【新教材】新人教A版必修一 三角函数的周期性 学案

合集下载

2020-2021学年数学新教材人教A版必修第一册5.2三角函数的概念学案(2)含答案

2020-2021学年数学新教材人教A版必修第一册5.2三角函数的概念学案(2)含答案

【新教材】5.2.2 同角三角函数的基本关系(人教A 版)1.理解并掌握同角三角函数基本关系式的推导及应用.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.1.数学抽象:理解同角三角函数基本关系式;2.逻辑推理: “sin α±cos α”同“sin αcos α”间的关系;3.数学运算:利用同角三角函数的基本关系式进行化简、求值与恒等式证明. 重点:理解并掌握同角三角函数基本关系式的推导及应用;难点:会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.一、 预习导入阅读课本182-183页,填写。

1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=________.商数关系:sin αcos α=________⎝⎛⎭⎫α≠k π+π2,k ∈Z . (2)语言叙述:同一个角α 的正弦、余弦的 ________等于1,________等于角α的正切. 思考:“同角”一词的含义是什么?[提示] 一是“角相同”,如sin 2α+cos 2β=1就不一定成立.二是对任意一个角(在使得函数有意义的前提下),关系式都成立,即与角的表达式形式无关,如sin 215°+cos 215°=1,sin 2π19+cos 2π19=1等. 1.判断(正确的打“√”,错误的打“×”.)(1)对任意角α,sin 23α+cos 23α=1都成立.( )(2)对任意角α,sinα2cos α2=tan α2都成立.( ) (3)若sin α=12,则cos α=32.( ) 2.化简1-sin 2π5的结果是( ) A .cos π5 B .-cos π5C .sin π5D .-sin π53.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B .34C .±34D .±434.已知tan α=2,则cos α-5sin α3cos α+sin α=________. 题型一 应用同角三角函数关系求值例1(1)若3sin 5α=-,求cos α,tan α的值;(2)已知cos α=-817,求sin α,tan α的值. 跟踪训练一1.已知sin α+3cos α=0,求sin α,cos α的值.题型二 三角函数式的化简、求值例2(1)化简:1-2sin 130°cos 130°sin 130°+1-sin 2130°; (2)若角α是第二象限角,化简:tan α1sin 2α-1. 跟踪训练二1.化简:(1)cos 36°-1-cos 236°1-2sin 36°cos 36°; (2)sin θ-cos θtan θ-1. 题型三 三角函数式的证明 例3 求证:cos 1sin .1sin cos x x x x +=-.跟踪训练三1.求证:1+2sin x cos x cos 2x -sin 2x =1+tan x 1-tan x. 题型四 “sin α±cos α”同“sin αcos α”间的关系例4 已知sin α+cos α=15,且0<α<π. 求:(1)sin αcos α的值;(2)求sin α-cos α的值.跟踪训练四1.已知sin α+cos α=713,α∈(0,π),则tan α=. 2.已知sin α+cos αsin α-cos α=2,计算下列各式的值: (1)3sin α-cos α2sin α+3cos α; (2)sin 2α-2sin αcos α+1.1.下列各式中成立的是( )A .sin 2α+cos 2β=1B .tan α=sin αcos α(α任意)C .cos 2α2=1-sin 2α2D .sin α=1-cos 2α2.已知α∈⎣⎢⎡⎦⎥⎤π2,5π2,cos α=45,则tan α=( ) A .±34B .34C .-34D .433.已知tan α=-12,则2sin αcos αsin 2α-cos 2α的值是. 4.已知sin α+cos α=12,则sin αcos α=________.5.已知tan α=43,且α是第三象限的角,求sin α,cos α的值.6.(1)化简sin 2α-sin 4α,其中α是第二象限角;(2)求证:1+tan 2α=1cos 2α.答案小试牛刀1.(1)√(2)×(3)×.2.A3.A4.-95. 自主探究例1【答案】(1)当α是第三象限角时,cos α=-45,tan α=34. α是第四象限角时,cos α=45,tan α=-34 (2)如果α是第二象限角,那么sin α=1517,tan α=-158. 如果α是第三象限角, sin α=-1517,tan α=158. 【解析】(1)∵sin α=-35,α是第三、第四象限角, 当α是第三象限角时,cos α=-1-sin 2α=-45,tan α=sin αcos α=34. α是第四象限角时,cos α=1-sin 2α=45,tan α=sin αcos α=-34 (2) ∵cos α=-817<0, ∴α是第二或第三象限的角.如果α是第二象限角,那么sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158. 如果α是第三象限角,同理可得sin α=-1-cos 2α=-1517,tan α=158. 跟踪训练一1.【答案】角α的终边在第二象限时,cos α=-1010,sin α=31010; 当角α的终边在第四象限时,cos α=1010,sin α=-31010. 【解析】∵sin α+3cos α=0,∴sin α=-3cos α.