力的合成和分解的方法归纳
浅谈力的合成和分解的方法

浅谈力的合成和分解的方法力是物体之间相互作用的结果,可以合成为一个力或者分解为多个力。
力的合成和分解方法是力学中重要的基本概念,对于解决实际问题具有重要意义。
下面将从力的合成和力的分解两个方面进行详细讨论。
一、力的合成方法力的合成是指将多个力合并成一个力的过程。
当一个物体受到多个力的作用时,这些力的合力可以表示为一个物体所受合力的大小、方向和作用点,通过合成方法就可以求得该合力。
1.几何法几何法是力的合成中最直观的方法。
对于两个力,只需按照力的大小在同一直角坐标系中画出这两个力的有向线段,其尾部连接起来,连接的直线就是合力的向量。
具体步骤如下:(1)按照力的大小在同一直角坐标系中画出这两个力的有向线段。
(2)将这两个力的有向线段连接起来,其中一条线段的尾部与另一条线段的头部相连。
(3)连接的直线即为合力的向量,它的大小、方向和作用点就是合力的大小、方向和作用点。
2.分力法分力法是力的合成的另一种方法,它将一个力拆分为两个分力,这两个分力可以合成为该力。
具体步骤如下:(1)确定一个已知力的大小和方向,假设为力F。
(2)根据需要确定一个已知力与已知力之间的夹角α。
(3)按照需要将力F进行分解,分成两个力,沿其中一方向的分力F₁和垂直于该方向的分力F₂。
(4)根据三角函数关系式,可以求得这两个分力的大小,即F₁ = F × cosα,F₂ = F × sinα。
(5)通过合成这两个分力,即可以得到力F的合力。
二、力的分解方法力的分解是指将一个力分解为多个力的过程。
当一个力在一些方向上对物体产生作用时,可以将该力进行分解,得到该力在多个方向上的分力分量,这些分力的合力就是原力。
力的分解在力学中具有广泛的应用,尤其在计算斜面上的合力和分力时很常见。
1.水平和竖直方向的分解当一个力斜向上的作用时,可以将这个力分解为水平方向的分力和竖直方向的分力,分别记为F₁和F₂。
根据三角函数关系式,可以求得这两个分力的大小,即F₁ = F × cosα,F₂ = F × sinα。
力的合成与分解的方法

力的合成与分解的方法在物理学中,力是描述物体运动和相互作用的基本概念。
力可以作用于物体的不同方向和角度,因此了解力的合成与分解的方法对于解决物理问题和理解物体运动至关重要。
一、力的合成方法力的合成是指将两个或多个力的作用效果合并为一个力。
当多个力同时作用于一个物体时,可以通过力的合成方法来计算合成后的力的大小和方向。
1. 平行力的合成当多个平行力作用于一个物体时,它们可以用一个等效的合力来代替。
平行力的合成可以通过向量加法进行计算,根据力的平行四边形法则,将多个力的向量图形相连构成一个平行四边形,其对角线所代表的向量即为合力。
根据平行四边形法则,合力的大小等于所有力的大小之和,合力的方向与其中力的方向相同。
2. 非平行力的合成当多个非平行力作用于一个物体时,可以通过三角法则或分解力的方法来计算合力。
- 三角法则:将每个力的向量头尾相连,从第一个力的起点到最后一个力的终点的向量即为合力。
根据三角法则,合力的大小等于最后一个力的终点与第一个力的起点之间的距离,方向与这条连线的方向相同。
- 分解力的方法:将非平行的力拆解为垂直于彼此的分力。
根据分解力的方法,将力按照垂直分量和平行分量进行拆解,并计算各个方向上的合力。
最后将垂直分力和平行分力的合力作为合力。
二、力的分解方法力的分解是指将一个力分解为两个或多个力的过程。
力的分解可以帮助我们研究物体受力的情况和解决特定的问题。
1. 垂直分解当一个力的方向不是垂直于参考轴时,可以将该力分解为垂直于轴线和平行于轴线的两个分力。
垂直分解的方法通常使用三角函数来计算分力的大小。
2. 平行分解当一个力的方向与参考轴平行时,可以将该力分解为平行于轴线和垂直于轴线的两个分力。
