认识函数-课件

合集下载

函数的概念ppt课件

函数的概念ppt课件

基础 梳理
解析:A.定义域不同;B.定义域不同;C.虽然自变量所用 字母不同,但两个函数的定义域和对应法则都分别相同,因此 是同一个函数;D.对应法则不同. 答案:C
思考 应用 1.怎样检验两个变量之间是否具有函数关系?
解析: 由函数近代定义知, 我们要检验两个变量之间是否具有函 数关系, 只要检验: ①定义域和对应关系是否给出且定义域为非空数 栏 目 集;②根据给出的对应关系,自变量在其定义域内任一个值,是否都 链 接 能确定唯一的函数值.
2.形如f(x)=ax2+bx+c(a≠0)的函数叫二次函数,它的图 象为抛物线.
例如:已知f(x)=x2+2x+3,函数值为6时,相对应的自变 x=1或x=-3 量的值为____________ .
栏 目 链 接
基础 梳理 3 .一般地,设 A、 B是非空的数集,如果按照某个确定的 对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B中都有 唯一确定的数f(x)和它对应,那么f:A→B就称为从集合A到集 合B的一个函数.记作y=f(x),x∈A.其中,x叫做自变量, x 的取值范围A叫做函数的定义域;与x的值相对应y的值叫做函 数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 例如:正方形边长为 x,与 x的值相对应的面积为 y,把 y表 y=x2 {x|x>0} ; 示为 x 的函数: ____________ ;该函数的定义域为 ________ 16 {y|y>0} ;当边长为 4 的时候,面积为 ________ 值域为 ________ ;当面 2 积为4的时候,相应的边长为________ .
链 时,{x|a≤x≤b} 接
自测 自评 1 . 下列各图中,可表示函数 y = f(x) 的图象的只可能是 ( D )

7.2 认识函数 课件3(数学浙教版八年级上册)

7.2 认识函数 课件3(数学浙教版八年级上册)

±5
? -6
function
?
?
3
?
18
这个规则是什么?怎么表示?
规则
自变量 X的一个确定值
函数
规则
y 有唯一 确定值 应变量
一般地,在某个变化过程中,设有两个变量 x、 y,如果对于 x 的每一个确定的值, y 都有唯一确定的值,
那么就说y是x的函数, x 叫做自变量。
变量t 的一经确定,变量m的值也随之唯一确定.
图象法
列表法 解析法
规则
y 有唯一 确定值 应变量
这种表示函数关系的方法是列表法.
2.如图,图象表示骑车时热量消耗 W (焦)与身体质量 x (千克)之间的关系。
活 动 时 消 耗 的 热 量 焦 ) 身体质量 x (千克)
W(
用图象来表示函数关系的方法,是图象法. 当x=50时,函数值为__________ 。 399
1. 设正方形周长为 p ,边长与为 a ,则 p 与 a 的函 p 4a 当 a 2 时, p =____. 数关系式为___________; 8
填写下表:
工作时间t(时)
1
16
5
10 15 20
t
16t
报酬m(元)
80 160 240 320
如何用关于t 的代数式来表示m? 如果t取定一个值,那么m相应的可以取几个值.Biblioteka ◇把明码翻译成密码
在古埃及有一个神秘 小镇,古人在镇上小山 的地道里埋藏了很多
宝藏。而要进入地道
需要破译很多密码。
god is me 第一重地道 门的明码是 “ YGVAKEW ” , 你能否根据 破译规则表 写出这个明 码的密码?

必修一函数的概念PPT省公开课获奖课件市赛课比赛一等奖课件

必修一函数的概念PPT省公开课获奖课件市赛课比赛一等奖课件

课堂小结
1.谈谈这节课你学到了哪些知识?学会了 哪些措施? 2.与初中定义对比,你对函数有什么新旳 认识?
作业:
2.1 函数旳概念
根据自己旳了解论述什么是函数并举例?
初中函数概念:在变化过程中,有两个变量x和 y,,假如给定一种x值,y都有唯一拟定旳一种值 和它相相应,那么我们就称y是x旳函数,其中x 是自变量,y是因变量.
h
o
t
例1.一枚炮弹发射后,经过26s落到地面击中目旳.炮 弹射高为845m,且炮弹距地面旳高度h(单位:m)随时
[a, b]
{x| a<x<b } 开区间 (a, b)
{x| a≤x<b}
半开半闭区 间
[a, b)
{x| a<x≤b}
半开半闭区 间
(a, b]
这里旳数a和b称为区间旳端点
实数集R能够用区间表达为(-∞,+∞),“∞”读 作“无穷大”。
满足x≥ a,x>a ,x ≤b, x<b旳实数旳集合分 别表达为[a, +∞)、(a, +∞)、(-∞,b]、(-∞,b).
间t(单位:s)变化规律是h=130t-5t2
问题: 1.炮弹飞行时间t旳变化范围数集A是 ; 2.炮弹飞行高度h旳变化范围数集B是 ; 3.数集A中旳t与数集B中旳h有什么关系?
h
h=130t-5t2 .
o
t
(任意一种) t 按式 h (唯一拟定) A={t|0≤t≤26} B={h|0≤h≤845}
学号 分数
12 3 4 5 76 92 92 84 90
x 按表
y
A={1,2,3,4,5} B={76,84,90,92}
归纳以上三个实例 旳共性,并尝试用 前面学过旳“集合” 和“相应”旳语言 归纳函数特征.

