现代控制理论习题解答(第五章)
现代控制理论第五章答案

比较 f () 和 f * ( ) 求出反馈矩阵 G[3r 2r2]T
观测器方程为:
xˆ (AGC)xˆGybu
3r 2r2
10xˆ23rr2y10u
【习题5-11】已知系统状态空间表达式为
x 0 2 1 1 x 1 0 u
0 1
1 0 01 0
c2A1B0 1 10 2 30 11 0
1 0 10 1
d2 1
计算几个矩阵
Dc c2 1A Ad d1 2cc 21 A1 1
0 2
0 2
1 0
EDB 11
第五章主要内容:
§5—1 线性反馈控制系统的基本结构及其特性 主要知识点:
1、状态反馈、输出反馈的基本概念; 2、三种反馈控制系统的基本结构和特点; 3、闭环系统的能控性和能观性。
§ 5—2 极点配置问题
主要知识点: 1、极点配置的基本概念; 2、极点任意配置的条件; 3、极点配置的设计方法。
§5—3 系统镇定问题 主要知识点:
s 1
0
0
1
(s 1)(s 2)
1
s 1 1
(s 1)2
(s
s
1)( s
s
2)
(s 1)2
0
1
(s 1)(s 2)
【习题5-8】已知系统
1 0 0 1 0 x0 2 3x0 1u
期望的闭环特征多项式
f* () ( 2 )2 ( 3 )3 7 2 1 6 12
比较 f () 和 f * ( ) 求出反馈矩阵
现代控制理论李斌第五章课后习题

现代控制理论李斌第五章课后习题现代控制理论第五章部分习题参考答案5.1 设系统的状态⽅程为bu Ax x+= ,⽽ ?---=9432A ,??=13b 。
试确定状态反馈矩阵K ,使闭环系统的极点配置在21j ±-。
解根据题意,要求的特征多项式为52)21)(21()(2*++=++-+=λλλλλj j f设状态反馈阵[]21k k K =,则闭环系统的特征多项式为[]1212212122333()det ()det 49(113)(302414)k k f I A BK k k k k k k λλλλλλ+++??=--=?-+++=++++++⽐较)(*λf 与)(λf 各对应项的系数,可解得181011-=k ,6472=k ,所以??-=64718101K 。
5.2 已知系统的状态空间描述为cxy bu Ax x =+=⽽=0110A ,??=10b ,[]10=c 。
若采⽤状态反馈,试分析当反馈矩阵[]01-=K 时,闭环系统的能控性和能观测性。
解采⽤状态反馈后闭环系统的系统矩阵为=-=02101bK A A 能控性矩阵 []==01101b A b M c ,2=c rankM 。
能观测性矩阵==02101cA c M o ,2=o rankM 。
能控性矩阵和能观测性矩阵均满秩,故闭环系统完全能控且完全能观测。
5.3 设线性定常系统的状态空间描述为cxy bu Ax x =+=⽽ =200120001A ,=101b ,[]011=c 。
试设计⼀个状态观测器,要求将其极点配置在3-,4-,5-上。
画出状态变量图。
解根据题意,状态观测器要求的特征多项式为604712)5)(4)(3()(23*+++=+++=λλλλλλλf设误差反馈阵[]Tg g g G 321=,则观测器的特征多项式为[]--+-+-=--=21201det )(det )(332211λλλλλg g g g g g Gc A I f )424()834()5(3213212213--++++--+-++=g g g g g g g g λλλ⽐较)(*λf 与)(λf 各对应项的系数,可解得1031-=g ,1202=g ,2102=g ,所以[]TG 210120103-=。
现代控制理论课后习题答案

精心整理绪论为了帮助大家在期末复习中能更全面地掌握书中知识点,并且在以后参加考研考博考试直到工作中,为大家提供一个理论参考依据,我们11级自动化二班的同学们在王整风教授的带领下合力编写了这本《现代控制理论习题集》(刘豹第三版),希望大家好好利用这本辅助工具。
根据老师要求,本次任务分组化,责任到个人。
我们班整体分为五大组,每组负责整理一章习题,每个人的任务由组长具体分配,一个人大概分1~2道题,每个人任务虽然不算多,但也给同学们提出了要求:1.写清题号,抄题,画图(用CAD或word画)。
2.题解详略得当,老师要求的步骤必须写上。
3.遇到一题多解,要尽量写出多种方法。