平行分解的方法通常使用三角函数来计算分力的大小。
3. 分解求力的大小和方向有时候,我们根据已知的合力和一个已知的分力,可以通过力的分解方法计算出未知的力的大小和方向。
根据力的平行四边形法则,已知合力和一个已知分力,可以通过几何方法绘制一个平行四边形,并求出未知力的大小和方向。
初中物理力的合成与分解

初中物理力的合成与分解在物理学中,力是指物体之间相互作用的原因和结果,是引起物体形状、速度和加速度变化的根本因素。
力的合成与分解是物理学中经常遇到的问题,通过合成与分解可以更好地理解力的作用和效果。
一、力的合成力的合成是指将两个或多个力按照一定规则合成为一个力的过程。
当物体受到多个力的作用时,可将这些力按照大小、方向和作用点来进行合成。
根据力学定律,力的合成可以使用几何法、三角法或向量法。
1. 几何法几何法将力的合成问题转化为图形的几何运算。
首先,在纸上画出力的大小和方向,然后根据力的大小和方向相互关系,将这些力的作用线相连,形成一个多边形。
最后,取多边形的对角线作为所合成的力的大小和方向。
2. 三角法三角法是力的合成中常用的方法之一。
选取一个合适的比例尺,将力的大小和方向用箭头表示出来,然后将这些力按照一定比例画在一个力的合成图上,从而找到力的合成结果。
3. 向量法向量法是力的合成中最常用的方法。
在向量法中,力被表示为箭头,箭头的长度表示力的大小,箭头的方向表示力的方向。
将这些力按照一定规则放在同一起点,然后将所有的箭头首尾相连,得到合成力的大小和方向。
二、力的分解力的分解是指将一个力分解为两个或多个有特定方向的力的过程。
力的分解可以将一个复杂的力分解为几个简单的力,从而更好地研究力的作用和效果。
力的分解有水平分解和垂直分解两种形式。
1. 水平分解当一个力斜向上斜上作用于物体时,可以将这个力分解为一个水平力和一个垂直力。
水平力与重力平衡,而垂直力产生垂直的加速度。
2. 垂直分解当一个力斜向下作用于物体时,可以将这个力分解为一个水平力和一个垂直力。
垂直力与重力平衡,而水平力使物体产生水平加速度。
通过力的分解,可以研究物体在不同方向上的运动和加速度。
同时,力的分解还可以用于解决物理问题,例如斜面上物体受到的重力分解为平行和垂直于斜面的两个力。
综上所述,力的合成与分解是初中物理中重要的概念和方法。
通过合成与分解可以更好地理解力的作用和效果,揭示物体的运动规律。
力的合成和分解

力的合成和分解力是物体相互作用的结果,是描述物理现象的重要概念。
力的合成和分解是力学中的基本操作,它们帮助我们理解力的相互作用、分析力的性质以及解决实际问题。
下面将详细介绍力的合成和分解的原理和运用。
一、力的合成力的合成是指将多个力按照一定的规律合成为一个力的过程。
根据力的矢量性质,可以使用矢量图法或合力分解法进行力的合成。
1. 矢量图法矢量图法是一种直观、简单的力合成方法,它基于力的矢量性质,可以用力的箭头表示力的大小和方向。
将要合成的力按照一定比例画在同一起点,然后连接起点和终点,合成力的箭头为连线的箭头。
根据三角法或平行四边形法,可以求得合成力的大小和方向。
2. 合力分解法合力分解法是一种将一个力分解为多个力的方法。
利用三角形法则或平行四边形法则,可以将一个力分解为两个分力,满足力的合成原理。
合力分解法不仅可以帮助我们更好地理解力的性质,还可以方便地计算力的分量。
二、力的分解力的分解是指将一个力按照一定的规律拆分成多个力的过程。
根据力的矢量性质,可以使用正交分解法或平行分解法进行力的分解。
1. 正交分解法正交分解法是一种将一个力分解为与轴垂直的两个分力的方法。
根据合力与两个正交方向的关系,可以使用三角函数求得分力的大小。
通过正交分解法,我们可以将斜向作用的力分解为沿着两个正交方向作用的分力,便于我们进一步分析和计算。
2. 平行分解法平行分解法是一种将一个力分解为平行于坐标轴的两个分力的方法。
