2019年廊坊市初二数学下期中模拟试卷带答案
河北省廊坊市八年级下学期数学期中考试试卷

河北省廊坊市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·兴化月考) 若有意义,则x的取值范围是()A . x>3B . x<3C . x≠﹣3D . x≠32. (2分) (2018八上·青山期中) 在平面直角坐标中,点P(2,1)关于x轴对称点的坐标是()A . (2,-1)B . (2,1)C . (-2,-1)D . (-2,1)3. (2分) (2019八上·永登期末) 如图,小手盖住的点的坐标可能是()A . (3,3)B . (﹣4,5)C . (﹣4,﹣6)D . (3,﹣6)4. (2分)下列函数既是一次函数又是正比例函数的是()A . y=3x2B . y=C . y=5x-4D . y=-3x5. (2分)已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A . 第一、二象限B . 第一、三象限C . 第二、四象限D . 第三、四象限6. (2分)如图,□ABCD的周长为16㎝,AC,BD相交于点O,OE⊥AC,交AD于点E,则△DCE的周长为A . 4㎝B . 6㎝C . 8㎝D . 10㎝7. (2分)如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A . x<-2B . -2<x<-1C . -2<x<0D . -1<x<08. (2分)(2017·唐河模拟) 抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A .B .C .D .9. (2分) (2017八下·灌云期末) 若关于x的方程 + =0有增根,则m的值是()A . ﹣2B . ﹣3C . 5D . 310. (2分) (2018八下·深圳月考) 一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如下表:x…0123…y1…21…x…0123…y2…﹣3﹣113…则关于x的不等式kx+b>mx+n的解集是()A . x>2B . x<2C . x>1D . x<1二、填空题 (共6题;共6分)11. (1分) 1﹣= ________ .12. (1分) (2018八上·辽宁期末) 0.000608用科学记数法表示为________.13. (1分) (2018八上·建湖月考) 将一次函数y=2x+3的图象平移后过点(1,4),则平移后得到的函数关系式为________.14. (1分)(2018·宁夏) 反比例函数(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而________.(填“增大”或“减小”)15. (1分)用平行四边形纸条沿对边AB、CD边上的点E、F所在的直线折成V字形图案,已知图中∠1=68°,∠2的度数为________16. (1分)(2018·成都模拟) 如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数(k≠0)的图象经过圆心P,则k=________。
2019八年级下册数学期中试卷和答案(最新整理)

解得 x=7 ………...…..3 分
解得 x=-2.....3 分
经检验 x=7 是原方程的解…..4 分 经检验 x=-2 不是原方程的解,所以原方程无解…..4 分 20.解:连接 AC,∵AB⊥BC,∴∠B=90°………………1 分
∴AC= AB2 BC 2 = 82 62 =10………………….…2 分
(1)解: 1 2 x …1 分(2)解: x x 2
8
…1 分
x3
x3
x 2 x 2 (x 2)(x 2)
八年级数学第7页共 6 页
两边同时乘以(x-3)得
两边同时乘以(x+2)(x-2)得
1=2(x-3)-x ………..2 分
x(x-2)- (x 2)2 =8……..2 分
x
42
(3)答:存在点 P 使△PAO 为等腰三角形;
点 P 坐标分别为:
P1(0,
13 ) ; P2(0,6);
P3(0, 13 ) ;
13
P4(0, ) ……10 分
6
八年级数学第9页共 6 页
…1 分
(2) 解:原式= a 1
a(a 1)
…..1 分
yx
a 1 (a 1)(a 1)
(x y)(x y)
=
……2 分
yx
= a 1 a ……………….2 分 a 1 a 1
(x y)(x y)
=
…....3 分
(x y)
a 1a
=
……………………3 分
a 1
=-x-y…………………4 分
方案(1)所需工程款为:1.5×20=30 万 元 方案(2)所需工程款为:1.1×25=27.5 万元 方案(3)所需工程款为:1.5×4+1.1×20=28 万元 ∴在不耽误工期的情况下,我觉得方案(3)最省钱…………8 分
2019年初二数学下期中试卷(附答案)

2019年初二数学下期中试卷(附答案)一、选择题1.下列命题中,真命题是( )A .四个角相等的菱形是正方形B .对角线垂直的四边形是菱形C .有两边相等的平行四边形是菱形D .两条对角线相等的四边形是矩形2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是( )A .10尺B .11尺C .12尺D .13尺3.正方形具有而菱形不具有的性质是( )A .四边相等B .四角相等C .对角线互相平分D .对角线互相垂直4.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 5.如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得4AO =米.若梯子的顶端沿墙下滑1米,这时梯子的底端也恰好外移1米,则梯子AB 的长度为 ( )A .5米B .6米C .3米D .7米6.△ABC 的三边分别是 a ,b ,c ,其对角分别是∠A ,∠B ,∠C ,下列条件不能判定△ABC 是直角三角形的是( )A .∠B = ∠A - ∠C B .a : b : c = 5 :12 :13 C .b 2- a 2= c 2D .∠A : ∠B : ∠C = 3 : 4 : 57.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3>y1>y28.如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=()A.4B.5C.34D.419.有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5B.7C.5D.5或710.如图所示□ABCD,再添加下列某一个条件, 不能判定□ABCD是矩形的是()A.AC=BD B.AB⊥BCC.∠1=∠2D.∠ABC=∠BCD11.如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1B.x<1C.x>2D.x<212.下列运算正确的是()A235+=B 36 2=C235=g D1333=二、填空题13.一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是____.14.计算:221)=__________.15.函数21xyx+=-中,自变量x的取值范围是.16.如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为_________cm2.17.如图,已知正方形ABCD,以BC为边作等边△BCE,则∠DAE的度数是_____.18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m,当它把绳子的下端拉开旗杆4m后,发现下端刚好接触地面,则旗杆的高为________19.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB 的面积为4cm2.则OC的长为_____cm.20.如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是_______.三、解答题21.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲、乙两校40名学生成绩的频数分布统计表如下:成绩x 学校5060x≤<6070x≤<7080x≤<8090x≤<90100x≤<甲41113102乙6315142(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)b.甲校成绩在7080≤<这一组的是:x70 70 70 71 72 73 73 73 74 75 76 77 78c.甲、乙两校成绩的平均分、中位数、众数如下:学校平均分中位数众数甲74.2n85乙73.57684根据以上信息,回答下列问题:(1)写出表中n的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是_____________校的学生(填“甲”或“乙”),理由是__________;(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.22.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是_________阶准菱形;②为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,请证明四边形ABFE是菱形;(2)操作与计算:已知平行四边形ABCD的邻边长分别为l,a(a>1),且是3阶准菱形,请画出平行四边形ABCD及裁剪线的示意图,并在图形下方写出a的值.23.如图,在ABCD Y 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接,AF BE 求证:四边形 AFBE 是菱形24.已知,如图,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是AB 、BC 的中点,连接DE ,且// DE BC .(1) 求证:BE CF =;(2)连接DF ,若5AB BC ==,6AC =,求四边形BEDF 的面积.25.一次函数y 1=kx +b 和y 2=﹣4x +a 的图象如图所示,且A (0,4),C (﹣2,0). (1)由图可知,不等式kx +b >0的解集是 ;(2)若不等式kx +b >﹣4x +a 的解集是x >1.①求点B 的坐标;②求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可.详解:A选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题;故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.2.D解析:D【解析】试题解析:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.3.B解析:B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选B.4.C解析:C【解析】【详解】如图,作MG⊥BC于G,MH⊥CD于H,则BG=GC,AB∥MG∥CD,∴AM=MN ,∵MH ⊥CD ,∠D=90°,∴MH ∥AD ,∴NH=HD ,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a ,∠MCD=30°,∴MH=12MC=12a ,,∴DH=a ﹣2a ,∴CN=CH ﹣﹣(a )=﹣1)a ,∴△MNC 的面积=12×2a ×﹣1)a 2. 