分析化学吸光光度法

合集下载

分析化学-吸光光度法的灵敏度与准确度

分析化学-吸光光度法的灵敏度与准确度

1吸光光度法的灵敏度与准确度灵敏度的表示方法1.摩尔吸光系数 (ε)A= ε b c ε=A/bc (L·mol -1·cm -1)ε 越大, 灵敏度越高:ε <104 为低灵敏度;104~105 为中等灵敏度;ε >105为高灵敏度.9.39.3.122. Sandell(桑德尔)灵敏度 (S )定义定义::截面积为1cm 2的液层在一定波长或波段处的液层在一定波长或波段处,,测得吸光度为0.001时所含物质的量时所含物质的量。

用S 表示表示,,单位:µg ·cm -2A = ε bc =0.001 bc =0.001/ εS 小灵敏度高灵敏度高;; ε 相同的物质, M 小则灵敏度高.3210==(g/cm ) 10.00MMS µεε×变换单位:b cm c mol/L=bc M 106 µg/1000cm 23例1 邻二氮菲光度法测铁ρ(Fe)=1.0mg/L,b =2cm , A =0.38 计算ε 、S 和解:c (Fe)=1.0 mg/L=1.0×10-3/55.85 =1.8×10-5(mol·L -1)E 1%1cm 4-1-1-50.38==1.110L mol cm 2 1.810ε×⋅⋅××()S =M /ε=55.85/1.1×104=0.0051 (µg /cm 2)321g/cm 2cm 0.001==0.0051g/cm 0.38S µµ××或4c =1.0mg/L=1.0×10-3 g /1000mL = 1.0×10-4 g/100mL1%1cm=A Eb c⋅⋅-111%cm-431=0.38/2.010=1.910100mL g cm E −××⋅⋅()1%1cm53=10=1.110/55.85 /M =9101.Eε××或5例2 比较用以下两种方法测Fe 的灵敏度.B. 用4,7-二苯基邻二氮菲光度法测定铁ε533=2.2×104 L·mol -1·cm -1S = 55.85/(2.2×104)=0.0025 (µg ·cm -2)B 方法比A 方法的灵敏度高.A. 用邻二氮菲光度法测定铁时用邻二氮菲光度法测定铁时,,ε508=1.1×104 L·mol -1·cm -1S = 55.85/(1.1×104)=0.0051 (µg ·cm -2)准确度—仪器测量误差10080604020T/%1∆c2∆c3T∆T∆T-透光率读数误差c∆c1c1∆c2c2∆c3c3><由于T 与浓度c 不是线性关系性关系,,故不同浓度时的仪器读数误差 T引起的测量误差 c/c不同。

吸光光度法

吸光光度法

第20 章吸光光度法吸光光度法(light absorption method)是基于物质对光的选择性吸收而建立起来的分析方法。

包括比色法(colorimetric method)和分光光度法(spectrophotometry)。

前者是通过比较有色溶液颜色深浅来确定有色物质的含量;后者是根据物质对一定波长光的吸收程度来确定物质的含量的。

分光光度法包括紫外分光光度法(ultraviolet spectrophotometry)、可见光分光光度法(visible spectrophotometry)、红外分光光度法(infrared spectrophotometry)。