通过平行四边形法则或直角三角形法则,可以求得分力的大小和方向。
平行分解法在许多实际问题中有广泛应用,如斜面上的物体受到的重力可以通过平行分解法分解为沿着斜面和垂直斜面的两个分力。
力的合成和分解在物理学和工程学中有重要的应用。
通过合理运用力的合成和分解,我们可以更好地理解力的作用规律,解决实际问题。
例如,在平面力系统中,可以通过力的合成将多个力简化为一个合力,从而方便求解物体的平衡条件;在斜面问题中,可以通过力的分解将斜面上的力分解为两个分力,进一步分析物体的受力情况。
力的合成与分解知识点梳理

力的合成与分解知识点梳理力的合成与分解是物理学中的基础知识,它们描述了多个力的作用和分解方式。
在本篇文章中,我们将讨论力的合成与分解的概念、方法以及相关应用。
以下是力的合成与分解的知识点梳理:一、力的合成1. 概念:力的合成是指将多个力按照一定规则相加得到合力的过程。
多个力的合成可以产生一个等效的力,这个等效的力被称为合力。
2. 方法:a. 图解法:将力的大小和方向用箭头表示,在力的起点将箭头首尾相接,合力的箭头即为首尾相连的箭头。
b. 分解为分力:将一个力分解为两个或多个分力,再将这些分力按照一定规则合成,得到合力。
c. 使用平行四边形法则:根据平行四边形法则,将两个力的起点相连,构成一个平行四边形,合力的箭头即为对角线的箭头。
二、力的分解1. 概念:力的分解是将一个力分解为两个或多个分力的过程。
力的分解可以将复杂的力的作用转化为较简单的力的作用,使问题求解更简便。
2. 方法:a. 分解为垂直方向的分力:根据力在直角坐标系中的分解,将力分解为垂直方向的分力和水平方向的分力。
b. 分解为平行和垂直于斜面的分力:对一个斜面上作用的力进行分解时,可以将力分解为平行和垂直于斜面的分力,以便求解问题。
c. 使用三角函数:根据力的大小和夹角,使用三角函数(如正弦、余弦)将力分解为不同方向的分力。
三、应用1. 力的合成与分解在静力学中的应用:通过将力的作用分解为水平和垂直方向的分力,可以分析物体在平衡状态下的受力情况。
2. 力的合成与分解在动力学中的应用:通过合成力,可以计算物体在多个不同方向上作用力的结果,进而分析物体的运动状态。
3. 力的合成与分解在斜面上的应用:通过分解斜面上的力,可以确定平行和垂直方向的分力,从而计算物体在斜面上的受力和运动情况。
4. 力的合成与分解在物体平衡条件的判断中的应用:分解物体所受外力得到水平方向分力的合力为零,垂直方向分力的合力为零即可判断物体是否处于平衡状态。
综上所述,力的合成与分解是物理学中重要的概念,它们描述了多个力的作用方式和分解方法。
力的合成与分解知识点总结

力的合成与分解知识点总结力是物理学中的一个重要概念,力的合成与分解是解决力学问题的基础。
下面我们来详细总结一下力的合成与分解的相关知识点。
一、力的合成1、合力的概念如果一个力作用在物体上产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力。
2、共点力如果几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力就叫做共点力。
3、力的合成法则(1)平行四边形定则两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。
(2)三角形定则将两个分力首尾相接,连接始端与末端的有向线段就表示合力的大小和方向。
4、合力的计算(1)已知两个分力的大小和方向,求合力的大小和方向,直接运用平行四边形定则或三角形定则计算。
(2)已知两个分力的大小和夹角θ,合力的大小可以通过公式:$F =\sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$计算,合力的方向可以通过三角函数关系求得。