故选C. 5.A解析:A【解析】【分析】设BO xm =,利用勾股定理依据AB 和CD 的长相等列方程,进而求出x 的值,即可求出AB 的长度.【详解】解:设BO xm =,依题意,得1AC =,1BD =,4AO =.在Rt AOB V 中,根据勾股定理得222224AB AO OB x =+=+,在Rt COD V 中,根据勾股定理22222(41)(1)CD CO OD x =+=-++,22224(41)(1)x x ∴+=-++,解得3x =,5AB ∴==,答:梯子AB 的长为5m .故选:A .【点睛】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =利用勾股定理列方程是解题的关键.6.D解析:D【分析】根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可.【详解】A、∵∠B=∠A-∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2-a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选D.【点睛】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.7.A解析:A【解析】【分析】先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=﹣x+b,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1>y2>y3.故选:A.【点睛】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.8.C解析:C【解析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE,进而利用勾股定理得出AE即可.【详解】∵菱形ABCD,∴CD=AD=5,CD∥AB,∴CE=CD﹣DE=5﹣1=4,∵BE⊥CD,∴∠CEB=90°,∴∠EBA=90°,在Rt△CBE中,BE3==,在Rt△AEB中,AE==故选C.【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD.9.D解析:D【解析】【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边,当4是斜边时,另一条直角边=故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.10.C解析:C【解析】【分析】根据矩形的判定定理逐项排除即可解答.【详解】解:由对角线相等的平行四边形是矩形,可得当AC=BD时,能判定口ABCD是矩形;由有一个角是直角的平行四边形是矩形,可得当AB⊥BC时,能判定口ABCD是矩形;由平行四边形四边形对边平行,可得AD//BC,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD是矩形;由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD时,能判定口ABCD是矩形.故选答案为C.【点睛】本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.11.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x>2时,kx+b<ax,故选C.点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.12.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A、原式+B=,故错误;C、原式,故C错误;=,正确;D3故选:D.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.二、填空题13.-2<m<3【解析】【分析】【详解】解:由已知得:解得:-2<m<3故答案为:-2<m<3解析:-2<m<3【解析】【分析】【详解】解:由已知得:20 30 mm>>+⎧⎨-⎩,解得:-2<m<3.故答案为:-2<m<3.14.3+2【解析】【分析】【详解】解:故答案为:3+2解析:【解析】【分析】【详解】解:222故答案为:.15.x≠1【解析】x≠1解析:x≠1【解析】10x-≠,x≠116.5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC∠BCF=∠DCF=90°又知折叠使点D和点B重合根据折叠的性质可得C′F=CF 在RT△BCF中根据勾股定理可得BC2+CF2=B解析:5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D 和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=5,所以△BEF的面积=12BF×AB=12×5×3=7.5.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.17.15°【解析】【分析】由正方形的性质和等边三角形的性质可得∠DAB=∠ABC=90°AB=BC=BE∠EBC=60°可求∠BAE=75°即可得∠DAE的度数【详解】∵四边形ABCD是正方形∴∠DAB解析:15°【解析】【分析】由正方形的性质和等边三角形的性质可得,∠DAB=∠ABC=90°,AB=BC=BE,∠EBC=60°,可求∠BAE=75°,即可得∠DAE的度数.【详解】∵四边形ABCD是正方形∴∠DAB=∠ABC=90°,AB=BC,∵△BEC 是等边三角形∴BC =BE ,∠EBC =60°∴AB =BE =BC ,∠ABE =∠ABC ﹣∠EBC =30°∴∠BAE =75°∴∠DAE =∠BAD ﹣∠BAE =15°故答案为15°. 【点睛】本题考查了正方形的性质,等边三角形的性质,熟记各性质并准确识图是解题的关键.18.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练 解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x =+米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x +=+,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 19.【解析】【分析】根据作法判定出四边形OACB 是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC =BC =OA ∵OA =OB ∴OA =OB =BC =AC ∴四边形OACB 是菱形∵AB解析:【解析】【分析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴12AB•OC=12×2×OC=4,解得OC=4cm.故答案为:4.【点睛】本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.20.x≤0【解析】【分析】由一次函数y=kx+b的图象过点(02)且y随x的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y随x的增大而减小∵一次函数y=kx解析:x≤0【解析】【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【详解】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0.【点睛】本题考查的是一次函数与一元一次不等式的关系,能利用数形结合求出不等式的解集是解答此题的关键.三、解答题21.(1)72.5;(2)甲,理由见解析;(3)320名.【解析】【分析】(1)根据中位数的定义求解可得;(2)根据甲这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.【详解】(1)这组数据的中位数是第20、21个数据的平均数,所以中位数727372.52n+==;(2)甲;这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生.(3)在样本中,乙校成绩优秀的学生人数为14216+=.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为1680032040⨯=.【点睛】本题主要考查频数分布表、中位数及样本估计总体,根据表格得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用是解题关键.22.(1)①2;②证明见解析;(2)作图见解析,a的值分别是:a1=4,a2=52,a3=53,a4=43.【解析】【分析】(1)①根据邻边长分别为2和3的平行四边形经过两次操作,即可得出所剩四边形是菱形,即可得出答案;②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案;(2)利用3阶准菱形的定义,即可得出答案;根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出▱ABCD是几阶准菱形.【详解】解:(1)①邻边长分别为2和3的平行四边形是2阶准菱形;故答案为:2;②如图2,由BE是四边形ABFE的对称轴,即知∠ABE=∠FBE,且AB=BF,EA=EF,又因为AE∥BF,所以∠AEB=∠FBE,从而有∠AEB=∠ABE,因此AB=AE,据此可知AB=AE=EF=BF,故四边形ABFE为菱形;(2)如图,必为a>3,且a=4;如图,必为2<a<3,且a=2.5;如图,必为32<a<2,且a-1+1(1)12a-=,解得a=53;如图,必为1<a<32,且3(a-1)=1,解得a=43综上所述,a的值分别是:a1=4,a2=52,a3=53,a4=43.【点睛】本题考查图形的剪拼,平行四边形的性质,菱形的性质,作图---应用与作图设计.23.见解析【解析】【分析】由平行四边形的性质得出AD∥BC,得出∠EAG=∠FBG,由AAS证明△AGE≌△BGF,得出AE=BF,由AD∥BC,可证四边形AFBE是平行四边形,由EF⊥AB,即可得出结论.【详解】证明:Q四边形ABCD是平行四边形,// ,AE BF∴,EAG FBG∴∠=∠EF是AB的垂直平分线,,AG BG∴=在AGE∆和BGF∆中,EAG FBGAG BGAGE BGF∠=∠⎧⎪=⎨⎪∠=∠⎩Q()AGE BGF ASA ∴∆≅∆AE BF ∴=又//AE BF Q∴四边形AFBE 是平行四边形EF Q 是AB 的垂直平分线AF BF ∴=AFBE ∴Y 是菱形【点睛】本题考查了平行四边形的性质、菱形的判定方法、全等三角形的判定与性质、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.24.(1)见解析;(2)6【解析】【分析】(1)由平行线的性质和角平分线的概念可得BE =DE ,易证四边形DEFC 是平行四边形,可得DE =CF ,等量代换即可得出结论;(2)易证四边形BEDF 是平行四边形,再由BE =DE 证得四边形BEDF 是菱形,由等腰三角形“三线合一”可得BD ⊥EF ,根据勾股定理求得BD ,根据三角形中位线定理求得EF ,根据菱形的面积公式即可得出答案.