变频器基本参数的调试
变频器常用参数设置步骤图解

变频器常用参数设置步骤图解(变频器)的设置菜单分为一级菜单、二级菜单等,菜单后面是参数。
Altivar31变频器一级菜单的访问如左图所示,参数的设置如右图所示。
右图是待机(准备运行)状态开始,将FUn-PSS-SP2参数设定为15Hz,然后又返回到待机状态的操作过程。
在实际设置时,可能从中间某一步开始。
若还有其它的参数需要设置,不需要返回到待机状态,只要返回到相应的一级继续设置即可。
全部参数设置完毕需要返回到待机状态准备开车。
有些参数还可以在变频器有些过程中进行设置。
错误的设置可能损坏变频器!没有弄清楚的参数不要随意设置!常用参数是经常使用的一些参数,主要包括以下内容(以Altivar31变频器为例):1、上限频率(高速)SEt-HSP与下限频率(低速)SEt-LSP上限频率是最大给定所对应的频率,下限频率是最小给定所对应的频率。
上下限频率的设定是为了限制电动机的转速,从而满足设备运行控制的要求。
2、加速时间(加速斜坡时间)SEt-ACC与减速时间(减速斜坡时间)SEt-dEC加速时间是变频器从0Hz加速到额定频率(通常为50Hz)所需的时间,加速斜坡类型由FUn—rPC-rPt设置。
减速时间是变频器从额定频率减速到0Hz所需的时间。
设定加、减速时间必须与负载的加、减速相匹配。
(电机)功率越大,需要的加、减速时间也越长。
一般11kW以下的电机,加、减速时间可设置在10s以内。
对于大容量的电机,若设置加速时间太短,可能会使变频器过流跳闸;设置减速时间太短,可能会使变频器过压跳闸。
对于多电机同步运行的情况,若设置加速时间太短,可能会使变频器过流跳闸,设置加速时间太长,会使开车时同步性能变坏;设置减速时间太短,可能会使变频器过压跳闸,设置减速时间太长,由于各电机功率不同,负载差异较大,可能会使各电机不能同时停转,造成下次开车困难。
因此,多电机同步运行时,需要精确设置加、减速时间,这也是设备调试的主要项目之一。
G130变频器参数调试

G130变频器参数调试一、变频器参数调试的意义二、变频器参数调试的基本方法1.调试前的准备工作首先,需要对G130变频器进行基本的连接和设置。
将电源线连接到适当的电源输入端口,然后将电机连接到输出端口,同时将编码器和其他传感器连接到相应的接口。
随后,需要进入变频器的设置菜单,进行基本的参数设置,如电机类型、额定功率和频率等。
2.参数调试步骤参数调试主要包括两个方面,即基本参数设置和高级参数调整。
(1)基本参数设置基本参数设置主要包括电机类型、额定功率、额定电压、额定转速和额定频率等。
根据实际的电机参数,将这些基本参数正确地设置到G130变频器中,以确保变频器可以正确地识别和控制电机。
(2)高级参数调整高级参数调整包括过载保护、电流限制、转矩控制、速度控制和换向方式等。
这些参数的设置直接影响到变频器的性能和控制效果。
通过合理调整这些参数,可以优化电机的运行效果,提高整个系统的性能。
具体的调试步骤如下:a.过载保护设置:根据电机的额定功率和负载要求,设置过载保护参数,以保证电机在工作过程中不超过额定电流。
b.电流限制设置:根据电机的额定电流和变频器的额定输出电流,设置电流限制参数,以确保电机在额定负载下工作时电流不超过额定值。
c.转矩控制设置:根据实际的工作要求和转矩曲线,设置转矩控制参数,例如最大转矩、转矩曲线斜率等。
d.速度控制设置:根据实际的运行要求,设置速度控制参数,例如最大速度、速度曲线斜率、加速度和减速度等。
e.换向方式设置:根据电机的运行要求,选择适当的换向方式,如正反转、正转、反转等。
三、变频器参数调试的注意事项1.根据实际的电机参数和工作要求进行参数设置和调整,不可盲目设置和调整,以免引起不必要的问题和风险。
2.在进行参数调试之前,需要对变频器进行充分的学习和了解,熟悉其各个功能和设置项,以便于正确地进行调试。
3.调试时应注意安全,确保电源和设备的接线正确可靠,避免触电和设备损坏的风险。
变频器基本参数的调试

变频器基本参数的调试(转载) 变频器 参数 调试 变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。
实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。