5、合力的范围(1)两个力的合力范围:$|F_1 F_2| \leq F \leq F_1 + F_2$。
(2)三个力的合力范围:先求出其中两个力的合力范围。
再看第三个力在这个范围内的情况,从而确定三个力的合力范围。
二、力的分解1、力的分解的概念求一个已知力的分力,叫做力的分解。
2、力的分解遵循的原则力的分解是力的合成的逆运算,同样遵循平行四边形定则或三角形定则。
3、力的分解的方法(1)按照力的实际作用效果进行分解。
例如,放在斜面上的物体受到的重力可以分解为沿斜面方向向下的分力和垂直斜面方向向下的分力。
(2)正交分解法将一个力沿着互相垂直的两个方向进行分解。
4、力的分解的唯一性(1)已知两个分力的方向,有唯一解。
(2)已知一个分力的大小和方向,有唯一解。
(3)已知两个分力的大小,其解的情况可能有:两力之和大于合力时,有两解。
力的合成与分解解析力的合成与分解问题的方法

力的合成与分解解析力的合成与分解问题的方法力的合成与分解是力学中常见的一个重要问题,对于力的分析和计算有着重要的意义。
本文将介绍解析力的合成与分解的方法。
一、力的合成力的合成是指将两个或多个力合成为一个力的过程。
当多个力作用于一个物体时,它们的合力可以表示为力的矢量和。
合力的大小、方向与这些力的大小、方向有关。
方法一:图示法在图示法中,我们将力用箭头表示,箭头的长度表示了力的大小,箭头的方向表示了力的方向。
要得到合力,只需将各个力的箭头首尾相连,然后连接首尾的直线即可。
方法二:正弦定理和余弦定理正弦定理和余弦定理是解析力合成的数学方法。
假设有两个力F1和F2,它们的夹角为θ。
若要计算合力的大小F和方向α,可以使用以下公式:F = √(F1^2 + F2^2 + 2F1F2cosθ)α = arctan(F2sinθ / (F1 + F2cosθ))通过正弦定理和余弦定理,可以较为准确地计算出合力的大小和方向。
这在实际问题中非常常见。
二、力的分解力的分解是指将一个力分解为两个或多个分力的过程。
通过力的分解可以将一个复杂的问题简化为若干个简单的问题。
方法一:图示法与力的合成相反,在图示法中,我们将一个力的箭头按照一定的比例分解为两个或多个力的箭头,各个力的大小和方向可以根据实际问题中的要求确定。
方法二:正弦定理和余弦定理正弦定理和余弦定理同样适用于力的分解问题。
假设有一个力F,我们将其分解为与x轴和y轴方向夹角分别为α和β的两个分力F1和F2。
根据正弦定理和余弦定理,可以得到以下公式:F1 = FcosαF2 = Fcosβ通过力的分解,我们可以得到力的水平方向和垂直方向上的分量,从而更好地进行力的分析和计算。
总结:力的合成与分解是力学中非常重要的概念和方法。
在实际问题中,通过力的合成与分解,我们可以更好地理解和分析力的作用,从而得到准确的结果。
通过图示法和正弦定理、余弦定理,我们可以在解决力的合成与分解的问题时选择合适的方法。
力的合成与分解教学方法总结

力的合成与分解教学方法总结力的合成与分解是力学中的重要概念,在物理学习过程中经常涉及到。
掌握力的合成与分解的教学方法对学生理解并运用这一概念具有重要意义。
本文将总结一些有效的教学方法,帮助教师更好地进行力的合成与分解的教学。
一、力的合成教学方法力的合成是将多个力合成为一个力的过程,其中最典型的案例是平行力的合成和斜向力的合成。
以下是一些教学方法,可用于力的合成的教学:1. 理论知识讲解:首先,教师应对力的合成概念进行讲解,说明力的合成是将两个或多个力合成为一个力的过程。
通过讲解理论知识,让学生明确合成力的概念和意义。
2. 图示解释:在讲解时,可以借助力的图示来向学生解释力的合成的过程。
通过图示的方式,生动直观地展示合成力的概念和计算方法,增强学生的理解和记忆。
3. 计算实例演练:在理论讲解后,结合一些计算实例,进行力的合成的计算演练。