【详解】(1)证明:∵DE ∥BC ,∴∠DBC =∠BDE ,∵BD 平分∠ABC ,∴∠EBD =∠DBC ,∴∠BDE =∠EBD ,∴BE =DE ,∵E 、F 是AB 、BC 的中点,∴EF ∥AC ,∵DE ∥BC ,∴四边形DEFC 是平行四边形,∴DE =CF ,∴BE =CF ;(2)∵AB =BC =5,BD 平分∠ABC ,∴BD ⊥AC ,CD =12AC =3. 在Rt △BDC 中,BD∵E 、F 是AB 、BC 的中点,∴EF=12AC=3.∵F是BC中点,∴BF=CF,∴DE=BF,DE∥BF,∴四边形BEDF是平行四边形,又∵BE=DE,∴四边形BEDF是菱形,∴S菱形BEDF=12 BD·EF=12×4×3=6.【点睛】本题主要考查了等腰三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,三角形中位线定理,根据三角形中位线定理和平行四边形的判定证出平行四边形是解决(1)的关键,证出四边形BEDF是菱形是解决(2)的关键.25.(1)x>﹣2;(2)①(1,6);②10.【解析】【分析】(1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.【详解】解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为:x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1,∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B的坐标为(1,6);②∵点B(1,6),∴6=﹣4×1+a,得a=10,即a的值是10.【点睛】本题主要考查学生对于一次函数图像性质的掌握程度。
2019年度第二学期八年级期中考试含答案

1第二学期期中考试八年级数学(闭卷:试题卷和答题卷一体)时量:100分钟 分值:120分命题人: 审题人:一、选择题(3分×10=30分)1.当3a =时,在实数范围内无意义的式子是(C )ABCD2.分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有(B ) A .4组 B .3组 C .2组 D .1组3.已知平行四边形ABCD 中,200A C ∠+∠=,则B ∠的度数是(C ) A .100 B .160 C .80 D .604.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,下列结论不正确的是(D ) A .DC ∥AB B .OA =OC C .AD =BC D .DB 平分∠ADC 5.下列命题中,真命题是(B )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是平行四边形2第13题C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形 6.矩形两条对角线的夹角为60,一条较短边长为5cm ,则其对角线长为(B ) A .5cm B .10cm C .15cm D .cm7.小王计划用100元钱买乒乓球,所购买球的个数W (个)与单价n (元)的关系式100W n=中(A ) A .100是常量,W ,n 是变量 B .100,W 是常量,n 是变量 C .100,n 是常量,W 是变量 D .无法确定 8.下列函数:①3y x =-;②3y x =-;③232y x =;④13xy =+.其中是一次函数的是(D )A .①②B .①③C .②③D .①④ 9.已知一次函数23y x =-经过哪几个象限(B )A .一、二、三B .一、三、四C .一、二、四D .二、三、四 10.方程10x +=得解就是函数1y x =+的图像与(A ) A.x 轴交点的横坐标B .y 轴交点的横坐标C .y 轴交点的纵坐标D .以上都不对二、填空题(3分×8=24分) 11÷= 3 .1250y ++=,则x y += -3 。
冀教版初二年级数学下学期期中测试题(含答案解析)

冀教版初二年级数学下学期期中测试题(含答案解析)
冀教版2019初二年级数学下学期期中测试题
(含答案解析)
冀教版2019初二年级数学下学期期中测试题(含答案解析)参考答案
三、19.解:(1)小莉所调查的样本缺乏代表性;
(2)会在每包的每打中随机抽取一套当做样本.(答案不唯一,正确即可)
20.解:如图.
21.解:(1)如图;点B的坐标为(-1,1),点C的坐标为(-4,0),点E的坐标为(0,-4),点F的坐标为(1,-1 ),点G的坐标为(4,0),点H的坐标为(1,1);(2)点A与点E,点B与点D,点H与点F.
22.解:(1 )2019年5月到12月该市共有122天的空气质量达到良好以上;
(2)A部分扇形的圆心角的度数为45°,B部分扇形的
圆心角的度数为225°,C部分扇形的圆心角的度数为90°.
23.解:(1)八年级(2)班共有50名学生;
(2)B所在扇形的圆心角的度数为72°;如图;
(3)这顿午饭八年级(2)班的学生浪费了150克米饭.
24.解:(1)数据中的最大值和最小值各为4 .1和2.2;(2)如图;如图;
(3)台湾该医院8月份出生的32名新生婴儿中,正常体重儿占总新生婴儿的78.125%,低体重儿占总新生婴儿的9.375%,巨大儿占总新生婴儿的12.5%.。
2019年八年级数学下期中试卷含答案(1)

2019年八年级数学下期中试卷含答案(1)一、选择题1.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .2.下列条件中,不能判断△ABC 为直角三角形的是A .21a =,22b =,23c =B .a :b :c=3:4:5C .∠A+∠B=∠CD .∠A :∠B :∠C=3:4:53.实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++4.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A .①②④B .①③④C .③④D .①②5.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.203B.252C.20D.256.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2B.1,1,3C.4,5,6D.1,3,27.如图,要测量被池塘隔开的A,B两点的距离,小明在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,并分别找出它们的中点D,E,连接DE,现测得DE =45米,那么AB等于()A.90米B.88米C.86米D.84米8.在水平地面上有一棵高9米的大树,和一棵高4米的小树,两树之间的水平距离是12米,一只小鸟从小树的顶端飞到大树的顶端,则小鸟至少飞行( )A.12米B.13米C.9米D.17米9.已知一次函数y=﹣x+m和y=2x+n的图象都经过A(﹣4,0),且与y轴分别交于B、C两点,则△ABC的面积为()A.48B.36C.24D.1810.如图,在正方形ABCD外侧,作等边三角形ADE,AC、BE相交于点F,则∠CFE为()A.150°B.145°C.135°D.120°11.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <2 12.如图,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为( )A .36°B .18°C .27°D .9°二、填空题13.一次函数的图像经过点A (3,2),且与y 轴的交点坐标是B (0,2- ),则这个一次函数的函数表达式是________________.14.如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,且另外两条边长均为无理数,满足这样条件的点C 共__个.15.已知一个三角形的周长是48cm ,以这个三角形三边中点为顶点的三角形的周长为_______cm .16.在Rt ABC ∆中,a ,b ,c 分别为A ∠,B Ð,C ∠的对边,90C ∠=︒,若:2:3a b =,52c =,则a 的长为_______.17.菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.18.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.19.一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.20.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______三、解答题21.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB =5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.(1)求证BE=DE;(2)判断DF与ON的位置关系,并说明理由;(3)△BEF的周长为.22.如图,四边形ABCD为菱形,E为对角线AC上的一个动点,连结DE并延长交射线AB于点F,连结BE.(1)求证:∠AFD=∠EBC;(2)若∠DAB=90°,当△BEF为等腰三角形时,求∠EFB的度数.÷⨯÷.23.计算:322223cm在盒内24.如图,一个没有上盖的圆柱形食品盒,它的高等于24cm,底面周长为20,cm s.下底面的点A处有一只蚂蚁,蚂蚁爬行的速度为2/(1)如图1,它想沿盒壁爬行吃到盒内正对面中部点B处的食物,那么它至少需要多少时间?(盒的厚度和蚂蚁的大小忽略不计,下同)(2)如果蚂蚁在盒壁.上爬行了一圈半才找点B处的食物(如图2),那么它至少需要多少时间?(3)假如蚂蚁是在盒的外部下底面的A处(如图3),它想吃到盒内正对面中部点B处的食物,那么它至少需要多少时间?Y中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,25.如图,在ABCDAF BE求证:四边形AFBE是菱形连接,【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y 1的图象可知a> 0,b> 0;由y 2的图象可知a<0,b<0,两结论相矛盾,故错误; 故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k 及b 值的关系是解题的关键.2.D解析:D【解析】【分析】【详解】试题分析:A 、根据勾股定理的逆定理,可知222+=a b c ,故能判定是直角三角形; B 、设a=3x ,b=4x ,c=5x ,可知222+=a b c ,故能判定是直角三角形;C 、根据三角形的内角和为180°,因此可知∠C=90°,故能判定是直角三角形;D 、而由3+4≠5,可知不能判定三角形是直角三角形.故选D考点:直角三角形的判定3.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】. 4.C解析:C【解析】【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.D解析:D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.6.