又sin 2α+cos 2α=1,∴(-3cos α)2+cos 2α=1,即10cos 2α=1,∴cos α=±1010. 又由sin α=-3cos α,可知sin α与cos α异号, ∴角α的终边在第二或第四象限. 当角α的终边在第二象限时,cos α=-1010,sin α=31010; 当角α的终边在第四象限时,cos α=1010,sin α=-31010. 例2【答案】(1)1; (2)-1.【解析】(1)原式=sin 2130°-2sin 130°cos 130°+cos 2130°sin 130°+cos 2130°=|sin 130°-cos 130°|sin 130°+|cos 130°|=sin 130°-cos 130°sin 130°-cos 130°=1. (2)原式=tan α1-sin 2αsin 2α=tan αcos 2αsin 2α=sin αcos α×|cos α||sin α|,因为α是第二象限角,所以sin α>0,cos α<0,所以原式=sin αcos α×|cos α||sin α|=sin αcos α×-cos αsin α=-1. 跟踪训练二 1.【答案】(1)1;(2) cos θ.【解析】 (1)原式=cos 36°-sin 236°sin 236°+cos 236°-2sin 36°cos 36°=cos 36°-sin 36°cos 36°-sin 36°2=cos 36°-sin 36°|cos 36°-sin 36°|=cos 36°-sin 36°cos 36°-sin 36°=1. (2)原式=sin θ-cos θsin θcos θ-1=cos θsin θ-cos θsin θ-cos θ=cos θ. 例3 【答案】见解析【解析】跟踪训练三1.【答案】见解析【解析】证明: 右边=1+sin x cos x 1-sin x cos x=cos x +sin x cos x -sin x =cos x +sin x 2cos x -sin x cos x +sin x =1+2sin x cos x cos 2x -sin 2x=左边, ∴原等式成立.例4【答案】(1)-1225; (2)75.【解析】证明:(1)∵sin α+cos α=15,∴(sin α+cos α)2=125, ∴1+2sin αcos α=125,即sin αcos α=-1225. (2)∵(sin α-cos α)2=1-2sin αcos α=1+2425=4925. 又∵0<α<π,且sin αcos α<0,∴sin α>0,cos α<0,∴sin α-cos α>0,∴sin α-cos α=75. 跟踪训练四1、【答案】-125. 【解析】法一:(构建方程组)因为sin α+cos α=713,① 所以sin 2α+cos 2α+2sin αcos α=49169, 即2sin αcos α=-120169. 因为α∈(0,π),所以sin α>0,cos α<0.所以sin α-cos α=(sin α-cos α)2=1-2sin αcos α=1713.② 由①②解得sin α=1213,cos α=-513, 所以tan α=sin αcos α=-125. 法二:(弦化切)同法一求出sin αcos α=-60169,sin αcos αsin 2α+cos 2α=-60169,tan αtan 2α+1=-60169, 整理得60tan 2α+169tan α+60=0,解得tan α=-512或tan α=-125. 由sin α+cos α=713>0知|sin α|>|cos α|,故tan α=-125. 2.【答案】(1)89;(2)1310. 【解析】由sin α+cos αsin α-cos α=2, 化简得sin α=3cos α,所以tan α=3.(1)法一(换元)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89. 法二(弦化切)原式=3tan α-12tan α+3=3×3-12×3+3=89. (2)原式=sin 2α-2sin αcos αsin 2α+cos 2α+1 =tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310. 当堂检测1-2. CA3.434.-385.【答案】sin α=43,cos α=-45.【解析】由tan α=sin αcos α=43得sin α=43cos α.①又∵sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1.∴cos 2α=925.又∵α是第三象限的角,∴cos α=-35.∴sin α=43,cos α=-45.6.【答案】见解析【解析】(1)因为α是第二象限角,所以sin α>0,cos α<0,所以sin αcos α<0, 所以sin 2α-sin 4α=sin 2α(1-sin 2α) =sin 2αcos 2α=-sin αcos α.sin2αcos2α=cos2α+sin2αcos2α=1cos2α.(2)证明:1+tan2α=1+。

【教案】三角函数的概念课时设计-2022-2023学年高一上学期数学人教A版(2019)必修第一册

【教案】三角函数的概念课时设计-2022-2023学年高一上学期数学人教A版(2019)必修第一册