通过实例演练,学生可以更好地掌握和运用合成力的计算方法,并加深对力的合成的理解。
4. 性质归纳:在合成力的教学中,教师可以引导学生归纳合成力的一些基本性质,如方向、大小等,帮助学生系统地理解和应用力的合成。
二、力的分解教学方法力的分解是将一个力分解为多个分力的过程,其中最典型的案例是平行力的分解和斜向力的分解。
以下是一些教学方法,可用于力的分解的教学:1. 理论知识讲解:教师应对力的分解概念进行讲解,说明力的分解是将一个力分解为多个互相垂直的分力的过程。
通过讲解理论知识,让学生明确分解力的概念和意义。
2. 图示解释:与力的合成相似,教师可借助图示向学生解释力的分解的过程。
通过图示的方式,生动直观地展示分解力的概念和计算方法,帮助学生更好地理解和记忆。
3. 计算实例演练:理论讲解后,结合一些计算实例,进行力的分解的计算演练。
通过实例演练,学生可以更好地掌握和运用分解力的计算方法,并加深对力的分解的理解。
4. 性质归纳:在分解力的教学中,教师可以引导学生归纳分解力的一些基本性质,如方向、大小等,帮助学生系统地理解和应用力的分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力的合成和分解的方法归纳一.力的分解的多解性例1.把一个已知力F 分解,要求其中一个分力F 1跟F 成30度角,而大小未知,另一个分力F 2=33F ,但方向未知,则F 1的大小可能是( )A. 33FB. 23FC.3FD. 332 F 例2.将一个20N 的力进行分解,其中一个分力的方向与这个力成30度角,则另一个分力的大小不会小于多少?例3.如图,一物块受一恒力F 作用,现要使该物块沿直线AB 运动,应该再加上另一个力作,则加上去的这个力的最小值为多少?例4.如图,力F 作用于物体的O 点,现要使作用在物体上的合力沿OO 1方向,需再作用一个力F 1,则F 1的大小可能为( )A. F 1=Fsin αB. F 1=Ftan αC. F 1=FD. F 1=<Fsin α例1 .AD 例2. 10N 例3.Fsin θ 例4 ABC二.正交分解法例1两人在两岸用绳拉小船在河流中行驶,如图,已知甲的拉力是200N ,拉力方向与航向夹角为600,乙的拉力大小为2003N ,且两绳在同一水平面内,若要使小船能在河流正中间沿直线行驶,乙用力的方向如何?小船受到两拉力的合力为多大?例2.如图,小船用绳牵引,设水对船的阻力不变,在小船匀速靠岸过程中,船受绳子的拉力 ,船受的浮力 ,船受的合力 。
例3.晾晒衣服的绳子两端分别固定在两根竖直杆上的A,B 两点,绳子的质量及绳与衣架挂钩间摩擦均忽略不计,衣服处于静止状态。
如果保持绳子A 端、B 端在杆上的位置不变,将右侧杆平移到虚线位置,稳定后衣服仍处于静止状态,则( )A. B 端移到B1位置时,绳子张力不变B. B 端移到B2位置时,绳子张力变小C. B 端在杆上位置不动,将杆移动到虚线位置时,绳子张力变大D. B 端在杆上位置不动,将杆移动到虚线位置时,绳子张力变小例4.如图,半径为R ,质量为M 的均匀球靠竖直墙放置,左下方有一厚为h ,质量为m 的木块,若不计摩擦,用至少多大的水平推力F 推木块,才能使球离开地面?此时,木块对地面的压力是多大?例1 .30度 400N 例2.增大 减小 不变 例3.AD 例4.hR h R h --)2(Mg (M+m)g 三.按照力的效果分解力 1.如图1—4所示,一个质量为m =2.0kg 的物体,放在倾角为θ=300的斜面上静止不动.若用竖直向上的力F =5.0N 提物体,物体仍静止(g =10m/s 2),则下述结论正确的是A .物体受到的合外力减少5.0NB .物体受到的摩擦力减少5.0NC .斜面受到的压力减少5.0ND .物体对斜面的作用力减少5.0N2.