但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。
因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。
由于基本参数是各类型变频器几乎都有的,完全可以做到触类旁通。
一加减速时间 加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。
通常用频率设定信号上升、下降来确定加减速时间。
在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
二转矩提升 又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。
设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。
如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。
对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。
三电子热过载保护 本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。
本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。
变频器参数的设置

变频器参数的设置一、基本参数设置1.频率范围:根据实际需求,设置变频器的最小和最大输出频率,用于控制电机的转速调节范围。
2.频率分辨率:设置变频器的频率分辨率,即变频器每次增加或减小的频率值,影响电机的转速调节精度。
3.过载保护:设置变频器的过载保护参数,以保护电机不被过载损坏。
4.扭矩限制:根据实际需求,设置电机的最大输出扭矩,以保证电机在工作时不超载。
二、电机参数设置1.电机类型:根据实际应用,选择合适的电机类型,如三相异步电机、直流电机等。
2.电机功率:设置电机的额定功率,以使变频器能够合理控制电机的输出功率。
3.电机电压:设置电机的额定电压,以保证变频器输出的电压与电机匹配。
4.电机电流:设置电机的额定电流,以保证变频器输出的电流与电机匹配。
5.电机频率:设置电机的额定频率,即电机的额定转速。
三、速度控制参数设置1.加速时间:设置电机从静止到额定转速的加速时间,影响电机启动的平稳性。
2.减速时间:设置电机从额定转速到静止的减速时间,影响电机停止的平稳性。
3.过弱判据:设置电机启动时的最低电流限制,以防止电机过弱无法正常启动。
4.过强判据:设置电机运行时的最高电流限制,以防止电机过载损坏。
四、保护参数设置1.过载保护:设置电机的过载保护参数,当电机达到设定的过载电流时,变频器会自动停机保护电机。
2.过热保护:设置电机的过热保护参数,当电机温度达到设定阈值时,变频器会自动停机保护电机。
3.断相保护:设置电机的断相保护参数,当电机出现相位断路时,变频器会自动停机保护电机。
4.缺相保护:设置电机的缺相保护参数,当电机出现相位缺失时,变频器会自动停机保护电机。
五、其他参数设置1.PID参数:设置变频器的PID参数,用于闭环控制电机的转速或位置。
2.限制频率:设置变频器输出频率的上下限,以防止电机超速或超频率运行。
3.轴向力控制:设置电机的轴向力控制参数,用于保护电机轴承。
在进行变频器参数设置时,需要根据实际应用需求和电机的特性,选择合适的参数数值。
变频器参数基本设置

变频器参数根本设置变频器应用领域涉及到钢铁行业,化工行业,汽车行业,机床行业,电机机械行业,食品行业,造纸行业,水泥行业,矿业行业,石油行业,工厂建筑等,它促进企业实现了自动化,节约了能源,提高了产品质量和合格率以及生产率,延长了设备使用寿命。
通过变频器的功能参数的设置调试,就可以实现相应的功能,一般都有数十甚至上百个参数供用户选择,在实际应用中,没必要对每一参数都进展设置和调试,多数只要采用出厂设定值即可。
但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进展参数的设定和调试。
变频器调试的好坏决定了变频器运行的稳定性、应用效果以及使用寿命等,最终关系到企业经济效益的大小,调好了可能大大节约费用,调不好可能损失沉重。
以下是作者在普传变频器使用中的经历总结,希望能供其他用户参考,使变频器能更好地推广使用,为企业带来更大的经济效益。