普通高中教科书人教A 版数学第一册(必修)5.2三角函数的概念(3课时,单元教学设计)一.单元内容和内容解析1.内容三角函数的概念,三角函数的基本性质:三角函数的符号、公式一、同角三角函数的基本关系.本单元的知识结构:本单元建议用3课时.第1课时.三角函数的概念;第2课时,三角函数的基本性质;第3课时,概念和性质的简单应用.2.内容解析(1)内容的本质三角函数是一类最典型的周期函数,是解决实际问题的重要工具,是学习数学、物理和天文等其他学科的重要基础.(2)蕴含的数学思想和方法研究思路如下:背景——研究对象——对应关系的本质——定义的过程.本单元的学习中,学生在经历这个过程而形成三角函数的同时,“顺便”就可得到值域、函数值的符号、公式一即同角三角函数的基本关系等性质.(3)知识的上下位关系传统上,人们习惯把三角函数看成是锐角三角函数的推广,利用象限角终边上点的坐标比定义三角函数.任意三角函数的现实背景是周期变化现象,是“周而复始”变化规律的数学课话.因此,整体上,任意角三角函数知识体系的建立,应与其他基本初等函数类似.(4)育人价值 单位圆上点的运动规律三角函数的概念三角函数的基本性质三角函数的符号公式一同名三角函数的基本关系本节课从生活中存在“周而复始”的现象引入周期函数中最典型——三角函数的数学刻画,通过在平面直角坐标系中单位圆的建立,逐步实现本节课的教学目标.在此过程中培养了学生的数学想象、数学抽象、数学建模、数学运算等数学学科核心素养(5)教学重难点根据上述分析,可以确定本单元的教学重点:正弦函数、余弦函数、正切函数的定义,公式一,同角三角函数的基本关系.其中,正弦函数、余弦函数的定义是重中之重.二.单元目标和目标解析1.目标(1)了解三角函数的背景,体会三角函数与现实世界的密切联系.(2)经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,发展数学抽象素养.(3)掌握三角函数数值的符号.(4)掌握公式一,初步体会三角函数的周期性.,sin2x+cos2x=1,体会三角(5)理解同角三角函数的基本关系式:tan x=sin xcos x函数的内在联系,通过运用基本关系进行三角恒等变换,发展数学运算素养.2.目标解析达成上述目标的标志是:(1)学生能如了解线性函数、反比例函数、二次函数、幂函数、指数函数、对数函数的现实背景那样,知道三角函数是刻画现实世界中“周而复始”变化规律的数学工具,能体会到匀速圆周运动在周而复始变化现象中的代表性.(2)学生在经历“周期现象—圆周运动—单位圆上点的旋转运动”的抽象活动中,明确研究的问题(单位圆上的点P以A为起点做旋转运动,建立一个数学模型,刻画点P的位置变化情况),使研究对象简单化、本质化;学生能分析单位圆上点的旋转中涉及的量及其相互关系,获得对应关系并抽象出三件函数概念;能根据定义求给定角的三角函数值.(3)学生根据定义得出三角函数在各象限取值的符号规律.(4)学生能根据定义,结合终边相同的角的表示,得出公式一,并能根据此描述三角函数周而复始的取值规律,求某些角(特殊角)的三角函数值.(5)学生能利用定义以及单位圆上点的横、纵坐标之间的关系,发现并得出“同角三角函数的基本关系”,并能用于三角恒等变换.三.单元教学问题诊断分析三角函数概念的学习,其认知基础是函数的一般观念以及对幂函数、指数函数和对数函数的研究经验,另外还有圆的有关知识.这些认知准备对于分析“周而复始”变化现象中涉及的量及其关系、认识其中的对应关系并给出定义等都能起到思路引领作用.然而,前面学习的基本初等函数,涉及的量(常量与变量)较少,解析式都有明确的运算含义,在三角函数中,影响单位圆上点的坐标变化的因素较多,对应关系不以“代数运算”为媒介,是“α与x,y直接对应”,无须计算,虽然α,x,y都是实数,但实际上是“集合元素间的对应”.所以,三角函数中的对应关系,与学生的已有经验距离较大,由此产生第一个学习难点;理解三角函数的对应关系,包括影响单位圆上点的坐标变化的因素分析,以及三角函数的定义方式的理解.为了破除学生在对应关系认识上的定势,帮助他们搞清楚三角函数的“三要素”,应该根据一般函数概念引导下的下位学习的特点,先让学生明确“给定一个角,如何得到对应的函数值”的操作过程,然后再下定义.这样不仅使三角函数定义的引入更自然,而且由三角函数对应关系的独特性,可以使学生再一次认识函数的本质.具体地,可以先让学生完成“时,让学生找给定一个特殊角,求它的终边与单位圆交点的坐标”的任务,例如,当α=π6出相应点P的坐标,并体会到点P的坐标的唯一确定想;在借助信息技术,让学生观察任意给定一个角α∈R,它的终边与单位圆的交点坐标是否唯一,从而为理解三角函数的对应关系奠定基础.利用信息技术,可以很容易地建立单位圆上点地横坐标、纵坐标、角、弧之间地联系,并且可以在角地变化过程中进行观察,发现其中地规律性.所以,信息技术可以帮助学生更好地理解三角函数的本质.对于三角函数的定义,可以通过以下几点帮助学生理解.第一,α是一个任意角,同时也是一个实数(弧度数),所以“设α是一个任意角”的意义实际上是“对于R中的任意一个数α”.第二,“它的终边OP与单位圆相交于点P(x,y)”实际上给出了两个对应关系,即(1)实数α(弧度)对应点P的纵坐标y;(2)实数α(弧度)对应点P的纵坐标x,其中y,x∈[−1,1].因为y对于R中的任意一个数α,它的终边唯一确定,所以交点P(x,y)也唯一确定,也就是纵坐标y和横坐标x都有α唯一确定,所以对应关系(1)(2)分别确定了一个函数,这是理解三角函数定义的关键.第三,引进sinα,cosα分别表示“α的终边与单位圆交点的纵坐标”“α的终边与单位圆交点的横坐标”,故对于任意一个实数α,按对应关系(1),在集合B={z|-1≤z≤1}中都拥有唯一确定的数sinα与之对应;按对应关系(2),在集合B中都有唯一确定的数cosα与之对应.所以,sinα,cosα都是一个由α所唯一确定的实数.这里,对符号sinα,cosα和tanα的认识是第二难点.可以通过类比引进符号log a b表示a x=b中的x,说明引进这些符号的意义.本单元的第三个学习难点是对于三件函数内在联系行的认识.出现这个难点的主要原因在于三角函数联系方式的特殊性,学生在已有的基本初等函数学习中没有这个经验,以及学生从联系的观点看问题的经验不足,对“如何返现函数的性质”的认识不充分等而导致的发现和提出性质的能力不强.为此,教学中应在思想方法上加强引导.例如,可以通过问题“对于给定的角α,点P(sinα,cosα)是α的终边与单位圆的交点,而tanα则是点P的纵坐标与横坐标之比,因此这三个函数之间一定有内在联系.