中考数学(河南卷)压轴题精讲专题:函数动点问题中三角形存在性(含解析)

合集下载

2020年中考数学难题突破:函数中特殊三角形存在性问题解析与练习及参考答案

2020年中考数学难题突破:函数中特殊三角形存在性问题解析与练习及参考答案

(3 ) ①x= 1 (1 ,a)
②三 AQ= BQ,AB=BQ, AQ=AB
解: (1) ∵直线 y=3x+ 3,
∴当 x=0 时, y= 3,当 y=0 时, x=- 1,
∴点 A 的坐标为 ( -1,0) ,点 B 的坐标为 (0 ,3) .
(2) 设抛物线对应的函数表达式为
y=ax2+ bx+c,由题意,得
③当 AQ= AB时,如图③, 由勾股定理,得 22+a2= 10,解得 a=± 6,此时点 Q的坐标是 (1 , 6) 或(1 ,- 6) . 综上所述,存在符合条件的点 Q,点 Q的坐标为 (1 ,1) 或 (1 ,0) 或 (1 , 6) 或(1 ,- 6) . 类型 2 直角三角形、全等三角形存在性问题 例 2 如图 2,已知直线 y=kx -6 与抛物线 y= ax2+bx+c 相交于 A,B 两点,且点 A(1,- 4) 为抛 物线的顶点,点 B 在 x 轴上.
解得
1- m= 2
13
1+ m= 2
13 >0,舍去

∴点 P 的坐标为
1- 2
13 ,
13-1 . 2
(3) 如图,①当∠ Q1AB=90°时,△ DAQ∽1 △ DOB,
AD DQ1
5 DQ1
∴OD= DB,即6= 3ຫໍສະໝຸດ , 557
∴DQ1= 2,∴ OQ1=2,
7 即点 Q1的坐标为 0,- 2 ;
C(3,0) .
(1) 求点 A,B 的坐标.
(2) 求抛物线对应的函数表达式.
图1
(3) 在抛物线的对称轴上是否存在点 Q,使△ ABQ是等腰三角形?若存在, 求出符合条件的点 Q的坐
标;若不存在,请说明理由.

2021年河南省中考数学复习解答压轴专练:三角形的综合(三)

2021年河南省中考数学复习解答压轴专练:三角形的综合(三)