本章主要讨论可见光分光光度法。

20.1 概述20.1.1 物质对光的选择性吸收1. 光的性质光是一种电磁波,具有波粒二象性。

光的偏振、干涉、衍射、折射等现象就是其波动性的反映,波长λ与频率ν之间的关系式:λν=c (c为光速)亦反映光的波动性。

光又是由大量具有能量的粒子流所组成,这些粒子称为光子。

光子的能量则反映微粒性,光子的能量E 与波长λ的关系:E = hν = hc/λ(h为普朗克常量)亦可用来表示光的微粒性。

由上述关系可知,光子的能量与光的波长(或频率)有关,波长越短,光能越大,反之亦然。

光的能量范围很广,在波长或频率上相差大约20个数量级。

不同光的波长范围及其在分析化学中的应用情况见表20-1。

表20-1 各种光的波长范围及其在分析化学中的应用情况光的名称波长范围跃迁类型分析方法X-射线远紫外光近紫外光可见光近红外光中红外光远红外光微波无线电波10-1~ 10nm10 ~ 200nm200 ~ 400nm400 ~ 750nm0.75 ~ 2.5μm2.5 ~ 50μm50 ~ 1000μm0.1 ~ 100cm1 ~ 1000mK和L层电子中层电子价电子价电子分子振动分子振动分子振动和低位振动分子转动X射线光谱法真空紫外光度法紫外光度法比色及可见光度法近红外光谱法中红外光谱法远红外光谱法微波光谱法核自旋共振光谱2. 物质的颜色与其对光的选择性吸收光可分为单色光与复合光,单色光(chromatic light)是仅具有单一波长的光,而复合光(polychromatic light)是由不同波长的光(不同能量的光子)所组成。

分析化学第七章吸光光度分析法

分析化学第七章吸光光度分析法

图8-1吸收曲线
分析化学第七章吸光光度分析法
8
吸收曲线的讨论:
(1)同一种物质对不同波长光的吸光度不同。 吸光度最大处对应的波长称为最大吸收波长 λmax
(2)不同浓度的同一种物质,其吸收曲线形 状相似λmax不变。而对于不同物质,它们的 吸收曲线形状和λmax则不同。
(3)吸收曲线可以提供物质的结构信息,并 作为物质定性分析的依据之一。
红外吸收光谱:分子振动光谱,吸收光波长 范围2.51000m ,
主要用于有机化合物结构鉴定。 紫外吸收光谱:电子跃迁光谱,吸收光波长 范围200400 nm(近紫外区) ,可用于结 构鉴定和定量分析。
分析化学第七章吸光光度分析法
2
可见吸收光谱:电子跃迁光谱,吸收光波长范 围400750 nm ,主要用于有色物质的定量 分析。
nm (真空紫外区)
分析化学第七章吸光光度分析法
4Байду номын сангаас
一、物质的颜色
物质的颜色是由于物质对不同波长的光 具有选择性吸收而产生的。
物质颜色
黄绿 黄 橙 红 紫红 紫 蓝 绿蓝 蓝绿
吸收光
颜色
波长/nm

400~450

450~480
绿蓝
480~490
蓝绿
490~500
绿
500~560
黄绿
560~580

10
三、光吸收的基本定律
1.朗伯—比耳定律 • 布格(Bouguer)和朗伯(Lambert)先后于
1729年和1760年阐明了光的吸收程度和吸收
层厚度的关系。A∝b
• 1852年比耳(Beer)又提出了光的吸收程度和
吸收物浓度之间也具有类似的关系。A∝ c

分析化学吸光光度法

分析化学吸光光度法

3. 稀溶液
浓度增大,分子之间作用增强
18
亚甲蓝阳离子 单体 max= 660 nm 二聚体 max= 610 nm
(nm)
亚甲蓝阳离子水溶液的吸收光谱 a. 6.36×10-6 mol/L b. 1.27×10-4 mol/L c. 5.97×10-4 mol/L
二聚体的生成破坏 了A与c的线性关系
It
s
b dx
A=lg(I0/It)=k1b
比尔定律(1852)
A=lg(I0/It)=k2c
A=lg(I0/It)=kbc
吸光度
介质厚 度(m)
12
T-透光率(透射比)
(Transmittance)
T=
It I0
A = lg (I0/It) = lg(1/T) = -lgT = kbc
-kbc -A T = 10 = 10
7
光学光谱区
远紫外
(真空紫外)
近紫外 可见
近红外
中红外
远红外
10nm~200nm 200nm ~380nm
380nm 780 nm ~ 780nm ~ 2.5 m
2.5 m ~ 50 m
50 m ~300 m
8
3. 溶液中溶质分子对光的吸收与吸收光谱
不同颜色的可见光波长及其互补光
/nm
19
朗伯-比尔定律的分析应用
溶液浓度的测定
A= bc
0.8
A
工作曲线法
0.6 0.4 0.2 0
*
(校准曲线)
0
1
2
3
4
mg/ml
20
6. 吸光度的加和性与吸光度的测量 A = A1 + A2 + … +An