如图所示,一木块在垂直于倾斜天花板平面方向的推力F 作用下处于静止状态,下列判断正确的是 ( )A .天花板与木块间的弹力可能为零B .天花板对木块的摩擦力一定不为零C .逐渐增大F 的过程,木块将始终保持静止D .木块受到天花板的摩擦力随推力F 的增大而变化3.如图所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g ,若接触面间的摩擦力忽略不计,旵石块侧面所受弹力的大小为A .2sin mg αB . 2s mg co αC . 1tan 2mg αD .1t 2mgco α 4.在医院里常用图示装置对小腿受伤的病人进行牵引治疗.不计滑轮组的摩擦和绳子的质量,绳子下端所挂重物的质量是5 kg,问:(1)病人的脚所受水平方向的牵引力是多大?(2)病人的脚和腿所受的竖直向上的牵引力共是多大?(g 取10 N/kg)5.一种简易“千斤顶”,如图所示,一竖直放置的T 形轻杆由于光滑限制套管P 的作用只能使之在竖直方向上运动,若轻杆上端放一质量M=100 kg 的物体,轻杆的下端通过一与杆固定连接的小轮放在倾角θ=37°的斜面体上,并将斜面体放在光滑水平面上,现沿水平方向对斜面体施以推力F ,为了能将重物顶起,F 最小为多大?(小轮与斜面体的摩擦和质量不计,g 取10.1.D2.BC3.A4. (1)93.3 N (2)75 N5.750N四.矢量三角形方法1.如图,在细绳的下端挂一物体,用力F 拉物体,使细绳偏离竖直方向α角,且保持α角不变,当拉力F 与水平方向β为多大时,拉力F 的值最小?( )A. β=0B. β=90OC. β=αD.β=2α2.如图所示,倾角为θ的光滑斜面固定在水平面上,若将一个质量为m 的小球放在斜面上,要使小球保持静止,需施加最小的力是 ( )A. 沿斜面向上,大小为m g sin θB. 竖直向上,大小为m gC. 水平向右,大小为m g tan θD. 垂直斜面向上,大小为mg cos θ3.如右图所示,细绳跨过滑轮,系住一个质量为m 的球,球靠在光滑竖直墙上,当拉动细绳使球匀速上升时,球对墙的压力将( )A .增大B .先增大后减小C .减小D .先减小后增大4.质量为m 的球置于倾角为θ的光滑面上,被与斜面垂直的光滑挡板挡着,如图所示.当挡板从图示位置缓缓做逆时针转动至水平位置的过程中,挡板对球的弹力N 1和斜面对球的弹力N 2的变化情况是( )A. N 1增大B. N 1先减小后增大C. N 2增大D. N 2减少5.在固定于地面的斜面上垂直安放了一个挡板,截面为 14圆的柱状物体甲放在斜面上,半径与甲相等的光滑圆球乙被夹在甲与挡板之间,没有与斜面接触而处于静止状态,如图所示。
现在从球心O 1处对甲施加一平行于斜面向下的力F ,使甲沿斜面方向极其缓慢地移动,直至甲与挡板接触为止。
设乙对挡板的压力F 1,甲对斜面的压力为F 2,在此过程中A .F 1缓慢增大,F 2缓慢增大B .F 1缓慢增大,F 2缓慢减小C .F 1缓慢减小,F 2缓慢增大D .F 1缓慢减小,F 2缓慢不变1C 2A 3A 4AD 5D 五.相似三角形法一个表面光滑的半球物体固定在水平面上,其球心O 的正上方一定高度处固定一个小滑轮,一根细绳的一端拴一小球,置于球面上A 点,另一端绕过定滑轮,如图10所示.现缓慢地拉动细绳的另一端,使小球沿球面从A 点拉到B 点前,在此过程中,小球所受球面的支持力N 及细绳对小球的拉力T 的变化情况是( )A .N 变大、T 变大B .N 变小、T 变小C .N 不变、T 变小D .N 变大、T 变小 C六.结合物体的运动状态受力分析两个相同的可视为质点的小球A 和B ,质量均为m ,用长度相同的两根细线把A 、B 两球悬挂在水平天花板上的同一点O ,并用长度相同的细线连接A 、B 两个小球,然后,用一水平方向的力F 作用在小球A 上,此时三根线均处于伸直状态,且OB 细线恰好处于竖直方向如图所示.