2021年河南省中考数学复习解答压轴专练:三角形的综合(三)1.如图,△ABD和△ACE均为等腰直角三角形,A为公共直角顶点,过A作AF垂直CB 交CB的延长线于F.(1)求证:BC=DE;(2)求证:CE=2AF.2.已知:在平面直角坐标系xOy中,点A(a,0),B(0,b),且a,b满足a2+b2+4a ﹣8b+20=0.(1)求a,b的值;(2)如图1,若AC⊥AB,AC=AB,点C在第四象限,AC与y轴交于点M,BC与x轴交于点N,连接OC,①求点C的坐标;②求S△AOC及点M的坐标;(3)如图2,在(2)的条件下,连接MN.两个结论:①∠ABO=∠NMC;②∠ABO+∠NMC为定值,只有一个结论成立,请你判断正确的结论加以证明.3.如图1,在△PAB中(0°<∠APB<60°),PA=PB,以AB为边作等边△ABM,连接PM.(1)求∠PMA的度数.(2)如图2,以PA为边作等边△PAC,连接BC、CM,若∠BCM=45°,求∠ABC 和∠APB的度数.4.在△ABC中,AC=BC,∠ACB=90°,点D在BC的延长线上,M是BD的中点,E 是射线CA上一动点,且CE=CD,连接AD,作DF⊥AD,DF交EM延长线于点F.(1)如图1,当点E在CA上时,填空:AD DF(填“=”、“<”或“>”).(2)如图2,当点E在CA的延长线上时,请根据题意将图形补全,判断AD与DF的数量关系,并证明你的结论.5.如图,已知A(a,0),B(0,b)分别为两坐标轴上的点,且a,b满足a2﹣24a+|b ﹣12|=﹣144,且3OC=OA.(1)求A、B、C三点的坐标;(2)若D(2,0),过点D的直线分别交AB、BC于E、F两点,且DF=DE,设E、F 两点的横坐标分别为x E、x F,求x E+x F的值.6.如图1,在等边△ABC中,AB=4,D为BC的中点,E,F分别是边AB,AC上的动点,且∠EDF=60°.爱钻研的小峰同学发现,可以通过几何与函数相结合的方法根据以上条件来探究一些问题.探究过程:(1)用几何的方法,可得出BE和CF满足的等量关系为,并说明理由.(2)设BE=x,AF=y,则y与x之间的函数解析式为,自变量x的取值范围为.(3)在平面直角坐标系xOy中,根据已有的经验画出y与x的函数图象,请在图2中完成画图.解决问题:(4)是否存在x的值,使得BE+AF=3?请利用(3)中的函数图象进行说明.7.已知三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图1,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)如图2,若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.8.已知:△ABC中,AE是△ABC的角平分线,AD是△ABC的BC边上的高,过点B做BF∥AE,交直线AD于点F.(1)如图1,若∠ABC=70°,∠C=30°,则∠AFB=;(2)若(1)中的∠ABC=α,∠ACB=β,则∠AFB=;(用α,β表示)(3)如图2,(2)中的结论还成立吗?若成立,说明理由;若不成立,请求出∠AFB.(用α,β表示)9.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.(1)如图1,若点D在边BC上,求证:CE+CF=CD;(2)如图2,若点D在边BC的延长线上,试探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.10.如图1,等腰直角三角形ABP是由两块完全相同的小直角三角板ABC、EFP(含45°)拼成的,其中△ABC的边BC在直线l上,AC⊥BC且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF=FP.(1)将三角板△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(2)将三角板△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(1)中猜想的关系还成立吗?请写出你的结论(不需证明).11.阅读下列材料,完成相应任务.数学活动课上,老师提出了如下问题:如图1,已知△ABC中,AD是BC边上的中线.求证:AB+AC>2AD.智慧小组的证法如下:证明:如图2,延长AD至E,使DE=AD,∵AD是BC边上的中线∴BD=CD在△BDE和△CDA中∴△BDE≌△CDA(依据一)∴BE=CA在△ABE中,AB+BE>AE(依据二)∴AB+AC>2AD.任务一:上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:.归纳总结:上述方法是通过延长中线AD,使DE=AD,构造了一对全等三角形,将AB,AC,AD转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.任务二:如图3,AD是BC边上的中线,AB=3,AC=4,则AD的取值范围是;任务三:如图4,在图3的基础上,分别以AB和AC为边作等腰直角三角形,在Rt△ABE中,∠BAE=90°,AB=AE;Rt△ACF中,∠CAF=90°,AC=AF.连接EF.试探究EF与AD的数量关系,并说明理由.12.如图1,已知Rt△ABC中,∠BAC=90°,点D是AB上一点,且AD=AC,AE⊥BC于点E,交CD于点F.(1)若CD=,且AB=2AC,求AE的长;(2)如图2,点P是BA延长线上一点,且AP=BD,连接PF,求证:PF+AF=BC.13.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出.(2)组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角).如果成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是∠BAC角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点(D、E、A互不重合),在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,①试判断△DEF的形状,并说明理由;②请直接写出△DEF的面积.14.如图所示,在等腰直角三角形ABC中,∠BAC=90°,AB=AC=4cm,动点P 由点A向点C运动,速度为cm/s,过点P作PD⊥BC于点D.连接AD,动点Q由点B向点C运动,速度为1cm/s.点P到达点C时,P、Q两点均停止运动.(1)△PDC为哪种三角形,请证明你的结论;(2)当t=2时,求证△ABD≌△ACQ;(3)连接PQ,是否存在某个t值,使△APQ的面积与△PDQ的面积的2倍之和为10.若存在请求出t的值,若不存在请说明理由.15.如图,点D,E分别在等边△ABC的边AB,BC上,且BD=CE,CD,AE交于点F.(1)如图1,求∠AFD的度数;(2)如图2,若D,E,M,N分别是△ABC各边上的三等分点,BM,CD交于Q.若△ABC的面积为S,请用S表示四边形ANQF的面积;(3)如图3,延长CD到点P,使∠BPD=30°,设AF=a,CF=b,请用含a,b的式子表示PC长,并说明理由.。