1变频器调试的步骤变频器能否成功地应用到各种负载中,且长期稳定地运行,现场调试很关键,必须按照下述相应的步骤进展。
1.1变频器的空载通电检验1〕将变频器的电源输入端子经过漏电保护开关接到电源上。
2〕将变频器的接地端子接地。
3〕确认变频器铭牌上的电压、频率等级与电网的是否相吻合,无误后送电。
4〕主接触器吸合,风扇运转,用万用表AC挡测试输入电源电压是否在标准标准内。
5〕熟悉变频器的操作键盘键,以普传科技变频器为例:FWD为正向运行键,令驱动器正向运行;REV为反向运行键,令驱动器反向运行;ESC/DISPL为退出/显示键,退出功能项的数据更改,故障状态退出,退出子菜单或由功能项菜单进入状态显示菜单;STOP/RESET为停顿复位键,令驱动器停顿运行,异常复位,故障确认;PRG为参数设定/移位键;SET为参数设定键,数值修改完毕保存,监视状态下改变监视对象;▲▼为参数变更/加减键,设定值及参数变更使用,监视状态下改变给定频率;JOG为寸动运行键,按下寸动运行,松开停顿运行,不同变频器操作键的定义根本一样。
变频器调试和操作方法

变频器调试和操作方法
变频器是一种电气设备,用于调节交流电机的转速和电压。
以下是变频器的调试和操作方法:
1. 连接变频器和电机:首先将变频器与电源相连,然后将变频器的输出端与电机连接。
确保连接正确并紧固好。
2. 设置变频器参数:根据实际需求,设置变频器的参数。
这些参数包括输入电压、输出电压、输出频率、过载保护等。
可以通过变频器上的面板或者专门的调试软件进行设置。
3. 启动变频器:打开变频器的电源开关,然后按下变频器面板上的启动按钮或者使用遥控器启动变频器。
此时,变频器会将电源的直流电转换为交流电,并输出给电机。
4. 调试电机转速:通过调整变频器的输出频率,可以控制电机的转速。
可以通过变频器面板上的旋钮或者软件界面上的调节按钮进行调整。
根据需要,逐步提高或降低输出频率,直到达到所需的电机转速。
5. 监测电机运行状态:在电机运行过程中,可以通过变频器的显示屏或者软件界面来监测电机的运行状态,包括电流、转速、温度等。
如果发现异常,可以及时采取措施进行处理。
6. 停止变频器:当不需要使用变频器时,可以按下停止按钮或者使
用遥控器停止变频器的运行。
然后关闭变频器的电源开关。
需要注意的是,变频器的调试和操作需要具备一定的电气知识和经验,如果不熟悉操作,请寻求专业人员的帮助。
此外,操作变频器时,要注意安全,避免触电和其他意外事故的发生。
变频器调试的基本步骤

变频器调试的基本步骤1.确定调试目标:在开始调试之前,首先要明确调试的目标和要求。
例如,确定所需的输出频率范围、电压范围和额定电流等。
2.基本参数设置:通过变频器的菜单界面或者参数设置软件,对基本参数进行设置。
包括输入电压、电流、输出频率、过载保护参数等。
3.电源接线检查:检查变频器的电源接线是否正确,包括输入电源的相序、电压的稳定性等。
确保电源稳定并符合要求。
4.负载连接检查:检查变频器的负载连接是否正确,包括电机的接线方式、接地电阻等。
确保电机的连接正确并能够工作。
5.启动试运行:在调试之前,首先进行试运行。
通过控制变频器的启动和停止来检查变频器和电机的运转情况。
观察电机是否正常启动,转速是否稳定。
6.输出频率调试:根据实际要求,逐步调整变频器的输出频率。
可以通过变频器的菜单界面或者参数设置软件进行调整。
逐步逼近目标频率,确保输出频率稳定。
7.电流限制调试:通过设置变频器的电流限制参数,限制输出电流。
根据实际需求,逐步调整电流限制值,确保电机工作在正常工作范围内。
8.过载保护调试:通过设置变频器的过载保护参数,实现对电机的过载保护。
根据实际需求,逐步调整过载保护参数的值,确保过载保护的可靠性。
9.PID参数调试:对于需要进行速度控制的电机,可以通过设置PID参数来实现精确控制。
根据实际情况,设置比例、积分和微分参数,调整PID参数值。
10.调试运行测试:在完成参数设置和调整之后,进行调试运行测试。
通过对电机进行不同负载和速度的测试,检查变频器的调试效果和工作可靠性。
11.故障排除和调整:在调试运行测试过程中,如发现电机工作异常或者存在故障,需要进行故障排除和调整。
通过找出故障原因,采取相应的措施进行调整和修复。
12.最终调整和验收:在完成所有调试和调整之后,对变频器进行最终调整和验收。