你能从定义出发,研究一下他们有怎样的联系吗”引导学生探究同角三角函数的基本关系.四.单元教学支持条件分析为了加强学生对单位圆上点的坐标随角(圆心角)的变化而变化的直观感受,需要利用信息技术建立任意角、角的终边与单位圆的交点、角的旋转量、交点坐标等之间的关联.教学中,可以动态改变角α的终边OP(P为终边与单位圆的交点)的位置,引导学生观察OP位置的变化所引起的点P坐标的变化规律,感受三角函数的本质,同时感受终边相同的角具有相同的三角函数值,以及各三角函数在合象限中符号的变化情况.五.单元教学设计安排本单元共两个课时,具体分配如下:第1课时:三角函数的概念;第2课时:三角函数的基本性质;第3课时:概念和性质的简单应用.PA第一课时(一)课时教学内容在一般函数概念的指导下,按“概念形成”的方式展开形成三角函数的概念(二) 课时教学目标(1)了解三角函数的背景,并借助单位圆理解任意角三角函数的定义(2)掌握三角函数值的符号(3)掌握公式一,初步体会三角函数的周期性(三)教学重点与难点重点:任意角的三角函数(正弦、余弦、正切)的定义难点:任意角的三角函数概念的构建过程(四)教学过程设计1.创设问题情境,提出研究问题引导语:我们知道,现实世界中存在着各种各样的“周而复始”的变化现象,圆周运动是这类现象的代表.如图1所示,圆O 上的点P 以A 为起点做逆时针方向的旋转.在把角的范围推广到任意角后,我们可以借助角α的大小刻画点P 的位置变化.又根据弧度制的定义,角α的大小与圆O 的半径无关.因此,不失一般性,我们可以先研究单位圆上点的运动,现在的任务是:如图1所示,单位圆O 上的点P 以点A 为起点做逆时针方向旋转,建议一个函数模型,刻画点P 的位置变化情况.图一问题1:根据已有的研究函数的经验,你认为可以按怎样的路径研究上述问题? 师生活动:学生在独立思考的基础上进行交流,通过讨论得出研究路径是:明确研究背景——对应关系的特点分析——下定义——研究性质设计意图:明确研究的内容、过程和基本方法,为具体研究指明方向2.分析具体事例,归纳共同特征 O引导语:下面我们利用直角坐标系来研究上述问题.如图2所示,以单位圆的圆心O 为原点,以射线OA 为x 轴的非负半轴,建立直角坐标系,以点A 的坐标(1,0),点P 的坐标(x ,y ).射线OA 从x 轴的非负半轴开始,绕点O 按逆时针方向旋转角α,终止位置为OP.问题2:当α=π6时,点P 的坐标时什么?当α=π6或2π3时,点P 的坐标又是什么?他们是唯一确定的吗?一般的,任意给定一个角α,它的终边OP 于单位圆交点P的坐标能唯一确定吗?师生互动:在学生求出当α=π6时点P 的坐标后追问以下问题.追问:(1)求点P 的坐标要用到什么知识?(直角三角形的性质)(2)求点P 的坐标步骤是什么?点P 的坐标唯一吗?(画出π6的终边OP ,过点P 做x 轴的垂线交x 轴于M ,在R t ΔOMP 中,利用直角三角形的性质可地得到点P 的坐标是(√32,12).) (3)如何利用上述经验求当α=2π3时点P 的坐标?(可以发现,∠MOP=π3,而点P 在第二象限,可得点P 的坐标是(-12,√32).)(4)利用信息技术,刻画一个角α,观察它的终边OP 语单位圆交点P 的坐标,你有什么发现?你能用函数的语言刻画这种对应关系吗?(对于R 中的任意一个角α,它的终边OP 与单位圆交点为P (x,y ),无论是横坐标x 还是纵坐标y ,都是唯一确定的,这里有两个对应关系:f :实数α(弧度)对应于点P 的纵坐标yg :实数α(弧度)对应于点P 的横坐标x根据上述分析,f :R →[-1,1]和g :R →[-1,1]都是从集合R 到集合[-1,1]的函数.) 设计意图:以函数的对应关系为指向,从特殊到一般,使学生确认相应的对应关系满足函数的定义,角的终边与单位圆交点的横坐标、纵坐标都是圆心角α(弧度)的函数,为给出三角函数的定义做好准备.3.任意角三角函数的定义与辨析问题3:请同学们先阅读教科书第177-178页,再回答如下问题:(1)正弦函数、余弦函数和正切函数的对应关系各是什么?(2)符号sin α,cos α和tan α分别表示什么?在你以往的学习中有类似的引入特定符号表示一种量的经历吗? 图2(3)为什么说当α≠π2+kπ时,tanα的值是唯一确定的?(4)为什么说正弦函数、余弦函数的定义域是R?而正切函数的定义域是{x |x≠π2+kπ,k∈Z}?师生活动:学生独立阅读教科书,再回答上述问题.设计意图:在问题引导下,通过阅读教科书、辨析关键词等,使学生明确三角函数的“三要素”;引导学生类比已有知识(引入符号log a b表示a x=b中的x),理解三角函数符号的意义.4.任意角三角函数与锐角三角函数的联系问题4:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,设x∈(0,π2),把锐角三角函数定义求得的锐角x的正弦记为z1,并把本节三角函数定义求得的x的正弦记作y1.z1和y1相等吗?对于余弦、正切也有相同的结论吗?师生活动:教师引导学生作出R tΔABC,其中∠A=x,∠C=90o,再把它放入直角坐标系中,使点A与原点重合,AC在x轴的正半轴上,得出y1=z1的结论.设计意图:建立锐角三角函数与任意角三角函数的联系,使学生体会两个定义的和谐性.5.任意角三角函数概念的初步应用例1:利用三角函数的定义求5π3的正弦、余弦和正切值师生活动:先由学生发言,再总结出从定义出发求三角函数值的基本步骤,并求出答案.设计意图:通过概念的简单应用,明确用定义求三角函数值的基本步骤,进一步理解定义的内涵.课堂练习:(1)利用三角函数的定义,求π,3π2的三个三角函数值(2)说出几个使cosα=1的α的值.师生活动:由学生逐题给出答案,并要求学生说出解答步骤,最后可以总结为“画终边,找交点坐标,算比值(对正切函数)”.设计意图:检验学生对定义的理解情况.