分析化学第十次、十一次课 吸光光度法

分析化学第十次、十一次课  吸光光度法




光区
4、检测器:接收透射光,利用光电效应,将光能 转换成电流讯号。 光电池,光电管,光电倍增管
检测器
h Au,Ag Ag、Au
半导体
Se
硒光电池
光电管
h Ni环(片)
碱金属 光敏阴极
红敏管 625-1000 nm 蓝敏管 200-625 nm
光电倍增管
160-700 nm
待扫描
1个光电子可产生106~107个电子
一般通过试验确定
显色剂用量(c(M)、pH一定)
拐点
c(R)
Mo(SCN)32+ 浅红 Mo(SCN)5 橙红 Mo(SCN)6- 浅红
c(R)
c(R)
Fe(SCN)n3-n
当生成不太稳定的有色配合物时, 必须加入相当过量的试剂,以保证 获得足够的有色配合物并有可观的 吸光度。 有时显色剂的用量过大,反而会 引起副反应,对光度测定不利。应 严格控制显色剂的用量,以保证得 到正确的结果。通常,显色剂的用 量是根据实验结果来确定的。
标准曲线法
根据朗伯-比耳定律,保持 液层厚度,入射光波长和其它测 量条件也不变,则在一定浓度范 围内,所测得吸光度与溶液中待 测物质的浓度成正比。因此,配 制一系列已知的具有不同浓度的 标准溶液,分别在选定波长处测 其吸光度A,然后以标准溶液的 浓度c为横坐标,以相应的吸光 度A为纵坐标,绘制出A-c关系 曲线。如果符合光的吸收定律, 则可获得一条直线,称为标准曲 线或称工作曲线。在相同条件下 测量样品溶液的吸光度,就可以 从标准曲线上查出样品的浓度。
显色条件
1.显色剂的用量
被测物质与显色剂的反应可用下列一般式表 示: M 十 R = MR (被测物) (显色剂) (有色配合物) 为了使显色反应尽可能完全,一般应加 入过量的显色剂。如果配合物稳定度高,而 且在一定条件下能保持稳定,显色剂不必大 量过量。在分析实践中,由于待测物质的浓 度未知,稍过量的显色剂是必要的。

分析化学吸光光度法二

分析化学吸光光度法二

故T e 1 0.368, 即吸光度A 0.434时, 浓度测量的相对误差最小。
(二)测量条件的选择
选择适当的测量条件,是获得准确测定结 果的重要途径。择适合的测量条件,可从下列 几个方面考虑。 1.测量波长的选择 由于有色物质对光有选择性吸收,为了使 测定结果有较高的灵镀度和准确度,必须选择 溶液最大吸收波长的入射光。如果有干扰时, 则选用灵敏度较低但能避免干扰的入射光,就 能获得满意的酸度对被测物质存在状态的影响 大部分高价金属离子都容易水解,当溶液的酸度 降低时,最终将导致沉淀的生成。显然,金属离子的 水解,对于显色反应的进行是不利的,故溶液的酸度 不能太低。

(2) 酸度对显色剂浓度和颜色的影响 光度分析中所用的大部分显色剂都是有 机弱酸。 M + HR=MR + H+ 从反应式可以看出,溶液的酸度影响着 显色剂的离解,并影响着显色反应的完全程 度。