中考数学【压轴题全揭秘(河南专版)】专题01_动点与函数图象(原卷版)_

中考数学【压轴题全揭秘(河南专版)】专题01_动点与函数图象(原卷版)_

专题01 动点与函数图象【例1】(2019·郑州外国语测试)如图所示,在矩形ABCD中,AB=8,AD=4,E为CD的中点,连接AE、BE,点M从点A出发沿AE方向向E匀速运动,同时点N从点E出发沿EB方向向点B匀速运动,点M、N的速度均为每秒1个单位长度,运动时间为t,连接MN,设△EMN的面积为S,则S关于t的函数图象为()A B C D【变式1-1】(2019·洛阳二模)如图,点P是边长为2 cm的正方形ABCD的边上一动点,O是对角线的交点,当点P由A→D→C运动时,设DP=x cm,则△POD的面积y(cm2)随x(cm)变化的关系图象为()A B C D【变式1-2】(2019·叶县一模)如图,在△ABC中,△ABC=60°,△C=45°,点D,E分别为边AB,AC上的点,且DE△BC,BD=DE=2,CE=52,BC=245.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ△BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【例2】(2019·省实验一模)如图,正方形ABCD,对角线AC和BD交于点E,点F是BC边上一动点(不与点B,C重合),过点E作EF的垂线交CD于点G,连接FG交EC于点H.设BF=x,CH=y,则y与x的函数关系的图象大致是()A.B.C.D.【变式2-1】(2019·名校模考)如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF△BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DE【变式2-2】(2018·洛宁县模拟)如图1,正△ABC 的边长为4,点P 为BC 边上的任意一点,且△APD =60°,PD 交AC 于点D ,设线段PB 的长度为x ,图1中某线段的长度为y ,y 与x 的函数关系的大致图象如图2,则这条线段可能是图1中的( )图1 图2 A .线段ADB .线段APC .线段PDD .线段CD【例3】(2019·周口二模)如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2 cm /s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则CDBE的值为( ) ABCD图1 图2【变式3-1】(2019·枫杨外国语三模)如图 1,动点 K 从△ABC 的顶点 A 出发,沿 AB ﹣BC 匀速运动到点 C 停止.在动点 K 运动过程中,线段 AK 的长度 y 与运动时间 x 的函数关系如图 2 所示,其中点 Q 为曲线部分的最低点,若△ABC的面积是,则 a 的值为图1 图2图1图2【变式3-2】(2019·中原名校大联考)如图1,在矩形ABCD中,动点M从点A出发,沿A→B→C方向运动,当点M到达点C时停止运动,过点M作MN△AM交CD于点N,设点M的运动路程为x,CN=y,图2表示的是y与x的函数关系的大致图象,则矩形ABCD的面积是()A.20B.18C.10D.91. (2019·濮阳二模)如图,点A在x轴上,点B,C在反比例函数y=kx(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM△x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.2.(2019·南阳模拟)如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE△AC,交BC于E点;过E点作EF△DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y 与x函数关系的图象是()A.B.C.D.3.(2019·平顶山三模)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.4.(2017·预测卷)如图甲,点E为矩形ABCD边AD上一点,点P,Q同时从B点出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ 的面积为y(cm2),已知y与t的函数关系的图象如图乙(曲线OM为抛物线的一部分),则下列结论:△当0<t≤5时,y=25t2 △tan△ABE=34△点H的坐标为(11,0)△△ABE与△QBP不可能相似.其中正确的是(把你认为正确结论的序号都填上)5.(2019·焦作二模)如图1,在等边△ABC中,点D是BC边的中点,点P为AB边上的一个动点,设xAP ,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则等边△ABC的面积为.6.(2019·三门峡一模)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )ABCD7.(2019·许昌月考)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A .B .C .D .8.(2019·信阳模拟)如图1,在△ABC 中,△C =90°,动点P 从点C 出发,以1cm /s 的速度沿折线CA →AB 匀速运动,到达点B 时停止运动,点P 出发一段时间后动点Q 从点B 出发,以相同的速度沿BC 匀速运动,当点P 到达点B 时,点Q 恰好到达点C ,并停止运动,设点P 的运动时间为t s ,△PQC 的面积为S cm 2,S 关于t 的函数图象如图2所示(其中0<t ≤3,3≤t ≤4时,函数图象均为线段(不含点O ),4<t <8时,函数图象为抛物线的一部分)给出下列结论:△AC =3cm ;△当S =65时,t =35或6.下结论正确的是( )A .△△都对B .△△都错C .△对△错D .△错△对9.(2018·新乡一模)如图,平行四边形ABCD 中,ABcm ,BC =2cm ,△ABC =45°,点P 从点B 出发,以1cm /s 的速度沿折线BC →CD →DA 运动,到达点A 为止,设运动时间为t (s ),△ABP 的面积为S (cm 2),则S 与t 的函数表达式为.10.(2019·郑州外国语模拟)如图,在等腰△ABC 中,AB =AC =4cm ,△B =30°,点P 从点Bcm /s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发以2cm /s 的速度沿B →A →C 运动到点C 停止,若△BPQ 的面积为y ,运动时间为t (s ),则y 与t 的函数关系式为:.11.(2019·安阳一模)如图,在四边形ABCD 中,AD △BC ,DC △BC ,DC =4 cm ,BC =6 cm ,AD =3 cm ,动点P ,Q 同时从点B 出发,点P 以2 cm /s 的速度沿折线BA -AD -DC 运动到点C ,点Q 以1 cm /s 的速度沿BC 运动到点C ,设P ,Q 同时出发t s 时,△BPQ 的面积为y cm 2,则y 与t 的函数图象大致是( )ABCDBBC12.(2019·开封模拟)如图,菱形ABCD 的边长是4 cm ,△B =60°,动点P 以1 cm /s 的速度从点A 出发沿AB 方向运动至点B 停止,动点Q 以2 cm /s 的速度从点B 出发沿折线BCD 运动至点D 停止.若点P ,Q 同时出发,运动了t s ,记△BPQ 的面积为S cm 2,则下面图象中能表示S 与t 之间的函数关系的是( )A .B .C .D .13. 如图,矩形ABCD 中,AB =2AD =4cm ,动点P 从点A 出发,以lcm /s 的速度沿线段AB 向点B 运动,动点Q 同时从点A 出发,以2cm /s 的速度沿折线AD →DC →CB 向点B 运动,当一个点停止时另一个点也随之停止.设点P 的运动时间是x (s )时,△APQ 的面积是y (cm 2),则能够反映y 与x 之间函数关系的图象大致是()14.(2019·信阳一模)如图,锐角三角形ABC 中,BC =6,BC 边上的高为4,直线MN 交边AB 于点M ,交AC 于点N ,且MN △BC ,以MN 为边作正方形MNPQ ,设其边长为x (x >0),正方形MNPQ 与△ABC 公共部分的面积为y ,则y 与x 的函数图象大致是( )A B C D15.(2018·开封二模)如图,在平面直角坐标系中,已知A(0,1),B0),以线段AB为边向上作菱形ABCD,且点D在y轴上. 若菱形ABCD以每秒2个单位长度的速度沿射线AB滑行,直至顶点D落在x轴上时停止.设菱形落在x轴下方部分的面积为S,则表示S与滑行时间t的函数关系的图象为()图1 图2A B C D。