检查变频器和电机的运行情况,确保调试效果符合要求并能够正常工作。
总之,变频器调试是一个系统性的工作,需要仔细操作和严格遵循调试步骤。
G120变频器参数调试

G120变频器参数调试首先,我们需要了解G120变频器的基本参数。
G120变频器一般包括输入电压、输出电压、额定电流、额定频率、控制方式、开关频率等参数。
根据不同的应用需求,还可以设置运行模式、过载能力、加速时间、减速时间等参数。
参数调试的第一步是设置输入电压和输出电压。
输入电压一般通过变压器来控制,需要根据实际输入电压进行调整。
输出电压则根据负载情况来设定,过高或过低的输出电压都会导致不稳定的运行。
接下来是设置额定电流和额定频率。
额定电流是指变频器在满负荷运行时的电流值,而额定频率则是指变频器正常运行时的输出频率。
这两个参数需要根据实际负载情况和工作要求进行调整。
控制方式是指变频器的运行控制模式,一般有V/F控制、矢量控制、直接扭矩控制等模式可选择。
根据不同的应用场景和要求,选择适合的控制方式,并进行相应的参数调整。
另外,开关频率也是一个需要注意的参数。
开关频率越高,变频器的输出电压和电流波形越接近正弦波,可以提高系统的运行稳定性和效率。
但是过高的开关频率也会导致能耗增加和设备寿命缩短。
在参数调试过程中,还需要特别关注一些关键参数,如过载能力、加速时间和减速时间。
过载能力是指变频器在短时间内可以承受的额定电流的倍数,可以根据负载情况和保护要求进行设置。
加速时间和减速时间直接关系到系统的响应速度,需要根据实际应用要求来调整。
在调试过程中,还需要注意一些常见的问题和解决方法。
比如,变频器可能会出现过电流、过压、过热等故障,需要根据报警信息进行相应的调整和保护设置。
此外,还需要定期进行参数检查和维护,确保变频器的稳定运行。
总之,G120变频器的参数调试是变频器投入使用前的重要步骤之一、通过正确调试参数,可以确保变频器的稳定运行和性能发挥,提高系统的效率和可靠性。
在调试过程中,需要根据实际应用要求和负载情况进行参数设置,并关注常见故障和解决方法,定期进行参数检查和维护。
这样才能保证变频器的正常工作和长期稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器基本参数的调试一加减速时间加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。
通常用频率设定信号上升、下降来确定加减速时间。
在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
二转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。
设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。
如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。
对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。
设定的原则是,以最低工作频率时能带动负载为前提,尽量减小补偿程度。
三电子热过载保护本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。
本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。
电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×100%。
电子热继电器的保护整定值一般为电动机额定电流的(0、95--1、05)倍。
四频率限制即变频器输出频率的上、下限幅值。
频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。
在应用中按实际情况设定即可。
此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。
五始动频率始动频率不宜很高,否则将会使启动电流增大。
如果电动机在启动时比较困难,应适当增高启动频率,设定启动频率的原则是,在启动电流不超过允许值的前提下,以拖动系统能够顺利启动为宜。
六载波频率载波频率越高,电流波形的平滑性越好。
电动机铁心振动发出的噪声就越小。