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠3)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+(3)2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.7.A解析:A【解析】【分析】根据中位线定理可得:AB=2DE=90米.【详解】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=12 AB.∵DE=45米,∴AB=2DE=90米.故选A.【点睛】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.8.B解析:B【解析】【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】如图,设大树高为AB=9m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=12m,AE=AB-EB=9-4=5m,在Rt△AEC222251213AE EC m++==.故小鸟至少飞行13m.故选:B.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.解析:C【解析】【分析】把A(﹣4,0)分别代入一次函数y=﹣x+m和y=2x+n中,求得m和n的值,根据所得的两个解析式,求得点B和点C的坐标,以BC为底,点A到BC的垂线段为高,求出△ABC的面积即可.【详解】把点A(﹣4,0)代入一次函数y=﹣x+m得:4+m=0,解得:m=﹣4,即该函数的解析式为:y=﹣x﹣4,把点A(﹣4,0)代入一次函数y=2x+n得:﹣8+n=0,解得:n=8,即该函数的解析式为:y=2x+8,把x=0代入y=﹣x﹣4得:y=0﹣4=﹣4,即B(0,﹣4),把x=0代入y=2x+8得:y=0+8=8,即C(0,8),则边BC的长为8﹣(﹣4)=12,点A到BC的垂线段的长为4,S△ABC11242=⨯⨯=24.故选C.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握代入法求一次函数的解析式是解题的关键.10.D解析:D【解析】【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC,即可得出∠CFE.【详解】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°,∴∠CFE=180°-∠BFC=120°【点睛】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.11.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x >2时,kx+b <ax ,故选C .点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.12.B解析:B【解析】试题解析:已知∠ADE :∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE ⊥AC ,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选B .二、填空题13.y=x-2【解析】【分析】一次函数关系式y=kx+b 将AB 两点坐标代入解一元一次方程组可求kb 的值确定一次函数关系式【详解】设一次函数关系式y=kx+b 将A (32)B (0-2)代入得解得一次函数解析解析:y=43x-2. 【解析】【分析】一次函数关系式y=kx+b ,将A 、B 两点坐标代入,解一元一次方程组,可求k 、b 的值,确定一次函数关系式.【详解】设一次函数关系式y=kx+b ,将A (3,2)、B (0,-2)代入,得 322k b b +⎧⎨-⎩==,解得432k b ⎧⎪⎨⎪-⎩==, 一次函数解析式为y=43x-2.故答案为:y=43x-2.【点睛】此题考查利用待定系数法求一次函数解析式,解题关键在于利用待定系数法进行求解.14.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB为边画直角△ABC使点C在格点上满足这样条件的点C共8个故答案为8解析:4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.【详解】解:根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共 8个.故答案为8.15.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF分别是ABACBC的中点∴DE=BCDF=ACEF=解析:24【解析】【分析】根据三角形中位线定理得到DE=12BC,DF=12AC,EF=12AB,根据三角形的周长公式计算,得到答案.【详解】解:根据题意,画出图形如图所示,点D、E、F分别是AB、AC、BC的中点,∴DE=12BC ,DF=12AC ,EF=12AB , ∵原三角形的周长为48,∴AB+AC+BC=48, 则新三角形的周长=DE+DF+EF=12×(AB+AC+BC )=24(cm ) 故答案为:24cm .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键. 16.4【解析】【分析】设每份为x 则根据勾股定理即可求出x 的值然后求出a 的长【详解】解:根据题意设每份为x∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题 解析:4【解析】【分析】设每份为x ,则2a x =,3=b x ,根据勾股定理,即可求出x 的值,然后求出a 的长.【详解】解:根据题意,设每份为x ,∵:2:3a b =,∴2a x =,3=b x ,在Rt ABC ∆中,由勾股定理,得222(2)(3)x x +=,解得:2x =(负值已舍去),∴4a =;故答案为:4.【点睛】本题考查了勾股定理解直角三角形,解题的关键是熟练掌握勾股定理求出三角形的边长. 17.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB 再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD 是菱形∴OAAC=4OBBD =3AC⊥BD∴AB5故答案为:5【点睛】本题主要解析:5【解析】【分析】根据菱形的对角线互相垂直平分求出OA 、OB ,再利用勾股定理列式进行计算即可得解.【详解】如图,∵四边形ABCD是菱形,∴OA12=AC=4,OB12=BD=3,AC⊥BD,∴AB22OA OB=+=5故答案为:5【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记菱形的各种性质是解题的关键.18.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE分别是BCCDAD 的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=解析:AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形,然后根据矩形的性质得出AC⊥BD.【详解】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.【点睛】本题主要综合考查了三角形中位线定理及矩形的判定定理,属于中等难度题型.解答这个问题的关键就是要明确矩形的性质以及中位线的性质.19.12米【解析】【分析】【详解】解:如图所示AC=6米BC=45米由勾股定理得AB==75(米)故旗杆折断前高为:45+75=12(米)故答案为:12米解析:12米【解析】【分析】【详解】解:如图所示,AC=6米,BC=4.5米,由勾股定理得,AB= 224.56+ =7.5(米).故旗杆折断前高为:4.5+7.5=12(米).故答案为:12米.20.13或;【解析】第三条边的长度为解析:13119【解析】第三条边的长度为2222-或12+5125=119三、解答题21.(1)见解析;(2)DF⊥ON,理由见解析;(3)24【解析】【分析】(1)根据正方形的性质证明△BCE≌△DCE即可;(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF⊥ON,又∵∠MON=90°,DG⊥OM,∴四边形OFDM是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE=DE,∴△BEF的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.22.(1)见解析;(2) ∠EFB=30°或120°.【解析】【分析】(1)直接利用全等三角形的判定方法得出△DCE≌△BCE(SAS),即可得出答案;(2)利用正方形的性质结合等腰三角形的性质得出:①当F在AB延长线上时;②当F在线段AB上时;分别求出即可.【详解】(1)证明:∵四边形ABCD是菱形,∴CD=AB,∠ACD=∠ACB,在△DCE和△BCE中,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE,∵CD∥AB,∴∠CDE=∠AFD,∴∠EBC=∠AFD.(2)分两种情况,①如图1,当F在AB延长线上时,∵∠EBF为钝角,∴只能是BE=BF,设∠BEF=∠BFE=x°,可通过三角形内角形为180°得:90+x+x+x=180,解得:x=30,∴∠EFB=30°.②如图2,当F在线段AB上时,∵∠EFB为钝角,∴只能是FE=FB,设∠BEF=∠EBF=x°,则有∠AFD=2x°,可证得:∠AFD=∠FDC=∠CBE,得x+2x=90,解得:x=30,∴∠EFB=120°.综上:∠EFB=30°或120°.【点睛】此题主要考查了菱形的性质以及正方形的性质以及全等三角形的判定与性质等知识,利用分类讨论得出是解题关键.23.1【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】==原式3221223【点睛】此题主要考查了实数运算,正确掌握相关运算法则是解题关键.24.(161s;(2)329s;(3349s【解析】【分析】(1)从A到B有两种走法:从内壁直接爬过去和从盒子底部直接爬过去,画出展开图,求出AB的长度,比较即可得出结果;(2)根据勾股定理解答即可;(3)要求圆柱体中两点之间的最短路径,最直接的作法,就是将正方体展开,作出B关于边EF的对称点D,然后利用勾股定理求出AD的长,再算出时间.【详解】(1)图1展开图,如图①、图②所示:图①中(直接沿着盒壁爬过去):261AB = 图②中(沿底面直径爬过去再竖直爬上去):2012AB π=+2026112π<+Q261261t s ∴=÷=(2)如图:蚂蚁走过的最短路径为:223012629AB =+=cm ,所用时间为:6292329s ÷=;(3)如图2,作B 关于EF 的对称点D ,连接AD ,蚂蚁走的最短路程是AP+PB=AD ,由图可知,AC=10cm ,CD=24+12=36(cm ),2236101396+=,1396349s ), 从A 到C 349秒.【点睛】本题考查的是平面展开-最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.25.见解析【解析】【分析】由平行四边形的性质得出AD ∥BC ,得出∠EAG =∠FBG ,由AAS 证明△AGE ≌△BGF ,得出AE =BF ,由AD ∥BC ,可证四边形AFBE 是平行四边形,由EF ⊥AB ,即可得出结论.【详解】证明:Q 四边形ABCD 是平行四边形,// ,AE BF ∴,EAG FBG ∴∠=∠EF 是AB 的垂直平分线,,AG BG ∴=在AGE ∆和BGF ∆中,EAG FBG AG BG AGE BGF ∠=∠⎧⎪=⎨⎪∠=∠⎩Q ()AGE BGF ASA ∴∆≅∆AE BF ∴=又//AE BF Q∴四边形AFBE 是平行四边形EF Q 是AB 的垂直平分线AF BF ∴=AFBE ∴Y 是菱形【点睛】本题考查了平行四边形的性质、菱形的判定方法、全等三角形的判定与性质、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.。
