pro 8 Logic 8 Logic Pro8
Logic Pro 16 Logic Pro16
8 1MΩ 10pF ຫໍສະໝຸດ 25V8 1MΩ 10pF ±25V
16 1MΩ 10pF ±25V
100Ms/s 25MHz 1.8V~5.5V 支持(直接) Hi:1.2V Low:0.6V 1ppm ±10ns
500Ms/s 100MHz 1.2V~5.5V 支持(直接) 0.6/0.9/1.65V 可选 1ppm ±2ns
500Ms/s 100MHz 1.2V~5.5V 支持(直接) 0.6/0.9/1.65V 可选 1ppm ±2ns
Hi:2.0V Low:0.8V 1ppm ±83ns
10Ms/s 1MHz 0V~5V 8.0bits 或更好 -50dB (更好) -50dB (更好) 1ppm 53×53×12mm 60g USB2.0
50Ms/s 5MHz -10V~10V 10.0bits 或更好 -50dB (更好) -50dB (更好) 1ppm 53×53×12mm 60g USB3.0
50Ms/s 5MHz -10V~10V 10.0bits 或更好 -50dB (更好) -50dB (更好) 1ppm 92×92×15mm 220g USB3.0
松川智能技术专有资料
Saleae 2014 新产品技术资料
Logic 4 Logic 4 输 入 1 3 1MΩ 10pF ±25V 数字/模拟通道 纯数字通道 输入阻抗 输入容值 输入保护 数字输入 采样率(最大) 最快数字信号 逻辑电压 RS232 422/3 接口 门槛电压 精确度 时间精准度 模拟输入 采样率(最大) 带宽(-3dB) 输入电压范围 ENOB 尼奎斯衰减 通道间串扰 精确度 物理特性 尺 寸 重 量 USB 接口 USB2.0 6Ms/s 600KHz 0V~5V 7.0bits 或更好 -50dB (更好) -50dB (更好) 1ppm 12Ms/s 3MHz 1.8V~5.5V 支持(直接)

高精度ADCAD7734在8通道数据采集系统中的应用

高精度ADCAD7734在8通道数据采集系统中的应用

Abstract: In the field of instr uments used for construction qualit y supervision and test, high precisio n A DC is the essent ial par t. T he design and the r ealization of 8 channels data acquisitio n system w ith high pr ecision ADC AD7734 are int roduced in this pa per. A t first, the basic char acter istics and the t ypical applicatio n are intro duced abo ut this AD C chip, true 16 bit p p resolution is achievable w ith a to tal conver sion t ime o f 500 s ( 2 kHz channel sw itching) , making it ideally suit able for high r eso lutio n mult iplex ing applications. A nd then, 8 channels par allel acquisit ion scheme is desig ned with max imum 1 k sam pling rat e based on this chip. F inally after testing , the system no ise is about 0. 22 m V and the f requency of sinuso ida l sig nal abo ut 450H z can be cor rectly analy zed, sampled throug h 1 kHz. Keywords: A D7734; data acquisitio n; dy nam ic test

Saleae Logic Pro16中文规格书

Saleae Logic Pro16中文规格书
VCD 和 MATLAB • 多平台工作:Windows, Linux, OSX
应用场合:
• 固件调试 • FPGA 调试 • 功能确认 • 性能分析 • 逆向工程 • 协议解析 • 数据记录
产品描述:
Saleae 16 通 道 增 强 型 USB 逻 辑 分 析 仪 (Logic Pro16)每一通道可以用作数字记录, 也可以用作模拟记录.该设备通过 USB 与电 脑连接,采用 Saleae 逻辑分析软件来记录与 查看数字/模拟信号.
一般应用肜高速 USB 2.0 即可满足要求,但最大采样率则需要 USB 3.0 接口. Saleae 逻辑分析仪软件下载地址:
/product.show.asp?id=504&typeid=139
采样缓冲器的限制:
最大记录长度由以下因素决定: 被激活的记录信号的密度,电脑提供给逻辑分析仪软件的
逻辑分析仪是一种用来记录与查看数字信 号的调试工具,它与被测设备(DUT)相连,高 速采样 DUT 的数字信号,这些采样信号被存 在采样缓冲器,在全部捕捉后,缓冲器的数 据显示在电脑上,以供查看.
逻辑分析仪在嵌入式应用的调试中非常强 大.在大部分应用中,开发者需要写代码来 实现微控制器与其它设备之间的各种通信, 包括串行通信、I2C 与 SPI.为了确认固件中 的功能与诊断错误,逻辑分析仪被连接到数 字 IO 口,进行通信与记录.记录结果将显示 在电脑上,开发者能看到实际的设计结果, 用它与理想的目标相比较,从而缩小与解决 问题,确认最终的设计是正确的.
过压保护:
新一代 Saleae 逻辑分析仪(Logic4, Logic8, Logic Pro8 和 Logic Pro16)的输入引脚有 电压保护功能,只要被采样信号在-25.00V 到+25.00V 这个范围,该设备都能正常工作. Logic4 与 Logic8 的模拟输入被限制在+0V 到+5V 之间,并且将在该范围内饱和运行. Logic Pro8 与 Logic Pro16 的模拟输入被限制在-10V 到 10V 之间,并且将在该范围内饱和运行.