例2:如图3所示,设α是一个任意角,它的终边上任意一点P(不与原点O重合)的坐标(x,y),点P与原点的距离为r,求证:sinα=yr ,cosα=xr,tanα=yx师生活动:给出问题后,教师可以引导学生思考如下问题,再让学生给出证明:(1)你能根据三角函数的定义作图表示sinα,cosα吗?(2)在你所作图形中yr ,xr,yx各表示什么,你能找到它们与任意角α的三角函数的关系吗设计意图:通过问题引导,使学生找到△OMP,△O M O P O,并利用它们的相似关系,根据三角函数的定义得到证明.追问:例2实际上给出了证明三角函数的另外一种定义,而且这种定义与已有的定义是等价的.你能用严格的数学语言叙述一下这种定义吗?师生活动:可以由几个学生分别给出定义的表述,在交流的基础上得出准确的定义.设计意图:加深学生对三角函数定义的理解.课堂练习:已知点P在半径为2的圆上按顺时针方向做匀速圆周运动,角速度为1rad/s,求2s时点P所在的位置,师生活动:由学生独立完成后,学生代表展示作业.设计意图:三角函数是刻画匀速圆周运动的数学模型,通过练习使学生从另一个角度理解三角函数的定义.(五)目标检测设计1.利用三角函数的定义,求7π6的三个三角函数值.2.已知角θ的终边多点P(-12,5),求角θ的三角函数值.设计意图:考查学生对三角函数定义的理解情况。

人教A版新课标高中数学必修一教案 《正弦函数、余弦函数的周期性》

人教A版新课标高中数学必修一教案 《正弦函数、余弦函数的周期性》

《正弦函数、余弦函数的周期性》对于函数性质的研究,在高一必修中已经研究了幂函数、指数函数、对数函数的图象与性质.因此作为高中最后一个基本初等函数的性质的研究,学生已经有些经验了.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想方法的应用.1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.在图形上让学生抽象正弦线“周而复始”的变化规律,在代数式上又是如何体现.3.从形到数、由特殊到一般、由易到难的认知规律及领悟数形结合的思想.4.理解与掌握函数sin()y A x ωφ=+及cos()y A x ωφ=+周期的求法及周期公式. 教学重点:正弦、余弦、正切函数的主要性质(包括周期性、单调性、奇偶性、最值或值域),深入研究函数性质的思想方法.教学难点:正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.1.教学问题 (1)从实际情景发现正余弦函数具有周期性.(2)通过图象观察出正余弦函数具有周期性,并能够用诱导公式证明.2. 支持条件(1)作为函数的性质,从初中就开始学习,到高中学习了幂函数、指数、对数函数后有了较深的认识,这是这节课学习的基础.(2)三角函数概念和诱导公式的学习也为这节课打下了学习的基础. 【引入】取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针每经过一周就会重复,这是一种周期现象.我们这节课要研究的主要内容就是周期现象与周期函数.那么我们怎样从数学的角度研究周期现象呢?【问题1】正弦函数、余弦函数是周期函数吗?如果是,又是怎样周期性变化的?预设师生活动教师可先引导学生查阅思考上节学过的正弦函数图象,让学生观察正弦线的变化规律,有什么新的发现?再让学生描述这种规律是如何体现在正弦函数的图象上的,即描述正弦函数图象是如何体现“周而复始”的变化规律的.通过研究图象,学生很容易看出正弦函数、余弦函数是周期函数.怎样变化呢?从图1中也能看出是每隔2π就重复一次.对于【问题1】,学生对正弦函数是周期函数是没有疑问的,至于怎样描述,学生一时很难回答.教师可引导学生思考讨论,正弦函数图象是怎样重复出现的?对于回答对的学生给予肯定,鼓励继续探究.对于找不到思路的学生给予提示,指导其正确的探究思路.图1【问题2】怎样从代数的角度定义周期函数?预设师生活动从图象上能够看出,但关键是怎样对“周而复始”的变化规律作出代数描述,这对学生有一定的难度.在引入正式定义之前,可以引导学生先从不同角度进行描述.例如:对于函数f(x)自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,那么这个函数就叫做周期函数.教师也可以引导点拨学生从诱导公式进行描述.例如:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,k∈Z.这表明,正弦函数、余弦函数在定义域内自变量每增加(k>0时)或减少(k<0时)一个定值2kπ,它的函数值就重复出现,所以正弦函数、余弦函数都是周期函数.还可以通过类比奇函数、偶函数、周期函数的研究方法来加深理解周期性概念.如果函数f(x)对于其定义域内的每一个值,都有:f(-x)=-f(x),那么f(x)叫做奇函数;f(-x)=f(x),那么f(x)叫做偶函数;f(x+T)=f(x),其中T是非零常数,那么f(x)叫做周期函数.从上述定义可以看到,函数的性质是对函数的一种整体考察结果,反映了同一类函数的共同特点,它们可以从代数角度得到统一刻画.这种共同特点还可以从函数的图象上得到反映.结论:正弦函数、余弦函数是周期函数,每隔2π就重复一次.定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )= f (x ),那么函数f (x )就叫做周期函数.非零常数T 叫做这个函数的周期.如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.正弦函数是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.【问题3】如何正确理解三角函数是周期函数的定义?并举例说明.预设师生活动学生一时可能难于理解周期的代数刻画.教师在引导学生阅读、讨论、思考问题时可多举些具体例子,以使抽象概念具体化.