2019年初二数学下期中一模试卷(含答案)

2019年初二数学下期中一模试卷(含答案)一、选择题1.下列运算正确的是( ) A .347+=B .1232=C .2(-2)2=-D .142136= 2.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .3.下列二次根式中,最简二次根式是( ) A .10B .12C .12D .84.下列四组线段中,可以构成直角三角形的是( ) A .1,2,3B .2,3,4C .1, 2,3D .2,3,55.如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2C .3D .66.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .437.如图,在正方形OABC 中,点A 的坐标是()3,1-,则C 点的坐标是( )A .()1,3B .()2,3C .()3,2D .()3,18.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形. A .1个 B .2个 C .3个 D .4个 9.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k <3 B .k <0 C .k >3 D .0<k <3 10.菱形ABCD 中,AC =10,BD =24,则该菱形的周长等于( )A .13B .52C .120D .24011.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠CFE 为()A .150°B .145°C .135°D .120° 12.菱形周长为40cm ,它的条对角线长12cm , 则该菱形的面积为( )A .24B .48C .96D .36二、填空题13.菱形ABCD 中,边长为10,对角线AC =12.则菱形的面积为__________. 14.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表: 植树棵数(单位:棵) 4 5 6 8 10 人数(人)302225158则这100名学生所植树棵数的中位数为_____. 15.23(1)0m n -+=,则m+n 的值为 . 16.已知51,x =则226x x +-=____________________.17.在矩形ABCD 中,点E 为AD 的中点,点F 是BC 上的一点,连接EF 和DF ,若AB=4,BC=8,5DF 的长为___________.18.如图,在矩形ABCD 中,AD=9cm ,AB=3cm ,将其折叠,使点D 与点B 重合,则重叠部分(△BEF)的面积为_________cm 2.19.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为____.20.在平面直角坐标系中,(1,0)(4,0)(0,3),A B C -、、若以A B C D 、、、为顶点的四边形是平行四边形,则D 点坐标是________________.三、解答题21.如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,若C 在格点上,且满足13,32AC BC ==.(1)在图中画出符合条件的ABC V ;(2)若BD AC ⊥于点D ,则BD 的长为 .22.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点O 关于直线CD 的对称点为E ,连接DE ,CE .(1)求证:四边形ODEC 为菱形; (2)连接OE ,若BC =2,求OE 的长. 23.32222324.如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作CE ∥BD 、DE ∥AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形.(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若AC =10,BD =24,则OE 的长为____. 25.观察下列等式:2413⨯+= 3514⨯+= 4615⨯+=L (1)写出式⑤:___________________;(2)试用含n (n 为自然数,且1n ≥)的等式表示这一规律,并加以验证.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据二次根式的加减法对A 进行判断;根据二次根式的性质对B 、C 进行判断;根据分母有理化和二次根式的性质对D 进行判断. 【详解】A 32,所以A 选项错误;B 、原式=23B 选项错误;C 、原式=2,所以C 选项错误;D 14621366⨯=⨯,所以D 选项正确. 故选D . 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y1的图象可知a< 0,b> 0;由y2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y1的图象可知a< 0,b> 0;由y2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y1的图象可知a> 0,b> 0;由y2的图象可知a<0,b<0,两结论相矛盾,故错误;故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k及b值的关系是解题的关键.3.A解析:A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A是最简二次根式,本选项正确.B=C=A=不是最简二次根式,本选项错误.故选A.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.4.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A.∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B.∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C.∵12+)2=2,∴以1选项正确;D)2+32≠523,5为边组成的三角形不是直角三角形,故本选项错误. 故选C . 【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.5.C解析:C 【解析】 【分析】首先连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,由在菱形ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分AC ,继而可得CM ⊥AD ,则可求得CM 的值,继而求得PA+PM 的最小值. 【详解】解:连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,∵在菱形ABCD 中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD 垂直平分AC , ∴△ACD 是等边三角形,PA=PC , ∵M 为AD 中点, ∴DM=AD=3,CM ⊥AD , ∴CM==3, ∴PA+PM=PC+PM=CM=3.故选:C . 【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键.6.A解析:A 【解析】 【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得DEC V ≌'V D EC ,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,再根据勾股定理可得方程2222(4)x x +=-,解方程即可求得结果.【详解】解:∵四边形ABCD 是长方形,3,4AB AD ==, ∴3,4====AB CD AD BC ,90ABC ADC ∠=∠=︒, ∴ABC V 为直角三角形, ∴2222345AC AB BC =+=+=,根据折叠可得:DEC V ≌'V D EC ,∴'3==CD CD ,'DE D E =,'90∠=∠=︒CD E ADC , ∴'90∠=︒AD E ,则AD'E △为直角三角形,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-, 在'V Rt AD E 中,由勾股定理得:222''+=AD D E AE , 即2222(4)x x +=-,解得:32x =, 故选:A . 【点睛】此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.A解析:A 【解析】 【分析】作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,由AAS 证明△AOE ≌△OCD ,得出AE=OD ,OE=CD ,由点A 的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C (1,3)即可. 【详解】解:如图所示:作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,则∠AEO=∠ODC =90°, ∴∠OAE+∠AOE=90°, ∵四边形OABC 是正方形, ∴OA=CO ,∠AOC=90°, ∴∠AOE+∠COD=90°, ∴∠OAE=∠COD , 在△AOE 和△OCD 中,AEO ODC OAE COD OA CO ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOE ≌△OCD (AAS ), ∴AE=OD ,OE=CD , ∵点A 的坐标是(-3,1), ∴OE=3,AE=1, ∴OD=1,CD=3, ∴C (1,3),故选:A . 【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解题的关键.8.C解析:C 【解析】 【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可. 【详解】(1)对角线互相平分的四边形是平行四边形,说法正确; (2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确; (4)对角线相等的平行四边形是矩形,说法正确. 正确的个数有3个, 故选C . 【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.9.D解析:D 【解析】 【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k 的一元一次不等式组,解之即可得出结论. 