3.时间和温度 显色反应的速度有快有慢。实验方法是配制一份显色溶 液,从加入显色剂计算时间、每隔几分钟测定一次吸光度, 绘制A-t曲线,根据曲线来确定适宜的时间。 不同的显色反应需要不同的温度,一般显色反应可在室温 下完成。但是有些显色反应需要加热至一定的温度才能完成; 也有些有色络合物在较高温度下容易分解。因此,应根据不 同的情况选择适当的温度进行显色。温度对光的吸收及颜色 的深浅也有一定的影响,故标样和试样的显色温度应保持一 样。合适显色温度也必须通过实验确定 ,做A-C曲线即可求出。

(3)对络合物组成和颜色的影响 对于某些逐级形成络合物的显色反应、在不 同的酸度时,生成不同络合比的络合物。例如铁 与水杨酸的络合反应,当 pH<4 [Fe3+(C7H4O3)2-]+ 紫色 4<pH<9 [Fe3+(C7H4O3)22-]- 红色 pH>9 [Fe3+(C7H4O3)32-]3- 黄色 在这种情况下,必须控制合适的酸度,才可 获得好的分析结果。 合适酸度也必须通过实验确定,做A-pH曲线即可 求出

分析化学第八章吸光光度法

分析化学第八章吸光光度法

第八章吸光光度法基于物质对光的选择性吸收而建立的分析方法称为吸光光度法。

包括比色法、可见及紫外分光光度法等。

本章主要讨论可见光区的吸光光度法。

利用可见光进行吸光光度法分析时,通常将被测组分通过化学反应转变成有色化合物,然后进行吸光度的测量。

例如:测量钢样中Mn的含量,在酸性溶液中将Mn氧化为MnO4-,然后进行吸光度的测量。

与化学分析法比较它具有如下特点:(一)灵敏度高吸光光度法常用于测定试样中1-0.001%的微量组分。

对固体试样一般可测至10-4 %。

(二)分析微量组分的准确度高例如:含铁量为0.001%的试样,如果用滴定法测定,称量1g试样,仅含铁0.01mg,无法用滴定分析法测定。

如果用显色剂1,10-邻二氮菲与亚铁离子生成橙红色的1,10-邻二氮菲亚铁配合物,就可用吸光光度法来测定。

Fe2++ 3(1,10-phen) → [ Fe(1,10-phen)3] 2+(三)操作简便,测定快速(四)应用广泛几乎所有的无机离子和许多有机化合物都可直接或间接地用分光光度法测定。

可用来研究化学反应的机理、溶液中配合物的组成、测定一些酸碱的离解常数等。

§8-1 吸光光度法基本原理一、物质对光的选择吸收当光束照射到物质上时,光与物质发生相互作用,产生了反射、散射、吸收或透射(p238, 图9-1)。

若被照射的是均匀的溶液,则光在溶液中的散射损失可以忽略。

当一束由红、橙、黄、绿、青、蓝、紫等各种颜色的光复合而成的白光通过某一有色溶液时,一些波长的光被溶液吸收,另一些波长的光则透过。

当透射光波长在400-700nm范围时,人眼可觉察到颜色的存在,这部分光被称为可见光。

透射光和吸收光呈互补色,即物质呈现的颜色是与其吸收光呈互补色的透射光的颜色。

溶液由于吸收了580-600 nm的黄色光,呈例如:CuSO4现的是与黄色呈互补色的蓝色。

不同波长的光具有不同的颜色,见P238,表9-1。

物质吸收了光子的能量由基态跃迁到较高能态(激发态),这个过程叫做物质对光的吸收。

分析化学(第四版_高职高专化学教材编写组) 第九章 吸光光度法

分析化学(第四版_高职高专化学教材编写组) 第九章 吸光光度法

第二节 吸光光度法的基本原理
一、物质对光的选择性吸收
(一)光的基本特性 1.电磁波谱:光是一种电磁波

10-2 nm 10 nm
射 线 x 射 线
102 nm 104 nm
紫 外 光 红 外 光
0.1 cm 10cm
微 波
103 cm
105 cm
无 线 电 波