2020年(河南)中考数学压轴题全揭秘精品专题16 函数动点问题中三角形存在性含答案

2020年(河南)中考数学压轴题全揭秘精品专题16 函数动点问题中三角形存在性含答案
2.(2019·郑州外外国语测试)如图所示,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A( ,0),在第一象限内与直线y=x交于点B(2,t).
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点C,满足以B、O、C为顶点的三角形的面积为2,求点C的坐标;
(3)如图2所示,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标,若不存在,说明理由.
图1图2
【答案】见解析.
【解析】解:(1)∵y=x过点B(2,t),
∴t=2,即B(2,2),
将A、B两点坐标代入抛物线解析式,得:

解得:a=2,b=-3,
∴抛物线的解析式为:y=2x2-3x;
(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于F,如图所示,
设C(t,2t2-3t),则E(t,0),D(t,t),点C在第四象限,
(2)由y= x2- x-2得:C(0,-2),由勾股定理得:BC=2 ,
由C(0,-2),B(4,0)得直线BC的解析式为:y= x-2,
设P(m, m2- m-2),则Q(m, m-2),
过Q作QM⊥y轴于M,则QM∥AB,
∴ ,即 ,
∴CQ= ,
PQ=- m2+2m,PC= =m ,
①当CQ=PQ时,
(1)求抛物线的解析式;
(2)求线段PQ的最大值及此时点P的坐标;
(3)在抛物线的对称轴上是否存在点G,使△BCG为直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.
【答案】见解析.
【解析】解:(1)∵抛物线的顶点为(2,-1),

中考数学“特殊三角形的存在性问题”题型解析

中考数学“特殊三角形的存在性问题”题型解析

中考数学“特殊三角形的存在性问题”题型解析二次函数与特殊三角形的存在性问题主要分为两类:一类是静态的特殊三角形的存在性问题;一类是动态的特殊三角形的存在性问题 .静态的特殊三角形的存在性问题难度相对较小,可根据抛物线的对称性以及三角形的特点为切入点来解决;动态的特殊三角形的存在性问题难度相对较大,解决此类问题的关键是根据题意分析出动点在动的过程一些不变的量以及不变的关系 .本节主要来讨论下关于动态的特殊三角形的存在性问题 .类型一:等腰三角形存在性问题【例题1】如图,已知抛物线y = -1/4 x^2 - 1/2 x + 2 与x 轴交于A , B 两点,与y 轴交于点C . (1)求点A , B , C 的坐标;(2)此抛物线的对称轴上是否存在点M,使得△ACM 是等腰三角形?若存在请求出点M 的坐标;若不存在,请说明理由 .【分析】(1)分别令y = 0 , x = 0 , 即可解决问题;(2)分A、C、M 为顶点三种情形讨论,分别求解即可 . 【解析】(1)令y = 0 , 得-1/4 x^2 - 1/2 x + 2 = 0 ,∴x^2 + 2x - 8 = 0 ,∴x = - 4(舍)或2 ,∴点A 坐标(2,0),点B 坐标(-4,0),令x = 0 , 得y = 2 ,∴点C 的坐标(0,2).(2)如图所示,①当C 为顶点时,CM1 = CA , CM2 = CA , 作M1N⊥OC 于N , 在Rt△CM1N 中,∴点M1 坐标(-1,2+√7),点M2 坐标(-1 , 2-√7).②点M3 为顶点时,∵直线AC 解析式为y = -x + 2 , 线段AC 的垂直平分线为y = x , ∴点M3 坐标为(-1,-1).③当点A 为顶点的等腰三角形不存在 .综上所述M 坐标为(-1,-1)或(-1,2+√7)或(-1 , 2-√7).类型二:直角三角形存在性问题【例题2】如图,△OAB 的一边OB 在x 轴的正半轴上,点A 的坐标为(6,8),OA = OB,点P 在线段OB 上,点Q 在y 轴的正半轴上,OP = 2OQ,过点Q 作x 轴的平行线分别交OA,AB 于点E , F .(1)求直线AB 的解析式;(2)是否存在点P,使△PEF 为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由 .【分析】(1)由点A 的坐标可确定出OA 的长,即为OB 的长,从而可确定出B 点坐标,利用待定系数法即可求出直线AB 的解析式;(2)分三种情况来考虑:若∠PEF = 90°;若∠PFE = 90°,若∠EPF = 90°,过点E , F 分别作x 轴垂线,垂足分别为G、H,分别求出t 的值,确定出满足题意P 坐标即可 .【解题策略】此类问题主要考查特殊三角形的存在性问题:首先运用特殊三角形的性质画出相应的图形,确定动点问题的位置;其次借助特殊三角形的性质找到动点与已知点的位置关系和数量关系;最后结合已知列出方程求解即可 .要注意分类讨论时考虑全面所有可能的情形 .。