【详解】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限, ∴,解得:0<k <3,【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.10.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO=OD=12,AO=OC=5,∴==,13AB故菱形的周长为52.故选B.11.D解析:D【解析】【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC,即可得出∠CFE.【详解】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°,∴∠CFE=180°-∠BFC=120°故选:D.【点睛】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°. 12.C解析:C【解析】【分析】根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,∵菱形的周长为40,∴AB=BC=CD=AD=10,∵一条对角线的长为12,当AC=12,∴AO=CO=6,在Rt△AOB中,根据勾股定理,得BO=8,∴BD=2BO=16,∴菱形的面积=12AC•BD=96,故选:C.【点睛】此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.二、填空题13.96【解析】【分析】已知ABAC根据勾股定理即可求得AO的值根据对角线长即可计算菱形ABCD的面积【详解】解:∵四边形ABCD是菱形AC=12∴AO=AC=6∵菱形对角线互相垂直∴△ABO为直角三角解析:96【解析】【分析】已知AB,AC,根据勾股定理即可求得AO的值,根据对角线长即可计算菱形ABCD的面积.【详解】解:∵四边形ABCD是菱形,AC=12,∴AO=12AC=6,∵菱形对角线互相垂直,∴△ABO为直角三角形,∴22AB OA=8,BD=2BO=16,∴菱形ABCD的面积=12AC•BD=12×12×16=96.故答案为:96.【点睛】本题考查了菱形对角线互相垂直平分的性质,菱形各边长相等的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理求AO的值是解题的关键.14.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m-3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质解析:2【解析】试题分析:几个非负数之和为零,则每个非负数都为零.根据非负数的性质可得:m-3=0且n+1=0,解得:m=3,n=-1,则m+n=3+(-1)=2.考点:非负数的性质16.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型解析:-2【解析】【分析】直接代入,根据二次根式的运算法则即可求出答案.【详解】 解:当51x =-时, 原式2(51)2(51)6=-+--52512526=-++--2=-【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.17.或【解析】【分析】分两种情况考虑①当BF >CF 时②当BF <CF 时然后过F 作FG⊥AD 于G 根据勾股定理进行求解【详解】①如图所示当BF >CF 时过F 作FG⊥AD 于G 则GF =4Rt△EFG 中又∵E 是AD 的 解析:25或213【解析】【分析】分两种情况考虑,①当BF >CF 时,②当BF <CF 时,然后过F 作FG ⊥AD 于G ,根据勾股定理进行求解.【详解】①如图所示,当BF >CF 时,过F 作FG ⊥AD 于G ,则GF =4,Rt △EFG 中,()222542EG =-=,又∵E 是AD 的中点,AD =BC =8,∴DE =4,∴DG =4﹣2=2,∴Rt △DFG 中,224225DF =+=;②如图所示,当BF <CF 时,过F 作FG ⊥AD 于G ,则GF =4,Rt △EFG 中,()222542EG =-=,又∵E 是AD 的中点,AD =BC =8,∴DE =4,∴DG =4+2=6,∴Rt △DFG 中,2246213DF =+=故答案为:5213【点睛】本题考查矩形的性质,勾股定理,学会运用分类讨论的思想与巧作辅助线构造直角三角形是解题的关键.18.5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC∠BCF=∠DCF=90°又知折叠使点D和点B重合根据折叠的性质可得C′F=CF在RT△BCF中根据勾股定理可得BC2+CF2=B解析:5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D 和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=5,所以△BEF的面积=12BF×AB=12×5×3=7.5.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.19.6【解析】【分析】先根据矩形的特点求出BC的长再由翻折变换的性质得出△CEF是直角三角形利用勾股定理即可求出CF的长再在△ABC中利用勾股定理即可求出AB的长【详解】解:∵四边形ABCD是矩形AD=解析:6【解析】【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,在Rt△CEF中,2222534CF CE EF=-=-=设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,则AB=6.故答案为:6.【点睛】本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.20.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC为对角线时AB=5∴点D的坐标为(-53)②BC为对角线时AB=5∴点D的坐标为(53解析:(-5,3)、(5,3)、(3,−3)【解析】【分析】作出图形,分AB、BC、AC为对角线三种情况进行求解.【详解】如图所示,①AC为对角线时,AB=5,∴点D的坐标为(-5,3),②BC为对角线时,AB=5,∴点D的坐标为(5,3),③AB为对角线时,C平移至A的方式为向左平移1个单位,向下平移3个单位,∴点B 向左平移1个单位,向下平移3个单位得到点D的坐标为(3,−3),综上所述,点D的坐标是(-5,3)、(5,3)、(3,−3).故答案为:(-5,3)、(5,3)、(3,−3).【点睛】本题考查了坐标与图形的性质,平行四边形的判定,根据题意作出图形,注意要分情况进行讨论.三、解答题21.(1)见解析; (2)13 13【解析】【分析】(1)结合网格图利用勾股定理确定点C 的位置即可得解;(2)根据三角形的面积列出关于BD 方程,求解即可得到答案.【详解】解:(1)如图:∵小正方形的边长均为1∴3AE =,2CE =;3BF CF == ∴2213AC AE CE =+=;2232BC BF CF =+=∴ABC V 即为所求.(2)如图:∵由网格图可知5AB =,3CH =,13AC =32BC =22ABC AB CH AC BD S ⋅⋅==V 13532BD ⋅⨯=∴151313BD=.【点睛】本题考查了勾股定理在网格图中的的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.22.(1)详见解析;(2)22【解析】【分析】(1)利用矩形性质可得OD=OC,再借助对称性可得OD=DE=EC=CO,从而证明了四边形ODEC为菱形;(2)证明四边形OBCE为平行四边形,即可得到OE=BC=22.【详解】(1)∵四边形ABCD是矩形,∴AC=BD,OC=12AC,OB=OD=12BD,∴OD=OC.∵点O关于直线CD的对称点为E,∴OD=ED,OC=EC.∴OD=DE=EC=CO.∴四边形ODEC为菱形;(2)连接OE.如图,由(1)知四边形ODEC为菱形,∴CE∥OD且CE=OD.又∵OB=OD,∴CE∥BO且CE=BO.∴四边形OBCE为平行四边形.∴22OE BC==【点睛】本题主要考查了矩形的性质,菱形的判定和性质、平行四边形的判定和性质,熟知特殊四边形的判定和性质是解题的关键.23.1【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.原式1== 【点睛】此题主要考查了实数运算,正确掌握相关运算法则是解题关键.24.(1)见解析;(2)13【解析】【分析】(1)首先由平行判定四边形OCED 是平行四边形,然后由矩形性质得出OC=OD ,即可判定四边形OCED 是菱形;(2)首先由平行判定四边形OCED 是平行四边形,然后由菱形性质得出AC ⊥BD ,AD=CD ,即可判定四边形OCED 是矩形,再利用勾股定理即可得解.【详解】(1)∵DE ∥AC 、CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴AC =BD ,12OC AC =,12OD BD =. ∴OC =OD .∴四边形OCED 是菱形.(2)∵DE ∥AC 、CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是菱形,∴AC ⊥BD ,AD=CD∴∠COD=90°∴四边形OCED 是矩形∴OE=CD∵AC =10,BD =24,∴OD=12,OC=5∴13==【点睛】此题主要考查菱形的判定与性质,熟练掌握,即可解题.25.(17.=(21n =+(n 为自然数,且1n ≥ ),验证见解析.【解析】【分析】(1)根据规律解答即可;(2)根据完全平方公式以及二次根式的性质解答即可.解:(1)Q 3=4=5=L7.=7.=(2 1.n =+ 理由如下:∵n 为自然数,且n ≥1,∴ 1.n ===+ 【点睛】本题主要考查了二次根式的性质,熟练掌握完全平方公式是解答(2)的关键.。
河北省廊坊市八年级下学期数学期中考试试卷