但另一方面,对其它控制设备干扰就越强。
所以,在其他控制设备因受到干扰不能正常工作的时候,必须适当的减小载波频率。
另外,变频器与电动机之间的连接电缆越长,线间的分布电容就越大,载波频率越高,此时的漏电流就越大。
当电缆的长度超过50米时,载波频率应设为最低。
七偏置频率有的又叫偏差频率或频率偏差设定。
其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。
有的变频器当频率设定信号为0%时,偏差值可作用在0~fmax范围内,有的变频器(如明电舍、三垦)还可对偏置极性进行设定。
如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为xHz,则此时将偏置频率设定为负的xHz 即可使变频器输出频率为0Hz。
八回避频率生产机械在运转时总是会有震动的,其震动频率和转速有关。
无级调速时,有可能出现在某一转速或几个转速下,机械的震动频率和它的固有震荡频率相一致而发生震荡的情形。
这时,震动变的十分强烈,使机械不能正常工作,甚至损坏。
为了避免机械谐振的发生,必须把此时与转速对应的工作频率回避掉。
六频率设定信号增益此功能仅在用外部模拟信号设定频率时才有效。
它是用来弥补外部设定信号电压与变频器内电压(+10v)的不一致问题;同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10v、5v或20mA),求出可输出f/V 图形的频率百分数并以此为参数进行设定即可;如外部设定信号为0~5v时,若变频器输出频率为0~50Hz,则将增益信号设定为200%即可。
七转矩限制可分为驱动转矩限制和制动转矩限制两种。
它是根据变频器输出电压和电流值,经CPU进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。
转矩限制功能可实现自动加速和减速控制。
假设加减速时间小于负载惯量时间时,也能保证电动机按照转矩设定值自动加速和减速。
驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,而将电动机转矩限制在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,也不会引起变频器跳闸。
在加速时间设定过短时,电动机转矩也不会超过最大设定值。
驱动转矩大对起动有利,以设置为80~100%较妥。
制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数值设置过大会出现过压报警现象。
如制动转矩设定为0%,可使加到主电容器的再生总量接近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。
但在有的负载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流大幅度波动,严重时会使变频器跳闸,应引起注意。
八加减速模式选择又叫加减速曲线选择。
一般变频器有线性、非线性和S三种曲线,通常大多选择线性曲线;非线性曲线适用于变转矩负载,如风机等;S曲线适用于恒转矩负载,其加减速变化较为缓慢。
设定时可根据负载转矩特性,选择相应曲线,但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变许多参数无效果,后改为S曲线后就正常了。
究其原因是:起动前引风机由于烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了S曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发生,当然这是针对没有起动直流制动功能的变频器所采用的方法。
九转矩矢量控制矢量控制是基于理论上认为:异步电动机与直流电动机具有相同的转矩产生机理。
矢量控制方式就是将定子电流分解成规定的磁场电流和转矩电流,分别进行控制,同时将两者合成后的定子电流输出给电动机。
因此,从原理上可得到与直流电动机相同的控制性能。
采用转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行区域。
现在的变频器几乎都采用无反馈矢量控制,由于变频器能根据负载电流大小和相位进行转差补偿,使电动机具有很硬的力学特性,对于多数场合已能满足要求,不需在变频器的外部设置速度反馈电路。