如常数函数f (x )=c (c 为常数,x ∈R )是周期函数,所有非零实数T 都是它的周期.同时应特别强调:(1)对周期函数与周期定义中的“当x 取定义域内每一个值时”这句话,要特别注意“每一个值”的要求.如果只是对某些x 有f (x +T )= f (x ),那么T 就不是f (x )的周期.例如,分别取x 1=2k π+π4(k ∈Z ),x 2=6 ,则由sin (2k π+4π+2π)≠sin (2k π+4π),sin (6π+2π)≠sin 6π,可知π2不是正弦函数的周期.又如sin (30°+120°)=sin30°,但不是对所有x 都有f (x +120°)=f (x ),所以120°不是(x )的周期.(2)从上述定义还可以看到周期函数的周期不唯一,例如2π,4π,6π,8π,……都是它的周期,有无穷多个,即2k π(k ∈Z ,k ≠0)都是正弦函数的周期.这一点可以从周期函数的图象上得到反映,也可以从代数上给以证明:设T 是函数f (x )的周期,那么对于任意的k ∈Z ,k ≠0,k T 也是函数f (x )的周期.(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.但周期函数不一定存在最小正周期,例如,对于常数函数f (x )=c (c 为常数,x ∈R ),所有非零实数T 都是它的周期,由于T 可以是任意不为零的常数,而正数集合中没有最小值,即最小正数是不存在的,所以常数函数没有最小正周期.(4)正弦函数中,正周期无穷多,2π是最小的一个,在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.【问题4】怎样求一些简单三角函数的周期?预设师生活动教师要指导学生紧扣定义,可先出一些简单的求周期的例子,如:若T 是f (x )的周期,那么2T 、3T 、…呢?怎样求?实际上,由于T 是f (x )的周期,那么2T 、3T 、…也是它的周期.因为f (x +2T )=f (x +T+T )=f (x +T )= f (x ).这样学生就会明白,数学中的周期函数,其实就是在独立变量上加上一个确定的周期之后数值重复出现的函数.例题讲解例1 求下列函数的周期:(1)y =3cos x ,x ∈R ;(2)y =sin2x ,x ∈R ;(3)y =2sin (2x -6π),x ∈R . 预设师生活动引导学生紧扣定义,一切从定义出发来求.(1) 因为3cos (x +2π)=3cos x ,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos (x +π)=-3cos x ≠3cos x ,所以π不是周期.(2) 引导学生观察2x ,可把2x 看成一个新的变量u ,那么cos u 的最小正周期是2π,就是说,当u 增加到u +2π时,函数cos u 的值重复出现,而u +2π=2x +2π=2(x +π),所以当自变量x 增加到x +π且必须增加到x +π时函数值重复出现.因为sin2(x +π)=sin (2x +2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin [21(x +4π)-6π]=2sin [(2x -6π)+2π]=2sin (2x -6π). 所以由周期函数的定义可知,原函数的周期为4π.答案:(1)周期为2π;(2)周期为π;(3)周期为4π.归纳:一般地,函数y =A sin (ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期为T=ωπ2.可以按照如下的方法求它的周期:y =A sin (ωx +φ+2π)=A sin [ω(x +ωπ2)+φ]=A sin (ωx +φ). 于是有f (x +ωπ2)=f (x ),所以其周期为ωπ2. 例如,在第(3)小题,y =2sin (21x -6π),x ∈R 中,ω=21,所以其周期是4π.由上述解法可以看到,思考的基本依据还是y =sin x 的周期为2π.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期.如例3中的第(3)小题:T=2πω=4π.这是求简单三角函数周期的最基本方法,即公式法.例2 判断函数f (x )=2sin 2x +cos x ,R x ∈的周期性.如果是周期函数,最小正周期是多少?预设师生活动本例的难度较大,可引导学生从定义出发,结合诱导公式,寻求使f (x +T )=f (x )成立的T 的值.学生可能会很容易找出4π,2π,这的确是原函数的周期,但是不是最小正周期呢?教师引导学生选其他几个值试试.如果学生很快求出,教师给予表扬鼓励;如果学生做不出,教师点拨学生的探究思路,主要让学生自己讨论解决.解:因为f (x +π)=2sin 2(x +π)+|cos (x +π)|=2sin 2x +|cos x |=f (x ).所以原函数是周期函数,最小正周期是π.变式训练1.求函数y =2sin 31(π-x )的周期. 解:因为y =2sin 31(π-x )=-2sin (31x -3π),所以周期T =6π. 2.证明正弦、余弦函数的最小正周期是2π.证明:(反证法)先证正弦函数的最小正周期是2π.由于2π是它的一个周期,所以只需证明任意一个小于2π的正数都不是它的周期.假设T 是正弦函数的周期,且0<T <2π,那么根据周期函数的定义,当x 取定义域内的每一个值时,都有sin (x +T )=sin x .令x =2π,代入上式,得sin (2π+T )=sin 2π=1, 但sin (2π+T )=cosT ,于是有cosT=1. 根据余弦函数的定义,当T ∈(0,2π)时,cosT<1. 这说明上述cosT=1是不可能的.于是T 必须等于2π,即正弦函数的最小正周期是2π. 同理可证,余弦函数的最小正周期也是2π.。

高中数学 三角函数正弦函数余弦函数的周期性与奇偶性讲义 新人教A版必修一第一册