第3讲 中考压轴题专题之三角形存在性问题

第3讲  中考压轴题专题之三角形存在性问题

第三讲中考压轴题专题之三角形存在性问题板块一、等腰三角形存在性1.在平面直角坐标系中,已知A(1,2)、B(3,0),AB=2.在坐标轴上找点P,使A、B、P三点构成等腰三角形,这样的点P有()个.A.5B.6C.7D.82.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.3.(2016滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.4.(2014兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.板块二、直角三角形5.如图,二次函数y=x2+bx+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,顶点为M,△MAB为直角三角形,图象的对称轴为直线x=﹣2,点P是抛物线上位于A,C两点之间的一个动点,则△P AC的面积的最大值为()T5 T7 T8 A.B.C.D.36.将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为()A.个单位B.1个单位C.个单位D.个单位7.如图,直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点D是AB上的一个动点,过点D 作DE⊥AC于E点,DF⊥BC于F点,连接EF,则线段EF长的最小值为.8.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.当△P AC为直角三角形时点P的坐标.9.(2015连云港)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?10.(2016黄岗)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l 交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.板块三、等腰直角三角形11.已知⼀次函数y=x+1的图象与y轴交于点A,将该函数图象绕点A旋转45°,旋转后的图象对应的函数关系式是.12.二次函数y=x2+bx+c的图象的顶点为D,与x轴正方向从左至右依次交于A,B两点,与y轴正方向交于C点,若△ABD和△OBC均为等腰直角三角形(O为坐标原点),则b+2c=.13.如图,P是抛物线C:y=2x2﹣8x+8对称轴上的一个动点,直线x=k平行于y轴,分别与直线y =x、抛物线C交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,则满足条件的k为.14.(2019青龙县期末)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C (0,3),且OB=OC.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标.(2)连接CQ,直接写出线段CQ与线段AE的数量关系和位置关系.(3)连接P A、PD,当m为何值时S△APD=S△DAB?(4)在直线AD上是否存在一点H,使△PQH为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案与试题解析1.【解答】解:如图所示,分别以A、B为圆心,AB长为半径画弧,与坐标轴的交点P1,P2,P3,P4,P5符合题意;作AB的垂直平分线,与坐标轴的交点P6,P7符合题意,故选:C.2.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).3.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积=×6×=.(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为等腰三角形的顶角的顶点时,∵直线AC解析式为y=﹣x+2,∴线段AC的垂直平分线为y=x与对称轴的交点为M3(﹣1.﹣1),∴点M3坐标为(﹣1,﹣1).③当点A为等腰三角形的顶角的顶点的三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).4.【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣);(3)当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF=×4×EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD=×2×(4﹣)=,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),=﹣(x﹣2)2+当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).5.【解答】解:∵x=﹣=﹣2,且a=1,∴b=4;则,抛物线:y=x2+4x+c;∴AB=x B﹣x A===2,点M(﹣2,c﹣4);∵抛物线是轴对称图形,且△MAB是直角三角形,∴△MAB必为等腰直角三角形,则有:AB=2=2|c﹣4|,解得:c=3;∴抛物线:y=x2+4x+3,且A(﹣3,0)、B(﹣1,0)、C(0,3).过点P作直线PQ∥y轴,交直线AC于点Q,如右图;设点P(x,x2+4x+3),由A(﹣3,0)、C(0,3)易知,直线AC:y=x+3;则:点Q(x,x+3),PQ=(x+3)﹣(x2+4x+3)=﹣x2﹣3x;S△P AC=PQ×OA=×(﹣x2﹣3x)×3=﹣(x+)2+,∴△P AC有最大面积,且值为;故选:C.6.解:设抛物线向上平移a(a>1)个单位,使抛物线与坐标轴有三个交点,且这些交点能构成直角三角形,则有平移后抛物线的解析式为:y=﹣2x2﹣1+a,AM=a,∵抛物线y=﹣2x2﹣1与y轴的交点M为(0,﹣1),即OM=1,∴OA=AM﹣OM=a﹣1,令y=﹣2x2﹣1+a中y=0,得到﹣2x2﹣1+a=0,解得:x=±,∴B(﹣,0),C(,0),即BC=2,又△ABC为直角三角形,且B和C关于y轴对称,即O为BC的中点,∴AO=BC,即a﹣1=,两边平方得:(a﹣1)2=,∵a﹣1≠0,∴a﹣1=,解得:a=.故选:A.7.【解答】解:如图,连接CD.∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵DE⊥AC,DF⊥BC,∠ACB=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短,可得当CD⊥AB时,CD最短,即线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×4×3=×5•CD,解得CD=2.4,∴线段EF长的最小值为2.4.