这一功能的设定,可根据实际情况在有效和无效中选择一项即可。
与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对应于负载电流的转差频率。
这一功能主要用于定位控制。
十节能控制风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成比例减小,而具有节能控制功能的变频器设计有专用V/f模式,这种模式可改善电动机和变频器的效率,其可根据负载电流自动降低变频器输出电压,从而达到节能目的,可根据具体情况设置为有效或无效。
要说明的是,九、十这两个参数是很先进的,但有一些用户在设备改造中,根本无法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。
究其原因有:(1)原用电动机参数与变频器要求配用的电动机参数相差太大。
(2)对设定参数功能了解不够,如节能控制功能只能用于V/f控制方式中,不能用于矢量控制方式中。
(3)启用了矢量控制方式,但没有进行电动机参数的手动设定和自动读取工作,或读取方法不当变频器的参数设置变频器的参数设定在调试过程中是十分重要的。
由于参数设定不当,不能满足生产的需要,导致起动、制动的失败,或工作时常跳闸,严重时会烧毁功率模块IGBT或整流桥等器件。
变频器的品种不同,参数量亦不同。
一般单一功能控制的变频器约50~60个参数值,多功能控制的变频器有200个以上的参数。
但不论参数多或少,在调试中是否要把全部的参数重新调正呢?不是的,大多数可不变动,只要按出厂值就可,只要把使用时原出厂值不合适的予以重新设定就可,例如外部端子操作、模拟量操作、基底频率、最高频率、上限频率、下限频率、启动时间、制动时间(及方式)、热电子保护、过流保护、载波频率、失速保护和过压保护等是必须要调正的。
当运转不合适时,再调整其他参数。
现场调试常见的几个问题处理:起动时间设定原则是宜短不宜长,具体值见下述。
过电流整定值OC过小,适当增大,可加至最大150%。
经验值1.5~2s/kW,小功率取大些;大于30kW,取>2s/kW。
按下起动键*RUN,电动机堵转。
说明负载转矩过大,起动力矩太小(设法提高)。
这时要立即按STOP停车,否则时间一长,电动机要烧毁的。
因电机不转是堵转状态,反电热E=0,这时,交流阻抗值Z=0,只有直流电阻很小,那么,电流很大是很危险的,就要跳闸OC动作。
制动时间设定原则是宜长不宜短,易产生过压跳闸OE。
具体值见表1的减速时间。
对水泵风机以自由制动为宜,实行快速强力制动易产生严重“水锤”效应。
起动频率设定对加速起动有利,尤以轻载时更适用,对重载负荷起动频率值大,造成起动电流加大,在低频段更易跳过电流OC,一般起动频率从0开始合适。
起动转矩设定对加速起动有利,尤以轻载时更适用,对重载负荷起动转矩值大,造成起动电流加大,在低频段更易跳过电流OC,一般起动转矩从0开始合适。
基底频率设定基底频率标准是50Hz时380V,即V/F=380/50=7.6。
但因重载负荷(如挤出机,洗衣机,甩干机,混炼机,搅拌机,脱水机等)往往起动不了,而调其他参数往往无济于事,那么调基底频率是个有效的方法。
即将50Hz设定值下降,可减小到30Hz或以下。
这时,V/F>7.6,即在同频率下尤其低频段时输出电压增高(即转矩∝U2)。
故一般重载负荷都能较好的起动。
制动时过电压处理制动时过电压是由于制动时间短,制动电阻值过小所引起的,通过适当增长时间,增加电阻值就可避免。
制动方法的选择(1)能耗制动。
使用一般制动,能量消耗在电阻上,以发热形式损耗。
在较低频率时,制动力矩过小,要产生爬行现象。
(2)直流制动。
适用精确停车或停位,无爬行现象,可与能耗制动联合使用,一般≤20Hz时用直流制动,>20Hz时用能耗制动。
(3)回馈制动。
适用≥100kW,调速比D≥10,高低速交替或正反转交替,周期时间亦短,这种情况下,适用回馈制动,回馈能量可达20%的电动机功率。
更具体详情分析以及参数选取。
空载(或轻载)跳OC按理在空载(或轻载)时,电流是不大的,不应跳OC,但实际发生过这样的现象,原因往往是补偿电压过高,起动转矩过大,使励磁饱和严重,致使励磁电流畸变严重,造成尖峰电流过大而跳闸OC,适当减小或恢复出厂值或置于0位。