高中数学 三角函数正弦函数余弦函数的周期性与奇偶性讲义 新人教A版必修一第一册

第1课时正弦函数、余弦函数的周期性与奇偶性知识点一周期函数1.周期函数状元随笔关于最小正周期(1)并不是所有的周期函数都有最小正周期,如常数函数f(x)=C,对于任意非零常数T,都有f(x+T)=f(x),即任意常数T都是函数的周期,因此没有最小正周期.(2)对于函数y=A sin(ωx+φ)+B,y=A cos(ωx+φ)+B,可以利用公式T=2π|ω|求最小正周期.知识点二正弦函数、余弦函数的周期性和奇偶性状元随笔关于正、余弦函数的奇偶性(1)正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲线关于原点(0,0)对称,余弦曲线关于y轴对称.(2)正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.提醒:诱导公式三是正弦函数、余弦函数的奇偶性的另一种表示形式.[教材解难]1.教材P202思考函数的周期性与解析式中x的系数有关.2.教材P202思考知道了一个函数的周期性和奇偶性能更容易画出函数的图象,从而得到函数的性质. [基础自测]1.下列函数中,周期为π2的是( )A .y =sin x 2B .y =sin 2xC .y =cos x4D .y =cos 4x解析:对于A ,T =2π12=4π,对于B ,T =2π2=π,对于C ,T =2π14=8π,对于D ,T =2π4=π2.答案:D2.函数f (x )=sin(-x )的奇偶性是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数解析:由于x ∈R ,且f (-x )=sin x =-sin(-x )=-f (x ),所以f (x )为奇函数,故选A.答案:A3.下列函数中是偶函数的是( ) A .y =sin 2x B .y =-sin x C .y =sin|x | D .y =sin x +1解析:A 、B 是奇函数,D 是非奇非偶函数,C 符合f (-x )=sin|-x |=sin|x |=f (x ),∴y =sin|x |是偶函数.答案:C 4.函数y =sin ⎝⎛⎭⎪⎫π2-x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线x =π2对称解析:因为y =sin ⎝ ⎛⎭⎪⎫π2-x =cos x , 又因为cos(-x )=cos x ,为偶函数,所以根据余弦函数的图象和性质可知其图象关于y 轴对称. 答案:B题型一 求三角函数的周期[教材P 201例2] 例1 求下列函数的周期: (1)y =3sin x ,x ∈R ; (2)y =cos 2x ,x ∈R ;(3)y =2sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R .【解析】 (1)∀x ∈R ,有3sin(x +2π)=3sin x . 由周期函数的定义可知,原函数的周期为2π.(2)令z =2x ,由x ∈R 得z ∈R ,且y =cos z 的周期为2π,即cos(z +2π)=cos z ,于是cos(2x +2π)=cos 2x ,所以cos 2(x +π)=cos 2x ,x ∈R .由周期函数的定义可知,原函数的周期为π.(3)令z =12x -π6,由x ∈R 得z ∈R ,且y =2sin z 的周期为2π,即2sin(z +2π)=2sinz ,于是2sin ⎝ ⎛⎭⎪⎫12x -π6+2π=2sin ⎝ ⎛⎭⎪⎫12x -π6,所以2sin ⎣⎢⎡⎦⎥⎤12(x +4π)-π6=2sin ⎝ ⎛⎭⎪⎫12x -π6.由周期函数的定义可知,原函数的周期为4π.状元随笔 通常可以利用三角函数的周期性,通过代数变形,得出等式f(x +T)=f(x)而求出相应的周期.对于(2),应从余弦函数的周期性出发,通过代数变形得出cos 2(x +T)=cos 2x ,x∈R ; 对于(3),应从正弦函数的周期性出发,通过代数变形得出sin ⎣⎢⎡⎦⎥⎤12(x +T )-π6=sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R .教材反思求函数周期的方法(1)定义法:紧扣周期函数的定义,寻求对任意实数x 都满足f (x +T )=f (x )的非零常数T .该方法主要适用于抽象函数.(2)公式法:对形如y =A sin(ωx +φ)和y =A cos(ωx +φ)(其中A ,ω,φ是常数,且A ≠0,ω>0),可利用T =2πω来求.(3)图象法:可画出函数的图象,借助于图象判断函数的周期,特别是对于含绝对值的函数一般采用此法.跟踪训练1 (1)下列函数中,不是周期函数的是( ) A.y =|cos x | B .y =cos|x | C .y =|sin x | D .y =sin|x |(2)函数y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的周期为________. 解析:(1)画出y =sin|x |的图象,易知y =sin|x |不是周期函数.(2)方法一 因为2sin ⎝ ⎛⎭⎪⎫x 3-π6+2π=2sin ⎝ ⎛⎭⎪⎫x 3-π6, 即2sin ⎣⎢⎡⎦⎥⎤13(x +6π)-π6=2sin ⎝ ⎛⎭⎪⎫x 3-π6. 所以y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的最小正周期是6π.方法二 函数的周期T =2π|ω|=2π13=6π.答案:(1)D (2)6π(1)作出函数的图象,根据周期的定义判断.(2)利用周期的定义,需要满足f(x +T)=f(x) ;也可利用公式T =2π|ω|计算周期.