本习题集贯穿全书,为大家展示了控制理论的基础、性质和控制一个动态系统的四个基本步骤,即建模、系统辨识、信号处理、综合控制输入。
我们紧贴原课本,强调运用统一、联系的方法分析处理每一道题,将各章节的知识点都有机地整合在一起,力争做到了对控制理论概念阐述明确,给每道题的解析赋予了较强的物理概念及工程背景。
在课后题中出现的本章节重难点部分,我们加上了必要的文字和图例说明,让读者感觉每一题都思路清晰,简单明了,由于我们给习题配以多种解法,更有助于发散大家的思维,做到举一反三!这本书是由11级自动化二班《现代控制理论》授课老师王整风教授全程监管,魏琳琳同学负责分组和发布任务书,由五个小组组组长李卓钰、程俊辉、林玉松、王亚楠、张宝峰负责自己章节的初步审核,然后汇总到胡玉皓同学那里,并由他做最后的总审核工作,绪论是段培龙同学和付博同学共同编写的。
本书耗时两周,在同学的共同努力下完成,是二班大家庭里又一份智慧和努力的结晶,望大家能够合理使用,如发现错误请及时通知,欢迎大家的批评指正!2014年6月2日第一章 控制系统的状态空间表达式1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式 解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。
现代控制理论课后习题答案

现代控制理论课后习题答案第⼀章习题1.2求下列多项式矩阵()s D 和()s N 的两个不同的gcrd:()2223(),()1232s s s s s s s s s ??++== ? ?+-??D N 解:()()22232321s s s s s s s++ =++ ? ?D S N S ; ()3r 2,1,2E -:223381s s s s s s ??++ ?-- ? ???;()3r 2,3,3E :223051s s s s s ??++ ?- ? ???;()3r 1,3,2E s --:01051s s ?? ?- ? ;()3r 2,1,5E s -:01001s ?? ?;()3r 3,1,1E -:01000s ?? ? ? ???;()1r 2,3E :01000s ?? ? ? ???;()1r 1,2E :00100s ?? ?;所以⼀个gcrd 为001s ??;取任⼀单模矩阵预制相乘即可得另⼀个gcrd 。
1.9 求转移矩阵t A e (1)已知1141??=A ,根据拉⽒反变换求解转移矩阵tA e 。
(2) 已知412102113-?? ?= ? ?-??A ,根据C-H 有限项展开法求解转移矩阵t A e 。
解:(1)11()41s s s --??-= ?--??I A1110.50.50.250.2511(3)(1)(3)(1)13131()4141110.50.5(3)(1)(3)(1)(3)(1)3131s s s s s s s s s s s s s s s s s s s s s s s --+---+-+??-+-+ ? ?-=== ? ?---+ ?-+ ? ?-+-+-+-+?I A 3311330.5e 0.5e 0.25e 0.25e e ()e e 0.5e 0.5e t t t t t t tt t s ------??+-??=-= ??? ?-+?A L I A (2)由2412()12(1)(3)0113λλλλλλ--?? ?=--=--= ? ?--??A I -,得1,233,1λλ== 对1,23λ=,可以计算1,2()2rank λ=A I -,所以该特征值的⼏何重数为1。
《现代控制理论》第三版_.习题答案

1 0 0 3 1 0 5 2 1 52 7 1 5 2 70 125 3 5 7 5 0 0 1 1 B 2 ; 2 5 5
1 0 a1 0 0 1 0 1 0 0 1 a2 3 7 5
0 B 0 1
C (b0 a0bn ) (bn1 an1bn ) 2 1 0
3 1 a 或者 2 2 1 a1 0 a0
e At I At 1 22 1 33 A t A t 2! 3! t2 t4 t6 t3 t5 1 4 16 64 , 4 16 t 2! 4! 6! 3! 5! 3 5 2 4 6 t t t t t t 4 16 64 , 1 4 16 64 3! 5! 2! 4! 6!