2.可见光、单色光和互补色光

物质呈现不同的颜色其本质是对光的选择性吸收;

颜色深浅随浓度而变化是对光的吸收程度不同。

通过比较溶液颜色的深浅来测定物质的含量的方法,称为 目视比色法。

目前普遍采用分光光度计测量吸光度以代替比较颜色深浅, 应用分光光度计的分析方法称为分光光度法。 分光光度法根据物质对不同波长的单色光的吸收程度不同
进行定性和定量分析。按照研究的波谱区域不同,可分为:
分光光度法

紫外分光光度法——200-400nm
可见分光光度法—— 400-780nm 红外分光光度法——780-3.0×104nm
吸光光度法是基于物质对光的选择性吸收而建立起来的 分析方法。
吸光光度法

比色分析法 分光光度法
二、吸光光度法特点
理解分光光度计的基本结构和工作原理。
掌握定量分析方法和测量条件的选择。
能力目标 能绘制吸收曲线。 能正确选择显色条件和光度测量条件。 能应用吸光光度法对样品中的微量成分进行定量分析。
知识回顾
前面所学滴定分析和质量分析都属于化学分析法,适用于 含量高于1%常量组分的测定,测定结果的相对误差可控制在 0.2%以内。但不宜测定含量低于1%的微量成分。 实例:含Fe约0.05%的样品 称0.2 g试样, 则mFe≈0.1 mg
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.4.
光的电磁波性质

10-2 nm 10 nm
射 线 x 射 线
102 nm 104 nm
紫 外 光 红 外 光
0.1 cm 10cm
微 波
103 cm
105 cm
无 线 电 波



5
电磁波谱范围表
光谱名称 X 远 近 可 近 中 远 微 无 射 紫 外 紫 外 见 红 外 红 外 红 外 线 光 光 光 光 光 光 波 线 电 波 波长范围 10-1~10nm 10~200nm 200~400nm 400~750nm 0.75~2.5 μm 2.5~5.0 μm 跃迁类型 辐射源 X射线管 氢,氘,氙灯 氢,氘,氙灯 钨灯 碳化硅热棒 碳化硅热棒 碳化硅热棒
波长范围( ,nm) 400-450 450-480 480-490 490-500 500-560 560-580 580-600 600-650 650-750
8
10.1.2 吸收光谱产生的原理 1) 物质对光的选择性吸收
物质的颜色与光的关系 光谱示意 完全吸收 复合光 表观现象示意
完全透过
电磁波发生器
分析方法 X射线光谱法 真空紫外 紫外 比色及可见 近红外 中红外 远红外 微波光谱法 核磁共振
K和L层电子 中层电子 价电子 价电子 分子振动 分子振动 5.0~1000 μm 分子转动和振动 0 . 1 ~ 1 0 0 c m 分子转动 1~1000m
.6.
单色光、复合光、光的互补
吸 光 定 律 A 吸 收 光 谱 C A 或
三 维 谱 图
A max C
17
定性分析与定量分析的基础
定性分析基础 物质对光的选择吸收
max ( A) max ( B)
A
B
A
定量分析基础 在一定的实验条 件下,物质对光 的吸收与物质的 浓度成正比。
A
增 大
hc E E2 E0 h