故答案为:2.48.【解答】解:∵直线y=x+2过点B(4,m),∴m=6,∴B(4,6).将A、B两点坐标代入抛物线解析式得:,解得:∴抛物线的解析式为:y=2x2﹣8x+6.①若A为直角顶点,如图1,设AC的解析式为:y=﹣x+b,将A点代入y=﹣x+b得b=3∴AC的解析式为y=﹣x+3,由,解得:或(舍去)令P点的横坐标为3,则纵坐标为5,∴P(3,5);②若C为直角顶点,如图2,令,解得:x=或x=(舍去),令P点的横坐标为,则纵坐标为,∴P(,);故答案为:(3,5)或(,).9.【解答】解:(1)∵点A是直线与抛物线的交点,且横坐标为﹣2,∴y=×(﹣2)2=1,A点的坐标为(﹣2,1),设直线的函数关系式为y=kx+b,将(0,4),(﹣2,1)代入得,解得,∴直线y=x+4,∵直线与抛物线相交,∴x+4=x2,解得:x=﹣2或x=8,当x=8时,y=16,∴点B的坐标为(8,16);(2)如图1,连接AC,BC,∵由A(﹣2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m﹣8)2+162=m2﹣16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2﹣16m+320,解得:m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)(3)设M(a,a2),如图2,设MP与y轴交于点Q,在Rt△MQN中,由勾股定理得MN==a2+1,又∵点P与点M纵坐标相同,∴+4=a2,∴x=,∴点P的横坐标为,∴MP=a﹣,∴MN+3PM=+1+3(a﹣)=﹣a2+3a+9,∴当a=﹣=6,又∵﹣2≤6≤8,∴取到最大值18,∴当M的横坐标为6时,MN+3PM的长度的最大值是18.10.【解答】解:(1)∵令x=0得;y=2,∴C(0,2).∵令y=0得:﹣=0,解得:x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).(2)∵点C与点D关于x轴对称,∴D(0,﹣2).设直线BD的解析式为y=kx﹣2.∵将(4,0)代入得:4k﹣2=0,∴k=.∴直线BD的解析式为y=x﹣2.(3)如图1所示:∵QM∥DC,∴当QM=CD时,四边形CQMD是平行四边形.设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),∴﹣m2+m+2﹣(m﹣2)=4,解得:m=2,m=0(不合题意,舍去),∴当m=2时,四边形CQMD是平行四边形;(4)存在,设点Q的坐标为(m,﹣m2+m+2),∵△BDQ是以BD为直角边的直角三角形,∴①当∠QBD=90°时,由勾股定理得:BQ2+BD2=DQ2,即(m﹣4)2+(﹣m2+m+2)2+20=m2+(﹣m2+m+2+2)2,解得:m=3,m=4(不合题意,舍去),∴Q(3,2);②当∠QDB=90°时,由勾股定理得:BQ2=BD2+DQ2,即(m﹣4)2+(﹣m2+m+2)2=20+m2+(﹣m2+m+2+2)2,解得:m=8,m=﹣1,∴Q(8,﹣18),(﹣1,0),综上所述:点Q的坐标为(3,2),(8,﹣18),(﹣1,0).11.【解答】解:如图1,∵⼀次函数y=x+1的图象与y轴交于点A,与x轴交于B,∴A(0,1),B(﹣2,0),当直线y=x+1绕点A顺时针旋转45°后的图象为直线l,过B作BD⊥直线l于D,过D作FD⊥y轴于F,过B作BE⊥FD延长线于E,则△ABD为等腰直角三角形,易得△ADF≌△DBE(AAS),设AF=a,则DE=a,∵点A(0,1),点B(﹣2,0),∴DF=BE=OF=1+a,EF=ED+DF=a+1+a=OB=2,∴a=,∴DF=OF=1+a=,∴D(﹣,),设直线l的解析式为y=kx+1,则=﹣k+1,解得k=﹣,∴y=﹣x+1;如图2,直线y=x+1绕点A逆时针旋转45°后的图象为直线l,过B作BD⊥直线l于D,过D作FD⊥y轴于F,作DE⊥x轴于E,则△ABD为等腰直角三角形,易得△ADF≌△BDE(AAS),设DF=b,则DE=b,∵点A(0,1),点B(﹣2,0),∴AF=BE=1+b,BO=BE+OE=b+1+b=OB=2,∴b=,∴D(﹣,﹣),设直线l的解析式为y=kx+1,则﹣=﹣k+1,解得k=3,∴y=3x+1;综上,旋转后的图象对应的函数关系式是y=﹣x+1或y=3x+1.故答案为y=﹣x+1或y=3x+1.12.【解答】解:由已知,得C点的坐标为:(0,c),,,.过D作DE⊥AB于点E,则2DE=AB,即,得:,所以或.又b2﹣4c>0,所以.又OC=OB,即:,得:.故答案为:2.13.【解答】解:∵直线x=k分别与直线y=x、抛物线y=2x2﹣8x+8交于点A、B两点,∴A(k,k),B(k,2k2﹣8k+8),AB=|k﹣(2k2﹣8k+8)|=|2k2﹣9k+8|,①当△ABP是以点A为直角顶点的等腰直角三角形时,∠P AB=90°,此时P A=AB=|k﹣2|,即|2k2﹣9k+8|=|k﹣2|,解得k=或1或3;②当△ABP是以点B为直角顶点的等腰直角三角形时,则∠PBA=90°,此时PB=AB=|k﹣2|,结果同上.故答案为:或1或3.14.【解答】解:(1)直线y=x+1与抛物线交于A点,则点A(﹣1,0)、点E(0,1).∵OB=OC,C(0,3),∴点B的坐标为(3,0),故抛物线的表达式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),将点C的坐标代入,得﹣3a=3,解得a=﹣1,∴抛物线的表达式为y=﹣x2+2x+3,∴函数的对称轴为x=1,故点Q的坐标为(1,4).(2)CQ=AE,且CQ∥AE,理由:∵Q(1,4),C(0,3),∴CQ==,CQ的解析式为y=x+3,又∵AE==,直线AE的解析式为y=x+1,∴CQ=AE,CQ∥AE,(3)∵,∴,,∴点D的坐标为(2,3).如图1,过点P作y轴的平行线,交AD于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1)∴S△P AD====×4×3.解得m=0或1.(4)存在,点P的坐标为(0,3)或.设点H(t,t+1),点P(m,n),n=﹣m2+2m+3,而点Q(1,4),①当∠QPH=90°时,如图2,过点P作y轴的平行线,过点H、点Q作x轴的平行线,交过点P且平行于y轴的直线于点M、G,∵∠GQP+∠QPG=90°,∠QPG+∠HPM=90°,∴∠HPM=∠GQP,∠PGQ=∠HMP=90°,PH=PQ,∴△PGQ≌△HMP(AAS),∴PG=MH,GQ=PM,即4﹣n|=|t﹣m|,|1﹣m|=|n﹣(t+1)|,解得m=2或n=3.当n=3时,3=﹣m2+2m+3,解得m1=0,m2=2(舍去),∴点P(0,3).②当∠PQH=90°时,如图3所示,同理可得m1=0,m2=3(舍去),故点P为(0,3).③当∠PHQ=90°时,如图4,同理可得n=2,解得m1=1+(舍去),m2=1﹣.故点P(1﹣,2).综上可得,点P的坐标为(0,3)或(1﹣,2).。