0 0 1 B M 1 0 0 0 0 1 M2
1 0 B 1 M1 B1 M2
1 B1 M1 B1 B2 M2
0
0 0 1 0 C 0 0 0 1
1-5. 根据微分方程, 写状态方程, 画模 拟结构图。
1 a2 a2 2 a1 3 2 a a a 1 2 2 a0
1 a2 a1
1 a2
12 b1 b0
b3 b 2 b1 1 b0
凯莱哈密顿法: 1,2 2 j
0 (t ) 1 1 e1t 1 2(e 2 jt e 2 jt ) (t ) 1 2t 4 2 jt 2 jt e j ( e e ) 2 1
《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
图1-27系统方块结构图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图系统的状态方程如下: )u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n pb1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
U图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为: `[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n pb1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc ---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
《现代控制理论》第3版(刘豹唐万生)课后习题答案

《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n pb1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 状态反馈和状态观测器3-5-1 已知系统结构图如图题3-5-1图所示。
(1)写出系统状态空间表达式;(2)试设计一个状态反馈矩阵,将闭环极点特征值配置在j 53±-上。
)(t y题3-5-1图【解】:方法一:根据系统结构直接设状态变量如题3-5-1图所示,写状态空间表达式:[]x y u x x 10112101=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--=& 23111=⎥⎦⎤⎢⎣⎡--=c c U rank U系统能控,可以设计状态反馈阵。
设状态反馈阵为][21k k K = 状态反馈控制规律为:Kx r u -= 求希望特征多项式:34625)3()(*22++=++=s s s s f求加入反馈后的系统特征多项式:)22()3()(1212k s k k s bK A sI s f ++-++=+-=依据极点配置的定义求反馈矩阵:]1316[131634)22(6)3(21112=⎩⎨⎧==⇒⎩⎨⎧=+=+-K k k k k k 方法二:[][][]1316)346(311110)(*10211=++⎥⎦⎤⎢⎣⎡--==--I A A A f U K c方法三:(若不考虑原受控对象的结构,仅从配置极点位置的角度出发) 求系统传递函数写出能控标准型:2321)111()()(2++-=+-+=s s ss s s U s Y []xy u x x 10103210-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=& 求系统希望特征多项式:34625)3()(*22++=++=s s s s f求状态反馈矩阵K ~:[][][]33236234~21=--==k k K [][][][]5.05.031111010111=⎥⎦⎤⎢⎣⎡--==--Ab bP⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=105.05.011A P P P []1316~==P K K【解】:依据系统传递函数写出能控标准型ss s s s s s U s Y 2310)2)(1(10)()(23++=++= []x y u x x 0010100320100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=&求系统希望特征多项式:464]1)1)[(2()(*232+++=+++=s s s s s s f求状态反馈矩阵:[][][]144342604321=---==k k k K 。
【解】:系统传递函数无零极点对消,所以系统既能控又能观。
可以通过状态反馈进行极点的任意配置。
另有状态反馈不改变系统的零点。
(1)由闭环传递函数得希望极点为-2,-2,-3。
受控对象传递函数:6522)3)(1)(2()2)(1()(232--+-+=++-+-=s s s s s s s s s s s G 受控对象状态空间表达式的能控标准型:[]xy u x x 112100256100010-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=& 希望特征多项式为:12167)3()2()(*232+++=++=s s s s s s f状态反馈矩阵:[][][]5211827516612321=-++==k k k K 。
结构图如图题3-5-3图1所示:题3-5-3图1(2)由闭传递函数得希望极点为-1,1,-3。
希望特征多项式为:33)3)(1)(1()(*23--+=+-+=s s s s s s s f状态反馈矩阵:[][][]143235163321=-+-+-==k k k K 。
结构图如图题3-5-3图2所示:题3-5-3图23-5-4 已知系统状态空间表达式为[]xy u x x 210011*********-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=&,试判断系统的能控性和能观性,若不完全能控,用结构分解将系统分解为能控和不能控的子系统,并讨论用状态反馈是否可以使闭环系统稳定。
【解】:判系统的能控性和能观性:[]2,2103111012=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==c c rankU b A AbbU2,432321210020=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=rankV CA CA C V系统不能控不能观。
按能控性进行结构分解: 取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111011001,1100110011c c R R 分解后的状态空间表达式为:[]⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--c c c c c c c c c c c c c c x x x x CR y u x x u b R x x AR R x x 211)(001100221110)()(11&&因为不能控分量对应的特征值为-1,因此对系统的稳定性无影响,所以可以通过状态反馈的方法,对能控子空间进行极点的任意配置(左半平面),从而使系统稳定。
【解】:被控对象状态空间表达式的能控标准型: 因为系统的传递函数可写成:23231)3()1()(s s s s s s s G ++=++=所以能控标准型为:[]xy u x x 011100300100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=& 闭环后的希望特征多项式为:485)1()2()(*232+++=++=s s s s s s f状态反馈系数阵:[][][]284350804321=---==k k k K 。
闭环传递函数为:2223)2(1)1()2(14851)(+=+++=++++=s s s s s s s s s G b系统闭环传递函数出现零极点对消现象,又有原受控对象本身能控,且状态反馈不改变系统的能控性,所以该闭环系统不能观。
3-5-6 已知系统状态方程为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100130100001&,试判断系统是否可以通过状态反馈分别配置以下两组特征值:(1){-2,-2,-1};(2){-2,-2,-3}。
若能配置,求出反馈阵。