河北省廊坊市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019八上·哈尔滨期中) 1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2. (2分) (2018九上·深圳期中) 关于x的一元二次方程有实数根,则的取值范围是()A .B . 且C .D . 且3. (2分)如图,已知AB∥CD,则图中与∠1互补的角有()A . 1个B . 2 个C . 3 个D . 4个4. (2分)(2019·江北模拟) 如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A . 45°B . 60°C . 120°D . 135°5. (2分)(2020·封开模拟) 一元二次方程的根的情况为()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 无法确定6. (2分) (2019八下·历下期末) 一元二次方程配方后可化为()A .B .C .D .7. (2分) (2017·邳州模拟) 校篮球队所买10双运动鞋的尺码统计如表:尺码(cm)2525.52626.527购买量(双)11242则这10双运动鞋尺码的众数和中位数分别为()A . 4cm,26cmB . 4cm,26.5cmC . 26.5cm,26.5cmD . 26.5cm,26cm8. (2分)用反证法证明:a,b至少有一个为0,应该假设()A . a,b没有一个为0B . a,b只有一个为0C . a,b至多一个为0D . a,b两个都为09. (2分)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A . 289(1-x)2=256B . 256(1-x)2=289C . 289(1-2x)=256D . 256(1-2x)=28910. (2分)计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A . a8+2a4b4+b8B . a8﹣2a4b4+b8C . a8+b8D . a8﹣b811. (2分)(2019·瑞安模拟) 如图,在正方形ABCD中,E,F分别是AB,CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A . y=3 x2B . y=4 x2C . y=8x2D . y=9x212. (2分) (2019九上·綦江期末) 如图,⊙O的弦AB等于它的半径,点C在优弧AB上,则()A . ∠ACB=28°B . ∠CAB=70°C . ∠ABC=110°D . ∠ACB=30°二、填空题 (共6题;共9分)13. (1分) (2019七下·北京期中) 若式子有意义,那么x的取值范围是________.14. (1分) (2019七上·江苏期中) 方程2x+a=2的解是x=1,则a=________.15. (2分) (2017九上·合肥开学考) 一组数据2,4,a,7,7的平均数 =5,则方差S2=________.16. (2分) (2018九上·临沭期末) 如图,在平行四边形ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sinB= ,那么 =________.17. (2分) (2020八下·重庆月考) 某旅行社有张床位,每床每晚收费元,床位可全部租出,在每床的收费提高幅度不超过元的情况下,若每床的收费提高元,则减少张床位租出,若收费再提高元,则再减少张床位租出,以每次提高元的这种方式变化下去,为了获得元的收入,每床的收费每晚应提高________元18. (1分) (2019八下·哈尔滨期中) 如图,在平行四边形ABCD中,对角线BD平分∠ABC,过点D作DE⊥BC,交BC延长线于点E.若∠ABC=45°,AD=2,则DE=________三、解答题 (共11题;共72分)19. (10分) (2020七下·武川期中) 计算(1)(2)(3)(4)20. (10分) (2020九上·海珠期中) 解方程:(1) x2﹣x﹣1=0;(2) 3x(1﹣x)=2﹣2x .21. (10分) (2018九上·丹江口期中) 已知y关于x二次函数y=x2﹣(2k+1)x+(k2+5k+9)与x轴有交点.(1)求k的取值范围;(2)若x1 , x2是关于x的方程x2﹣(2k+1)x+(k2+5k+9)=0的两个实数根,且x12+x22=39,求k的值.22. (7分) (2017九上·芜湖开学考) 垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)23. (10分) (2020七上·丰顺期末) 如图,O是直线AB上一点,OD平分∠BOC ,∠COE=90°.若∠AOC =40°.(1)求∠DOE的度数;(2)图中互为余角的角有________.24. (6分) (2018九上·广州期中) 某花圃销售一批名贵花卉,平均每天可售出20盆,每盆盈利40元,为了增加盈利并尽快减少库存,花圃决定采取适当的降价措施,经调查发现,如果每盆花卉每降1元,花圃平均每天可多售出2盆.(1)若花圃平均每天要盈利1200元,每盆花卉应降价多少元?(2)每盆花卉降低多少元时,花圃平均每天盈利最多,是多少?25. (10分)(2019·嘉善模拟) 如图,分别以△ABC的边AB、AC为一边,向外作正方形ABEF和正方形AGHC 像这样的两个正方形称为△ABC的“依伴正方形”(1)如图1,连接BG,CF相交于点P,求证:BG=CF且BG⊥CF;(2)如图2,点D是BC的中点,两个依伴正方形的中心分别为O1 , O2连结O1D,O2D,O1O2:,判断△DO1O2的形状并说明由;(3)如图2,若AB=6,AC=,∠BAC=60°,求O1O2的长.26. (1分)多项式x2﹣x+k有一个因式为x﹣2,则k=________27. (1分) (2020八下·丽水期中) 如图,把含45°,30°角的两块直角三角板放置在同一平面内,若AB∥CD,AB=CD= ,则以A,B,C,D为顶点的四边形的面积是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年廊坊市初二数学下期中模拟试卷带答案一、选择题1.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+. 2.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( ) A .2.7 米B .2.5 米C .2.1 米D .1.5 米 3.下列四组线段中,可以构成直角三角形的是( ) A .1,2,3 B .2,3,4 C .1, 2,3 D .2,3,5 4.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )A .9.7m ,9.9mB .9.7m ,9.8mC .9.8m ,9.7mD .9.8m ,9.9m5.如图,直线y x m =-+与3y x =+的交点的横坐标为-2,则关于x 的不等式30x m x -+>+>的取值范围( )A .x>-2B .x<-2C .-3<x<-2D .-3<x<-16.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 7.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AB ,BC 边上的中点,连接EF.若3EF =,BD=4,则菱形ABCD 的周长为( )A .4B .46C .47D .288.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .69.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .310.如图,在菱形ABCD 中,BE ⊥CD 于E ,AD =5,DE =1,则AE =( )A .4B .5C 34D 4111.下列各组数据中,不可以构成直角三角形的是( )A .7,24,25B .2223,4,5C .53,1,44D .1.5,2,2.512.如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6二、填空题13.若一元二次方程x 2﹣2x ﹣m=0无实数根,则一次函数y=(m+1)x+m ﹣1的图象不经过第_____象限.14.计算:(62)(62)+-=________.15.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB=2,BC=4,则图中阴影部分的面积为_______.16.如果最简二次根式22x-3与9-4x 是同类二次根式,那么x =______.17.如图,四边形ABCD 为菱形,8AC =,6DB =,DH AB ⊥于点H ,则BH =__________.18.如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.19.10.724= 1.0724=,则x 的值是__________.20.果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系:如果果子经过2秒落到地上,那么此果子开始落下时离地面的高度大约是__________米.三、解答题21.计算:(1)|3--11()3-﹣0(2020 ;(2(3) 23)3)+ ;(4)13()÷1622.二次根式中也有这种相辅相成的“对子”.如:(21+-=,=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:==7==+母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化. 解决问题:(1)3的有理化因式是_________的分母有理化得__________; (2)计算:①已知:x =,y =22x y +的值; ...++.23.已知 90, ACB BC AC CD ︒∠===是边AB 上的高,求CD 的长24.如图平面直角坐标系中,已知三点 A(0,7),B(8,1),C(x,0)且 0<x <8.(1)求线段 AB 的长;(2)请用含x 的代数式表示 AC+BC 的值;(3)求 AC+BC 的最小值.25.综合与探究一列快车从甲地匀速驶往乙地,同时一列慢车从乙地匀速驶往甲地.设慢车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的关系,根据图象解决以下问题:(1)甲、乙两地之间的距离为___________km;(2)求快车与慢车的速度;(3)求慢车行驶多少时间后,两车之间的距离为500km.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D2=-误;a =,故错误; D. ()2a b =+,正确;故选D.2.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可. 【详解】=2.1(米).故选C .【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.3.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A .∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B .∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C .∵12+)2=2,∴以1选项正确;D )2+32≠523,5为边组成的三角形不是直角三角形,故本选项错误.故选C .【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.4.B解析:B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m ,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m ,故选:B .【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.5.C解析:C【解析】【分析】【详解】解:∵直线y x m =-+与3y x =+的交点的横坐标为﹣2,∴关于x 的不等式3x m x -+>+的解集为x <﹣2,∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x >﹣3,∴3x m x -+>+>0的解集是﹣3<x <﹣2,故选C .