逻辑分析仪使用教程

逻辑分析仪使用教程

声明: 本文来自分析仪开发手册.pdf)前言一、什么是逻辑分析仪二、使用介绍三、安装说明四、Saleae软件使用方法五、逻辑分析仪硬件安装六、使用Saleae分析电视红外遥控器通信协议七、使用Saleae分析UART通信八、使用Saleae分析IIC总线通信九、使用Saleae分析SPI总线通信十、Saleae逻辑分析仪使用问题和注意事项淘宝地址:(原文件名:21.jpg)前言:工欲善其事,必先利其器。

逻辑分析仪是电子行业不可或缺的工具。

但是由于一直以来,逻辑分析仪都属于高端产品,所以价格居高不下。

因此我们首先要感谢Cypress公司,提供给我们68013这么好的芯片,感谢俄罗斯毛子哥将这个Saleae逻辑分析仪开源出来,让我们用平民的价格,就可以得到贵族的待遇,获得一款性价比如此之高的逻辑分析仪,可以让我们在进行数字逻辑分析仪的时候,快速查找并且解决许多信号、时序等问题,进一步提高我们处理实际问题的能力。

原本计划,直接将Saleae的英文版本使用手册直接翻译过来提供给大家,我花费半天时间翻译完后,发现外国人写的东西不太符合我们国人的思维习惯,当然,也是由于我的英语水平有限,因此,我根据自己摸索这个Saleae的过程,写了一份个人认为符合中国人习惯的Saleae,提供给大家,希望大家在使用过程中少走弯路,快速掌握使用方法,更快的解决自己实际遇到的问题。

由于个人水平有限,因此在文章撰写的过程中难免存在问题和错误,如果有任何问题,希望大家能够提出来,我会虚心接受并且改进,希望通过我们的交流,给越来越多的人提供更加优秀的资料,共同进步。

一、什么是逻辑分析仪:逻辑分析仪是一种类似于示波器的波形测试设备,它通过采集指定的信号,并通过图形或者数据统计化的方式展示给开发人员,开发人员通过这些图形化时序信号按照协议来分析硬件或者软件中的错误。

逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速定位错误,发现并解决问题,达到事半功倍的效果,尤其在分析时序,比如1wire、I2C、UART、SPI、CAN等数据的时候,应用逻辑分析仪解决问题非常快速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Saleae minilogic 24M 8CH 逻辑分析仪使用手册
MIRROROK
QQ 4641452 /ite m.htm?id=12378862970
注意本逻辑分析仪需要PC具有USB2.0接口,如果是较老计算机或者笔记本慎用!!
信号输入幅度:2V-5V
采用频率0-24MHZ
一、软件的安装
1,首先安装软件Logic Setup 1.1.4 (32-bit),可从/downloads
下载,还有支持其他操作系统的软件版本,可选择对应的操作系统下载
2,选取安装的软件Logic Setup 1.1.4 (32-bit).exe,双击进行安装:
3.选择NEXT,进入下一步:
4.按照上图选择后,点击NEXT,出现下面界面
默认安装路径已经设置在C:\PROGRAM FILES\SALEAE LLC,不选的话按照默认的安装目录,此时选择NEXT;也可以设置自己设定的目录.
5.安装过程可能需要1-2分钟
6.安装完成后出现下面界面:
7.安装完毕之后启动一下我们可以到可以看到以下界面:
二、基本使用方法:
在没有连接MINILOGIC的时候软件处于模拟状态Simulation,此时可以进行软件的信号模拟;
2.1选取 Analyzers右侧的加号 + 如下图
提示增加一个协议分析 Add a protocol analyzer
2.2出现右侧一组协议分析类型共7种如下:
CAN,I2C 1-WIRE ASYNC SERIAL,SPI,INI/O,I2S/PCM; 协议类型简介:请看附件选取I2C 协议类型,如下图
选择模拟I2C,出现分析设置界面:
选取默认设置,SDA信号模拟在通道0,SCL信号模拟在通道1,地址显示设置选用默认的。