【数学课件】认识函数

【数学课件】认识函数

1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知

7.2 认识函数 课件1(数学浙教版八年级上册)

7.2 认识函数 课件1(数学浙教版八年级上册)
问题1: 杭州地铁一号线以950米/分钟的平均速度前行,t分钟之后,所行的路 程S为多少米? s=950t(t≥0) 当t=1时,S= 950
问题2: 地铁站点x 湘湖站 …… 彭埠站 七堡站 购票人数y 6 …… 18 39 问题3:
唯 一
九和路站 九堡站
…… 下沙站
7 42
…… 25
当t=14时,T= 5 当x=彭埠站时,y=18
s=950t(t≥0)
s是t的函数,t是自变量。
S是关于t的函 数解析式
像s=950t这种表示函数关系的等式叫函数解析式,简称函数式。
函数解析式的书写要求:通常表示函数的字母写在等式的左边, 含自变量的代数式写在等式的右边。 用函数解析式表示函数的方法叫 解析法。
回眸旅途
一般地,在某个变化过程中,设有两个变量x,y,如果对于 x的每一个确定的值,y都有唯一确定的值,那我们就说y是x的函 数,其中x叫做自变量。




—7.2认识函数(1)
上虞外国语学校
严玉珍
旅途之中:问题一
常量
杭州地铁一号线以950米/分钟的平 均速度前行,t分钟之后,所行的路 程S为多少米? 变量 变量
1:在地铁运行过程中,哪些是常量,哪些是变量?
2:你能用含t的代数式来表示S吗? (t≥0) s=950t
3:当t取一个确定的值时,那么s的值能确定吗? 当t=1时,S= 950 唯一
解:(1)折线图反映了s、t两个变量之 间的关系,路程s可以看成t的函数; (2)当t=5分时函数值为1km; (3)当 10≤t≤15时,对应的函数值是 始终为2,它的实际意义是小明回家途中 停留了5分钟; (4)学校离家有3.5km,放学骑自行车回 家共用了20分钟.

人教版高中数学必修一1.2.1函数的的概念_ppt课件

人教版高中数学必修一1.2.1函数的的概念_ppt课件

题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;

人教版高中数学必修一(1.2.1-1函数的概念)ppt课件

人教版高中数学必修一(1.2.1-1函数的概念)ppt课件

定义域
f:x 2x1
值域
函数解析式:f(x)=2x+1或y=2x+1
-3
-5
-2
-3
-1
-1 f(x)2x1
0
1
1
3
2
5
3
7 对应法则
对应法则施
加的运算对
f ( 3 ) 2 ( 3 ) 象 1 5
对应法 则
运算对象
运算内容:乘以2加一
象,即y的值
-3 -2 -1 0 1 2 3
f(a )f,(a 1 )
练习:
g(x) 2x3 5x2 3x2,求g(3),
h(x) | 4x|,求h(8),h(a) x2
1 r(x) 3
x5,求r(3),r(6)
x
已知函数
x 2
f
(x)


x
2

2
x
(1)求 f ( 2 ) , f的( 1值);
2
集合B中有唯一元素和A中某个元素对应
开平方
B
A
3
300
-3
2
450
-2 1
600
-1
900
求正弦
A
一对多不是映射
求平方
B
1
1
-1
一对一是映射
A
乘以2
1
2
4
-2
2
3 -3
9
3
多对一是映射
一对一是映射
集合A中任何一个元素都在B中有对应
乘以2加1
A
1
3
5
1B
2 3 4 5 6 7
集合A中的元素5在集合B中没有元素与之对 应,不能称为映射。

八年级数学上册教学课件《函数》

八年级数学上册教学课件《函数》
数学 八年级 上册
4.1 函数
4.1 函数
导入新知
万物皆变
4.1 函数
行星在宇宙中的位置随时间而变化
导入新知
4.1 函数
气温随海拔而变化
导入新知
4.1 函数
汽车行驶里程随行驶时间而变化
导入新知
4.1 函数
为了更深刻地认识千变万化的世界,本节课,我们将 学习有关一种量随另一种量变化的知识,共同见证事物变
(2)y是x的函数吗?为什么? 答:不是,因为y的值不是唯一的.
课堂检测
基础巩固题
4.1 函数
5.表格列出了一项实验的统计数据,表示小球从高度x(单位:m) 落下时弹跳高度y(单位:m)与下落高度x的关系,据表可以写 出的一个关系式是 y=0.5x .
课堂检测
能力提升题
4.1 函数
据省统计局发布,2017年我省有效发明专利数比2016年增长 22.1%.假定2018年的年增长率保持不变,2016年和2018年我 省有效发明专利分别为a万件和b万件,则( B ) A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a
的热力学温度T是多少?
(2)给定一个大于-273 ℃的t值,你都能求出相应的T
值吗?
探究新知
4.1 函数
探究新知
(1)当t分别为-43 ℃, -27 ℃,0 ℃,18 ℃时,相应的
热力学温度T是多少?
解:当t为-43℃时, T= -43+273=230(℃);
当t为-27℃时, T= -27+273=246(℃);
把自变量x的值代 入关系式中,即 可求出函数的值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