中考数学压轴题全揭秘资料专题 动态几何之线动形成的等腰三角形存在性问题

中考数学压轴题全揭秘资料专题 动态几何之线动形成的等腰三角形存在性问题

数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等。

本专题原创编写线动形成的等腰三角形存在性问题模拟题。

在中考压轴题中,线动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类。

原创模拟预测题1.在平面直角坐标系中,已知抛物线2y a x 2x c =-+(a ,c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,﹣1),C 的坐标为(﹣4,3),直角顶点B 在第二象限。

(1)如图,若该抛物线过A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q ,若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M 、P 、Q 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标。

若△MPQ为等腰直角三角形,则可分为以下两种情况:解方程组2y x 51y x 2x 12=--⎧⎪⎨=---⎪⎩,得:11x 4y 1=-⎧⎨=-⎩,22x 2y 7=⎧⎨=-⎩。

中考数学 压轴题 河南·专题:二次函数压轴题

中考数学 压轴题 河南·专题:二次函数压轴题

x+3与y轴交于点
C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点
P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若PE=5EF,求m的值;
专题பைடு நூலகம்析
聚焦河南
(3)若点E′是点E关于直线PC的对称点,是否存在点P,使 点E′落在y轴上?若存在,请直接写出相应的点P的坐标; 若不存在,请说明理由.
点的四边形是平行四边形?请说明理由;
专题剖析
聚焦河南
(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的 坐标.
∴0<m<5.
PE=-m2+4m+5-(- 3 m+3)=-m2+ 19 m+2.
4
4
分两种情况讨论:
专题剖析
聚焦河南
①当点E在点F上方时,EF=-
3 4
m+3.
∵PE=5EF,
∴-m2+ 19 m+2=5(- 3 m+3),
4
4
即2m2-17m+26=0,
解得m1=2,m2=
13 2
(舍去).
专题剖析
专题剖析
聚焦河南
(3)小明进一步探究得出结论:若将“使△PDE的面积为整 数”的点P记作“好点”,则存在多个“好点”,且使 △PDE的周长最小的点P也是一个“好点”.请直接写出所 有“好点”的个数,并求出△PDE周长最小时“好点”的坐 标.
专题剖析
聚焦河南
【分析】 (1)利用待定系数法求出抛物线解析式即可; (2)首先表示出P,F点坐标,再利用两点之间距离公式得出 PD,PF的长,进而求出即可;(3)根据题意当P,E,F三点 共线时,PE+PF最小,进而得出P点坐标以及利用△PDE的 面积可以等于4到13之间的所有整数,在面积为12时,a的 值有两个,进而得出答案. 【自主解答】 (1)抛物线的解析式为y=- 1 x2+8.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

腰直角三角形?若能,写出符合条件的点 P 的坐标,若不能,请说明理由.
【答案】见解析.
2
【解析】解:由题意得:
9a

b 1 2a 3b 3
0
,解得:
a 1

b

2

即抛物线的解析式为:y=-x2+2x+3.
(2)在 y=-x2+2x+3 中,当 x=0 时,y=3,即 C(0,3),
∴D(-2,0),
由 B(4,0),D(0, -2)得直线 BD 的解析式为:y= 1 x-2, 2
设 P(m,0),则 M(m, 1 m-2),Q(m, 1 m2+ 3 m+2),
2
22
∴BP=4-m,PM=2- 1 m,PQ= 1 m2+ 3 m+2,
2
22
∴(4-m)2=(2- 1 m)( 1 m2+ 3 m+2),
设 P(m, 1 m2- 3 m-2),则 Q(m, 1 m-2),
22
2
过 Q 作 QM⊥y 轴于 M,则 QM∥AB,
1
∴ CQ QM ,即 CQ m , BC AB 2 5 4
∴CQ= 5m , 2
PQ=- 1 m2+2m, PC= 2
m2