【点睛】本题考查一次函数与一元一次不等式.6.C解析:C【解析】【详解】如图,作MG ⊥BC 于G ,MH ⊥CD 于H ,则BG=GC ,AB ∥MG ∥CD ,∴AM=MN ,∵MH ⊥CD ,∠D=90°,∴MH ∥AD ,∴NH=HD ,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a ,∠MCD=30°,∴MH=12MC=12a ,CH=32a ,∴DH=a﹣32a,∴CN=CH﹣NH=3a﹣(a﹣3a)=(3﹣1)a,∴△MNC的面积=12×2a×(3﹣1)a=31-a2.故选C.7.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E,F分别是AB,BC边上的中点,EF=3,∴AC=2EF=23,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=3,OB=12BD=2,∴AB=22OA OB+=7,∴菱形ABCD的周长为47.故选C.8.D解析:D【解析】【分析】连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【详解】解:如图,连接OB,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=23, ∴AC=2BC=43,∴AB=22AC BC -=22(43)(23)-=6,故选D .【点睛】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.9.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE 的长.【详解】如图所示:22125BE +=故选:C .【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.10.C解析:C【解析】【分析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE ,进而利用勾股定理得出AE 即可.【详解】∵菱形ABCD ,∴CD =AD =5,CD ∥AB ,∴CE =CD ﹣DE =5﹣1=4,∵BE ⊥CD ,∴∠CEB =90°,∴∠EBA =90°,在Rt △CBE 中,BE 3==,在Rt △AEB 中,AE ==故选C .【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD . 11.B解析:B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意; D 、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B .【点睛】 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】D Q 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN V 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.二、填空题13.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m <-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一解析:一【解析】∵一元二次方程x 2-2x-m=0无实数根,∴△=4+4m<0,解得m <-1,∴m+1<0,m-1<0,∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.故答案是:一.14.2【解析】试题解析:原式=()2-22=6-4=2解析:2【解析】试题解析:原式=)2-22=6-4=2.15.4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半即可求得结果【详解】由图可知阴影部分的面积故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE 解析:4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半,即可求得结果.【详解】 由图可知,阴影部分的面积14242=⨯⨯=故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE的面积等于△BOF的面积,从而可以判断阴影部分的面积等于矩形面积的一半.16.2【解析】由题意得:2x-3=9-4x解得:x=2故答案为:2【点睛】本题考查同类二次根式的概念同类二次根式是化为最简二次根式后被开方数相同的二次根式称为同类二次根式解析:2【解析】由题意得:2x-3=9-4x,解得:x=2,故答案为:2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.17.【解析】【分析】由四边形ABCD是菱形AC=8BD=6可推出AD=AB=5由面积的可列出关于DH的方程求出DH的长度利用勾股定理即可求出BH的长度【详解】∵四边形ABCD是菱形AC=8BD=6∴AO解析:18 5.【解析】【分析】由四边形ABCD是菱形,AC=8,BD=6可推出AD=AB=5,由ABD∆面积的可列出关于DH的方程,求出DH的长度,利用勾股定理即可求出BH的长度.【详解】∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,OD=3,AC⊥BD,∴2234+,∵DH⊥AB,∴12⨯AO×BD=12⨯DH×AB,∴4×6=5×DH,∴DH=245,∴ =185 . 【点睛】本题考查的考点是菱形的性质及勾股定理,灵活运用菱形的性质及勾股定理是解题的关键. 18.169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可【详解】解:S1=9S2=16S3=144∴所对应各边为:3412∴中间未命名的正方形边长为5∴最大的直角三角形的面积52+12解析:169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可.【详解】解:S 1=9,S 2=16,S 3=144,∴所对应各边为:3,4,12.∴中间未命名的正方形边长为5.∴最大的直角三角形的面积4S =52+122=169.故答案为169.【点睛】本题考查了勾股定理的定义和正方形的基本性质,分析图形得到正方形和勾股定理的联系是解答本题的关键.19.15【解析】【分析】根据得出将根号外的数化到根号里即可计算【详解】∵且∴∴∴故答案为:【点睛】本题考查二次根号的转化寻找倍数关系是解题关键解析:15【解析】【分析】根据10.724=10 1.0724⨯,将根号外的数化到根号里即可计算.【详解】10.724= 1.0724=,且10.724=10 1.0724⨯=∴100115x =∴ 1.15x =故答案为:1.15【点睛】本题考查二次根号的转化,寻找倍数关系是解题关键.20.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是20 解析:20【解析】【分析】分析表格中数据,得到物体自由下落的高度h 随着时间t 的增大而增大,h 与t 的关系为:25h t =,把2t =代入25h t =,再进行计算即可.【详解】解:由表格得,用时间()t s 表示高度()h m 的关系式为:25h t =,当2t =时,2525420h =⨯=⨯=.所以果子开始落下时离地面的高度大约是20米.故答案为:20.【点睛】本题考查了根据图表找规律,并应用规律解决问题,要求有较强的分析数据和描述数据的能力.能够正确找到h 和t 的关系是解题的关键.三、解答题21.(1)1-;(2)4+3)16-4)8x -. 【解析】【分析】(1)先去绝对值、算负指数和零指数,然后再算减法;(2)先将二次根式化为最简形式,然后再按照运算规则计算;(3)先用乘法公式化简,然后合并同类项;(4)先化为最简二次根式,然后再进行乘除运算.【详解】(1)原式=3-1-(2)原式=442==+(3)原式=5911916-+-=-(4)原式=3x (·4x -= 【点睛】本题考查二次根式的计算,注意,我们通常先将二次根式化为最简形式,然后再进行后续计算.22.(1)(或-3),-6-2)①14,②1【解析】【分析】(1)找出各式的分母有理化因式即可;(2)①将x与y分母有理化后代入原式计算即可得到结果.②原式各项分母有理化,合并即可得到结果.【详解】(1)∵(3)(=9-7=2,(3)(-3)=7-9=-2∴3的有理化因式是(或-3)32645++=-故答案为:(或-3);(2)①当21422x+===+21422y-====x2+y2=(x+y)2−2xy=(2+2−2×(2=16−2×1=14....++1...-+1.=【点睛】此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.23【解析】【分析】已知两直角边,利用勾股定理求出斜边长,再利用面积法即可求出斜边上的高.【详解】解:Rt ABC∆中,由勾股定理得AB===1122ABC S AC AB AB CD ∆==Q g g 23823025AC BC CD AB ⨯∴===g 【点睛】此题考查勾股定理,关键是利用勾股定理求出斜边长.24.(1)AB =10;(2)249x ++281x ()-+;(3)AC +BC 最小值为82.【解析】【分析】(1)根据两点间的距离公式可求线段AB 的长;(2)根据两点间的距离公式可求线段AC ,BC 的值,再相加即可求解;(3)作B 点关于x 轴对称点F 点,连接AF ,与x 轴相交于点C .此时AC +BC 最短.根据两点间的距离公式即可求解.【详解】(1)22807110AB =-+-=()();(2)AC +BC 2222070810x x =-+-+=-+-()()()()224981x x =++-+();(3)如图,作B 点关于x 轴对称点F 点,连接AF ,与x 轴相交于点C .此时AC +BC 最短.∵B (8,1),∴F (8,-1),∴AC +BC =AC +CF =AF =2222(80)(17)8882-+--=+=.即AC +BC 最小值为82.【点睛】本题考查了最短路线问题,利用了数形结合的思想,构造出符合题意的直角三角形是解题的关键.25.(1)720(2)120/v km h =快,80/v km h =慢(3)1.1h 或6.25h .【解析】【分析】(1)根据题意结合图象即可得出结果.(2)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h ,快车的速度为bkm/h ,依此列出方程组,求解即可;(3)分相遇前相距500km 和相遇后相遇500km 两种情况求解即可.【详解】解:(1)甲、乙两地的距离为720km ,故答案为:720;(2)设慢车的速度为akm/h ,快车的速度为bkm/h ,根据题意,得3.6()720(9 3.6) 3.6a b a b +=⎧⎨-=⎩解得80120a b =⎧⎨=⎩故答案为120/v km h =快,80/v km h =慢(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km .即相遇前:()80120720500x +=-,解得 1.1x =,快车7201206h ÷=到乙地,∵慢车行驶20km 两车之间的距离为500km ,∵慢车行驶20km 需要的时间是()200.2580h =, ∴()60.25 6.25x h =+=,故 1.1x h =或6.25,两车之间的距离为500km .【点睛】本题考查了一次函数的应用.主要利用了路程、时间、速度三者之间的关系,第(3)问要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.。