如果两小球均处于静止状态,则力F 的大小为( )A .0B .mgC .3/3mgD .mg 3七.整体法和隔离法1.如图,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为θ.斜面上有一质量为m 的小物块, 小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为:A.(M +m )gB.(M +m )g -FC (M +m )g +F sin θ D.(M +m )g -F sin θ2.如图, 一固定斜面上两个质量相同的小物块A 和B 紧挨着匀速下滑, A 与B 的接触面光滑. 已知A 与斜面之间的动摩擦因数是B 与斜面之间动摩擦因数的2倍, 斜面倾角为α. B 与斜面之间的动摩擦因数是A. αtan 32B. αcot 32 C. αtan D. αcot3.如图所示,光滑的两个球体,直径均为d ,置于一直径为D 的圆桶内,且d < D < 2d ,在桶与球接触的三点A 、B 、C ,受到的作用力大小分别为F 1、F 2、F 3.如果将的直径加大,但仍小于2d ,则F 1、F 2、F 3的大小变化情况是:A .F 1增大,F 2不变,F 3增大B .F 1减小,F 2不变,F 3减小C .F 1减小,F 2减小,F 3增大D .F 1增大,F 2减小,F 3减小4.如图所示,两个完全相同的光滑球A 、B 质量均为m ,放在竖直挡板和倾角为α的斜面间,当球都静止时,求:(1)斜面对B 球的支持力大小;(2)B 球对A 球的弹力大小;(3)斜面对A 球的支持力大小。
5.竖直墙面与水平地面均光滑且绝缘,小球A 、B 带有同种电荷,用指向墙面的水平推力F 作用于小球B ,两球分别静止在竖直墙面和水平地面上,如图所示.若将小球B 向左推动少许,当两球重新达到平衡时,与原来的平衡状态相比较( )A.推力F 变大B.竖直墙面对小球A 的弹力变大C.地面对小球B 的支持力不变D.两个小球之间的距离变大1.D2.A3. A4.5.CD八.临界问题1.如图所示,倾角为30°的斜面上有物体A ,重10 N ,它与斜面间最大静摩擦力为3.46 N ,为了使A 能静止在斜面上,物体B 的重力应在什么范围内(不考虑绳重及绳与滑轮间的摩擦力)?1. 1.54 N ≤G B ≤8.46 N九.轻杆绳子三脚架连接问题1.如图2所示,质量为m 的物体悬挂在轻质的支架上,斜梁OB 与竖直方向的夹角为θ。
设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2。
以下结果正确的是A .1sin F mg θ=B .1sin mg F θ=C .2cos F mg θ=D .2cos mg F θ= 2.手握轻杆,杆的另一端安装有一个小滑轮C ,支持着悬挂重物的绳子,如图1—9所示.现保持滑轮C 的位置不变,使杆向下转动一个角度,则杆对滑轮C 的作用力将( )A .变大B .不变C .变小D .无法确定3.如图所示,A 、B 为竖直墙面上等高的两点,AO 、BO 为长度相等的两根轻绳,CO 为一根轻杆.转轴C 在AB 中点D 的正下方,AOB 在同一水平面内.∠AOB=120°,∠COD=60°.若在O 点处悬挂一个质量为m 的物体,则平衡后绳AO 所受的拉力和杆OC 所受的压力分别为( )A. mg mg 332,33B.mg mg 21,C. mg mg 33,332D. mg mg ,214.如图,轻杆A 端用光滑水平铰链装在竖直墙面上,B 端用水平绳结在墙C 处并吊一重物P ,在水平向右的力F 缓缓拉起重物P 的过程中,杆AB 所受压力的变化情况是( )A .变大 ;B .变小 ;C .先变小再变大 ;D .不变。
1.D2. B3.A4. DA BC P F F。