值范围是___x_为__正__整__数_
通过上面的题目,
求下列函数自变量的取值范围:在求自变量的取
(1)y= - 3x - 1 (2) y=2值能x范 得2+围到7时哪,些我启们示?
解析式为整式,通常情况下可以取一切实数
(3) y 1 (4) y x2
x2
有分母,分母不能为零 开偶数次方,被开方数是非负数

13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/52021/3/意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月5日星期 五2021/3/52021/3/52021/3/5

15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/52021/3/52021/3/53/5/2021
B
y= 4p 2x 0x4
A
Px O
用解析法表示函数的基本问题: 1、求函数解析式,即建立函数模型; 2、求函数的自变量的取值范围; 3、已知自变量的值,求相应的函数值; 4、已知函数值,求相应自变量的值.
5、重要数学思想与方法:转化、建模、函数.

9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021
v 450 t
这里x的取 当x取何值时,下列函数式有意义? 值范围就叫
1、y3x1 X取一切实数 做自变量的
2、y
4 x2

x-2≠0 ∴x≠2
取值范围
3、 y x4 ∵X-4≥0 ∴X ≥4
4、儿童节的时候,每人发2颗糖果,总 人数x与总发的糖果数y的函数关系式为
____y_=___2_x___,其中人数x的取
解、(1) X取一切实数
(2) X取一切实数 (3) x≠-2 (4) X ≥2
例1、等腰三角形ABC的周长为10,底边BC 长为y,腰AB长为x,求:
(1)y关于x的函数解析式;
(2)自变量x的取值范围;
(3)腰长AB=3时,底边的长 ;
(4) 底边BC=4时,腰的长。 当x=6时,y=10-2x的值是多少?对本例有意 义吗?当x=2呢? 当x =6时, y = -2,无意义;
解:(1) S=a(30-a) 0<a<30
(2)当a=10时,S=10(30-10)
(30-a)
=10×20
=200cm2 a
选一选
1、设等腰三角形顶角度数为y,底角度数为x,则( C)
A、y=180-2x(x可为全体实数)
B、y=180-2x(0≤x≤90)
C、y=180- 2x (0<x<90)
1、函数有哪几种表示方法?
1) y=2x+1
解析法
x 1 2 3 0 -1
2) y 3 5 7 1 - 1 列表法
3)
图像法
根据下列条件写出函数解析式
1、某市民用水的价格是1.2元/吨,设用水量为x 吨,应付水费为y元,则y关于x的函数解析式为:
y=1.2x
2、温州至杭州的铁路长为450千米,火车从 温州出发,平均速度为v千米/小时,行驶的时 间为t小时,则v关于t的函数解析式为:
D、 y1801(0<x< 90) 2x
填一填
1、寄一封重量在20克以内的市内平信,需邮资0.60元, 求寄n封这样的信所需邮资y(元)关于n的函数解析式
_____y_=__0_.自6n变量的取值范围为_____n_为__正整数
2、甲、乙两地相距720千米,一辆汽车从甲地开往 乙地,每小时行驶36千米,则这辆汽车到乙地所剩
当x =2时, y =6,2x<y,无意义
1、某弹簧的自然长度为3cm,在弹性限度内,所挂物 体的质量x每增加1千克,弹簧长度y增加0.5cm,
(1)计算所挂物体的质量分别为1千克、 2千克、 3千 克、 4千克、 5千克时弹簧的长度,并填入下表:
x/千克 0 1 2 3 4 5
y/cm 3 3.5 4 4.5 5 5.5
路程S与时间t的关系_S_=_7_2_0_-___3_6_t_及自变量t的取值 范围__0_≤__t_≤___2_0__
如图,OB⊥OA于O,以OA为半径画弧,交OB于B,点P 是半径OA上的动点.已知OA=4cm,设OP= x(cm),阴 影部分的面积为y(cm2), 求: y与x之间的函数关 系式及自变量的取值范围。

16、业余生活要有意义,不要越轨。2021/3/52021/3/5Marc h 5, 2021

17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/52021/3/52021/3/52021/3/5
谢谢观赏
You made my day!
我们,还在路上……
(2)你能写出x与y之间的关系吗?
y=0.5x+3
(3)当弹簧长度是6cm时,所挂物 体的质量是多少?
2、用总长为60cm的铁丝围成长方形,如果长方形的一 边长为 a(cm),面积为 S(cm2)。 (1)写出反映 S与a 之间的关系式,及自变量的取值范围。 (2)利用所写的关系式计算当a=10时,S的值是多少?

10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/52021/3/52021/3/53/5/2021 4:31:07 PM

11、越是没有本领的就越加自命不凡 。2021/3/52021/3/52021/3/5M ar-215- Mar-21

12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/52021/3/52021/3/5Fr iday, March 05, 2021
相关文档
最新文档