【解】:判系统的能控性:[]2,2111100002=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==c c rankU b A AbbU系统不能控.按能控性分解: 取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-001010110,0110101001c c R Ru x x u b R x x AR R x x c cc c c c c c c ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--001100011030)()(11&& 不能控子空间的特征值为-1。
(1)对能控子空间进行极点配置,极点位置在-2,-2:u x x c c ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=011130&44)2()(*22++=+=s s s s f [][])(*10121A f U k k K c -==[][]65)10014113041130(10011021=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-所以[]065=K原系统的状态反馈阵K 为:1-=c R K K[][]510001*********=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⨯=K(2)因为状态反馈不能改变不能控部分的极点,而不能控部分的极点为-1,所以不能通过状态反馈将极点配置在{-2,-2,-3}。
3-5-7 已知系统状态空间表达式为[]xy u x x 01100010=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=&,试设计一个状态观测器,使状态观测器的极点为-r ,-2r ,(r>0)。
【解】:方法一:判能观性2,100100=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=rankV CA C V 。
系统能观,可以构造状态观测器。
确定观测器的希望特征多项式:2223)2)(()(*r rs s r s r s s f ++=++=确定观测矩阵[]T l l L 21=,观测器的特征多项式为:[]2122101001000)()(l s l s l l s s LC A sI s f ++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=--= )()(*s f s f =⎪⎩⎪⎨⎧==⇒22123r l r l 方法二:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-10)(*1021V A f l l L⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-21222310001000102001030010r r r r方法三:被控对象特征多项式:20010)(s sI A sI s f =⎥⎦⎤⎢⎣⎡-=-= 确定观测器的希望特征多项式:2223)2)(()(*r rs s r s r s s f ++=++=对应于能观标准型的观测器矩阵:⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=r r r r a a a a l l L 320302**22110021 对应于原系统的观测器矩阵:[]⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-0110,101011101Ap p P V P o ⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡==2223320110r r r r L P L o 3-5-8已知系统的状态空间表达式为[]xy u x x 011102101110321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=& (1)设计一个全维观测器,将观测器的极点配置在-3,-4,-5处。
(2)设计一个降维观测器,将观测器的极点配置在-3,-4处。
(3)画出其结构图。
【解】: (1)方法一: 确定能观性:3,1053431011020=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=rankV CA CA C V系统能观,可设计观测器。
求希望特征多项式:604712)5)(4)(3()(*23+++=+++=s s s s s s s f求观测器特征多项式:LC A sI s f +-=)(计算观测器系数矩阵:令)()(*s f s f =得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=5.135.155.6L方法二:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-5.135.155.6100)(*10321V A f l l l L 结构图如图题3-5-8图1所示:题3-5-8图1(2)确定降维观测器的维数:m=1,n=3,则n-m= 2。
分解输出系数矩阵c ,获得线性变换矩阵T ,对原状态空间表达式进行线性变换,使各输出变量y 变成各状态变量的单值函数:[][][]01,1,0112121====c c c c C⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=---⨯100010011,10001001110001001101112221T I c c T []1,001x y CT C ===,111110421222112111⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------==-A AA A AT T A[]⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡=--=-=1111,10,42,122211211A A A A⎥⎦⎤⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-10,2,102211B B B T B 计算线性变换后降维观测器的反馈矩阵1221⨯⎥⎦⎤⎢⎣⎡=l l L (一个输出两个状态)127)4)(3()(*2++=++=s s s s s f[]42111100)()(211222--⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡-----⎥⎦⎤⎢⎣⎡=--=l l s s A L A sI s f )22()224(21122l l s l l s -++--+= ⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=⇒=8333.21667.3)()(*21l l L s f s f 求降维状态观测器的状态方程(状态变量z )u y z z u B L B y A L A y L z A L A zzz⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-+-++-=⎥⎦⎤⎢⎣⎡=6667.63333.612133333.126667.66667.113333.5)()())((21121121122221&&&求降维状态观测器的输出方程(系统针对于线性变换后的状态信号⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321ˆˆˆˆx x x x )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡y z y z y y L z y x x x 8333.21667.3ˆˆˆ21321求对应于原系统的降维状态观测器的状态信号xˆ: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=y z y z y z x T x x x x 8333.21667.31667.2ˆˆˆˆˆ211311绘制模拟结构图依据受控对象,降维观测器的状态方程,以及 原系统的降维观测器的输出方程:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=y z y z y z x x xx 8333.21667.31667.2ˆˆˆˆ211321结构图如图题3-5-8图2所示:2ˆx题3-5-8图2(2)确定一个全维状态观测器,并使观测器的极点全部为-5; (3)确定一个降维状态观测器,并使观测器的极点在-5处; (4)分别画出闭环系统的结构图。