10
物质对光的选择吸收 Selected absorption
物质的电子结构不同,所能吸收光的波长也不同,这就构 成了物质对光的选择吸收基础。
例: A 物质
E1 E0 2.5 ev
1 ev = 1.610-19 J.
hc A E
B 物质
第10章 吸光光度法
吸光光度法: 基于物质对光的选择性吸 收而建立起来的分析方法. 本章重点讨论可见光区的吸光光度法。
.1.
吸光光度法的分类 (1)根据所用仪器的不同: 目视比色法、光电比色法和分光光度法。
(2)根据所吸收的波长范围不同:
紫外分光光度法(波长200~400nm), 可见分光光度法(400~750nm) 红外光谱法(750~2500nm)
E分子=E电子+E振动+E转动
.12.
分子内部三种不同运动涉及三种跃迁能级 三种能级跃迁所需能量大小的顺序为 △E电子>△E振动> △E转动
所以需要不同能量(波长)的电磁辐射使它们跃迁, 即在不同的光学区出现吸收谱带: △E电子(1~20eV)对应的是紫外及可见光谱; △E振动(0.05~1eV)对应的红外光谱 △E转动(0.005~0.05eV)
同理,得:
34 10 6 . 62 10 3 10 19 2.5(ev ) 1.6 10
4.774 105 (cm)
477.4 nm
E1 E0 2.0 ev
B hc
E
620.6 nm
11
2) 吸收光谱的分类 吸收光谱有原子吸收光谱和分子吸收光谱。 原子吸收光谱是由原子外层电子选择性地吸收 某些波长的电磁波而引起的。 分子吸收光谱比较复杂,由于分子结构的复杂 性所引起的。 分子的能量:
吸收黄色光
.9.
当用频率为 v 电磁辐射照射分子,若电磁辐射的 能量 hv 恰好等于该分子的较高能级与较低能级能量 差△E时,在微观上出现分子由较低能级跃迁到较高 能级;在宏观上则体现在透射光的强度变弱。 物质对光的吸收
h S3 S2 E3 E2
S1
S0
E1
E0
h E 2 E 0
物质对光的吸收满足Plank 条件
.3.
10.1 吸光光度法的基本原理
10.1.1 光的基本性质
光的折射 波动性
光的波粒二象性

光的衍射
光的偏振
光的干涉 粒子性
E
光电效应
hc E h

E:光子的能量(J, 焦耳) :光子的频率(Hz, 赫兹) :光子的波长(cm) c:光速(2.99791010 cm.s-1) h:Plank常数(6.625610-34 J.s 焦耳. 秒)
.2.
特点: a. 灵敏度高:常用于测定试样中质量分数为 1%~10-5 的微量组分,甚至可以测定低至质 量分数为10-6~10-8的痕量组分。 b. 准确度高: 比色分析,相对误差5~10%, 分光光度法,2~5%,1~2%; c. 应用广泛:几乎所有的无机离子和许多有机化 合物都可以直接或间接地用吸光度法进行测定。 d. 仪器简单、操作简便、快价电子能级发生跃 迁常伴随着振动能级和转动 能级的跃迁,故价电子在每 两个能级间的跃迁所对应的
能量差往往不是象原子那样
表现为一个确定的数值,而 是表现为多个彼此相差很小 的数值,因此,紫外可见光 谱为带状光谱。
.14.
h
S3 S2 S1
E3 E2 E1
A
E0 S0 纯 电子能态 间跃迁 S2 h S1 S0 分子内电子跃迁 A
锐线光谱

带状光谱

15
如果测量某种物质对不同波 长单色光的吸收程度,以波 长为横坐标,吸光度为纵坐 标作图,可得到一条吸收光 谱曲线。 光吸收程度最大处的波长称 为最大吸收波长,用λmax表示。 浓度不同时,光吸收曲线形 状相同,最大吸收波长不变, 只是相应的吸光度大小不同.
.16.
吸收定律与吸收光谱的关系
单色光 复合光
单一波长的光
由不同波长的光组合而成的光 若两种不同颜色的单色光按一定的强度比 例混合得到白光,那么就称这两种单色光 为互补色光,这种现象称为光的互补。
绿
蓝绿 绿蓝 蓝 紫 紫红 红 7
光的互补
黄绿


互补色 吸收光
物质的颜色
黄绿 黄 橙 红 紫红 紫 蓝 绿蓝 蓝绿
颜色 紫 蓝 绿蓝 蓝绿 绿 黄绿 黄 橙 红
相关文档
最新文档