完成后界面通道0处显示SDA,通道1处显示SCL,如下图;在右侧下部出现I2C 的设置:
2.3模拟仿真
选取Start Simulation开始启动仿真
软件开始模拟采样sampling
采样完成出现下面界面:
使用鼠标的滑轮,向上可以放大波形;向下可以缩小波形;
三、信号测量实战:
我第一个测试来测出A TMEGA128核心板的GPIO波形。

3.1、硬件连接:
首先找到开发板的联接器上相应的脚。

这里我们选取测试PA口的8个信号线PA0—PA7进行测试.首先找到板子上的PA0 ---PA7
如上图右上部分,按照接口的CH0-CH7 对应PA0—PA7接好后检查一下对应关系,CH0--PA0,CH1—PA1,CH2—PA2,CH3—PA3,CH4—PA4,CH5—PA5,CH6—PA6,CH7—PA7;地线2个接到板子对应的管脚;全部接好以后如下图所示,连接成功后在上电!!
注意一下:这里接线的对应关系一定要对应!!
3.2、选择采样频率和采样数据大小。

在SL软件的左上角设置。

采样频率取决具体的应用,这个分析仪最高到24MHz的采样频率。

基本上低速的总线,Uart/I2C/SPI/CAN总线基本可以了。

采样数据大小决定采样时间
3.3 设置采样类型.
连接成功后,
由于我们采集的对象是GPIO口PA0-PA7 不是具有协议的CAN ,I2C等接口,因此可以不要设置接口的类型,为了使用方便我们修改下显示的通道对应的名称,这里我们将通道CHANNEL0—7修改成PA0—PA7:
修改的方法可以使用鼠标点击Channel0的字符如下图可以输入PA0,ENTER键确认,其余的类似
修改完成如下图:默认采用channel0 的上升沿触发
3.4、开始启动采集数据,选取Start
软件开始采样一段时间
采样完成如下图:
下面说明一下采集信号的触发方式:
每个通道有4种触发方式从左到右分别为上升沿触发,高电平触发,下降沿触发
,低电平触发。

此时PA0的上升沿触发方式为高亮,说明是选中了上升沿触发方式!!
特别提醒采集信号至少有一路的触发方式需要设置,可能每路的触发方式也不同,需要根据实际的情况灵活设置,本例采用了默认的PA0即通道0的上升沿触发。

3.5、数据分析
数据采样完成就是数据分析了,看下刚才采集的信号,信号很好,没有毛刺出现!
如果一时看不到波形,有可以是波形在后面或被缩小,可以用鼠标左侧点击放大波形,或右侧点击缩小波形,更方便是用鼠标滚轮滚动来放大或缩下,或拖动界面下面的滚动条来查看。

将波形展宽:鼠标左键将标尺位置指向一个正向脉宽
此时右侧测量的窗口处出现:
WIDTH 脉冲宽度
Period 脉冲周期
Frequency 脉冲频率
Width :是图中的时间长度
.Period :是图中的周期,
也就是说将这个电平单独分析,其周期是多少。

而接下来的DUTY Cycle 自然就是这个电平作为一个周期来分析,其占空比为多少。

FREQUENCY,当然就是周期的倒数。

上图中T1 T2 是2个水平标尺选取后可以设置T1的水平位置和T2的水平位置,可以方便的测试2个脉冲边沿的间距宽度。

如下图所示。

相关文档
最新文档