1 2
m2

3 2
m
2
=m
左侧),与 y 轴交于点 C,已知点 B(3,0),抛物线的对称轴为 x=1.
(1)求抛物线的解析式;
(2)将抛物线向下平移 h 个单位长度,使平移后所得的抛物线的顶点落在△OBC 内部(包含△OBC
边界),求 h 的取值范围;
(3)设点 P 是抛物线 L 上任一点,点 Q 在直线 l:x=-3 上,△PBQ 能否成为以点 P 为直角顶点的等
【答案】见解析.
【解析】解:(1)由题意,抛物线的解析式可表示为:y=a(x+1)(x-4),
将点(0,-2)代入上式,得:a= 1 , 2
即抛物线的解析式为:y= 1 x2- 3 x-2; 22
(2)由 y= 1 x2- 3 x-2 得:C(0,-2), 由勾股定理得:BC=2 5 , 22
由 C(0,-2), B(4,0)得直线 BC 的解析式为:y= 1 x-2, 2
与 y 轴交于点 C,点 P 是 x 轴下方的抛物线上一动点(包含点 A、B).作直线 BC,若过点 P 作 x 轴的垂线, 交直线 BC 于点 Q.
(1)求抛物线的解析式; (2)在点 P 的运动过程中,是否存在点 P,使△CPQ 是等腰三角形?若存在,直接写出点 P 的横坐标, 若不存在,请说明理由.
过点 P 作 PD⊥l 于 M,PN⊥x 轴于 N,由△PBQ 为等腰直角三角形可知,△PBN≌△PQM,
则 PN=MQ,
设 P(m,y),则 PN=PM=y,而 PM=m+3,
∴y=m+3,
-m2+2m+3= m+3,解得:m=0 或 m=1,
即 P(0,3)或(1,4);
②当 P 点在 x 轴下方时,同理可得:
-m2+2m+3=-m-3,解得:m= 3 33 或 m= 3 33 ,
2
2
即 P( 3 33 , 9 33 )或( 3 33 , 9 33 ),
2
2
2
2
综上所述,△PBQ 能成为以点 P 为直角顶点的等腰直角三角形,点 P 的坐标为:(0,3)或(1,4)或( 3 33 , 2
1

1 2
m

3 2 2
,解得:m=0(舍)或
m=
3 2

综上所述,存在点 P,使△CPQ 是等腰三角形,点 P 的横坐标为:4- 5 或 2 或 3 . 2
【变式 1-1】(2018·开封二模)如图,抛物线 L:y=ax2+bx+3 与 x 轴交于 A、B 两点(A 点在 B 点的
9 33 )或( 3 33 , 9 33 ).
2
2
2
【例 2】(2019·省实验四模)如图,已知抛物线经过点 A(-1,0),B(4,0),C(0,2)三点,点 D 与点 C 关于
3
x 轴对称,点 P 是线段 AB 上一个动点,设点 P 的坐标为(m,0),过点 P 作 x 轴的垂线 l 交抛物线于点 Q, 交直线 BD 于点 M.
2
22
解得:m=3 或 m=4(舍),
即 Q(3ቤተ መጻሕፍቲ ባይዱ2);
综上所述,点 Q 的坐标为:(-1,0),(3,2).
(1)求该抛物线所表示的二次函数的表达式; (2)在点 P 运动过程中,是否存在点 Q,使得△BQM 是直角三角形?若存在,求出点 Q 的坐标;若 不存在,请说明理由.
【答案】见解析.
【解析】解:(1)设抛物线的解析式为:y=a(x+1)(x-4),
将点 C(0,2)代入上式得:a= 1 , 2
专题 :函数动点问题中三角形存在性
模型一、等腰三角形存在性问题 以腰和底分类讨论,借助勾股定理、相似性质、三角函数等知识进行求解. 模型二、直角三角形存在性问题 以直角顶点不同分类讨论,借助勾股定理、相似性质、三角函数等知识进行求解.常见的模型为“一线三直 角”.
【例 1】(2019·郑州外国语模拟)如图,在平面直角坐标系中,抛物线 y=ax2- 3 x+c 经过点 A(-1,0),B(4,0), 2
由 B(3,0),C(0,3)得直线 BC 的解析式为:y=-x+3,
在 y=-x2+2x+3 中,当 x=1 时,y=4,
在 y=-x+3 中,当 x=1 时,y=2,
若将抛物线向下平移 h 个单位长度,使平移后所得的抛物线的顶点落在△OBC 内部(包含△OBC 边界),
则 2≤h≤4.
(3)①当 P 在 x 轴上方时,
1

1 2
m

3 2
2

①当 CQ=PQ 时,
5m =- 1 m2+2m,解得:m=0(舍)或 m=4- 5 ;
2
2
②当 CQ=PC 时,
5m = m 2
1


1 2
m
3 2
2
,解得:m=0(舍)或
m=2

m=4(舍);
③当 PQ=PC 时,
- 1 m2+2m= m 2
即抛物线的解析式为:y= 1 (x+1)(x-4)= 1 x2+ 3 x+2.
2
22
(2)存在;由题意知,∠QMB≠90°,分两种情况讨论:
①当∠MQB=90°时,此时点 Q 与点 P 重合于点 A,即 Q(-1,0);
②当∠QBM=90°时,△BPQ∽△MPB,
∴BP2=PM·PQ,
∵点 D 与点 C 关于 x 轴对称,
相关文档
最新文档