题型二 正、余弦函数的奇偶性问题[经典例题] 例2 判断下列函数的奇偶性. (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2; (2)f (x )=sin(cos x ).【解析】 (1)函数的定义域为R .且f (x )=cos ⎝ ⎛⎭⎪⎫π2+2x =-sin 2x .因为f (-x )=-sin(-2x )=sin 2x =-f (x ),所以函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2是奇函数.(2)函数的定义域为R .且f (-x )=sin[cos(-x )]=sin(cos x )=f (x ), 所以函数f (x )=sin(cos x )是偶函数.先用诱导公式化简,再利用定义法判断函数的奇偶性.方法归纳利用定义判断函数奇偶性的三个步骤注意:若函数f (x )的定义域不关于原点对称,无论f (-x )与f (x )有何关系,f (x )仍然是非奇非偶函数.跟踪训练2 判断下列函数的奇偶性: (1)f (x )=|sin x |+cos x ; (2)f (x )=1-cos x +cos x -1. 解析:(1)函数的定义域为R ,又f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ),所以f (x )是偶函数. (2)由1-cos x ≥0且cos x -1≥0,得cos x =1,从而x =2k π,k ∈Z ,此时f (x )=0,故该函数既是奇函数又是偶函数. (1)利用定义法判断函数的奇偶性.(2)由偶次根式被开方数大于等于0求出cos x 的值以及x 的值,最后判断函数的奇偶性.题型三 三角函数的奇偶性与周期性的综合应用[经典例题]例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值.【解析】 因为f (x )的最小正周期是π, 所以f ⎝⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3, 因为f (x )是R 上的偶函数, 所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.利用周期性 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫53π-2π=f ⎝ ⎛⎭⎪⎫-π3,再利用奇偶性f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3,最后代入求值.方法归纳三角函数周期性与奇偶性的解题策略(1)探求三角函数的周期,常用方法是公式法,即将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再利用公式求解.(2)判断函数y =A sin(ωx +φ)或y =A cos(ωx +φ)是否具备奇偶性,关键是看它能否通过诱导公式转化为y =A sin ωx (A ω≠0)或y =A cos ωx (A ω≠0)其中的一个.跟踪训练3 若本例中函数的最小正周期变为π2,其他条件不变,求f ⎝ ⎛⎭⎪⎫-176π的值.解析:因为f (x )的最小正周期是π2,所以f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6=f ⎝ ⎛⎭⎪⎫-6×π2+π6=f ⎝ ⎛⎭⎪⎫π6=sin π6=12利用周期性f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6=f ⎝ ⎛⎭⎪⎫π6代入求值.课时作业 34一、选择题1.函数y =-5cos(3x +1)的最小正周期为( ) A.π3B .3π C.2π3 D.3π2解析:该函数的最小正周期T =2πω=2π3.答案:C2.函数f (x )=2sin 2x 的奇偶性为( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数解析:因为f (x )的定义域是R ,且f (-x )=2sin 2(-x )=-2sin 2x =-f (x ), 所以函数f (x )为奇函数. 答案:A3.函数f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-2 010x +1 005π=-sin ⎝ ⎛⎭⎪⎫π2-2 010x =-cos 2 010x , f (x )定义域为R ,且f (-x )=-cos(-2 010x )=-cos 2010x =f (x ), 所以函数f (x )为偶函数. 答案:B4.函数f (x )=x sin ⎝⎛⎭⎪⎫π2-x ( )A .是奇函数B .是非奇非偶函数C .是偶函数D .既是奇函数又是偶函数解析:由题,得函数f (x )的定义域为R ,关于原点对称,又f (x )=x sin ⎝⎛⎭⎪⎫π2-x =x cosx ,所以f (-x )=(-x )·cos(-x )=-x cos x =-f (x ),所以函数f (x )为奇函数.答案:A 二、填空题5.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.解析:x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数.答案:奇6.函数y =cos (1-x )π2的最小正周期是________.解析:∵y =cos ⎝ ⎛⎭⎪⎫-π2x +π2,∴T =2ππ2=2π×2π=4.答案:47.函数f (x )是以2为周期的函数,且f (2)=3,则f (8)=________. 解析:∵f (x )的周期为2, ∴f (x +2)=f (x ),∴f (8)=f (2+3×2)=f (2)=3.答案:3 三、解答题8.求下列函数的最小正周期: (1)y =cos ⎝ ⎛⎭⎪⎫-2x +π6;(2)y =|sin x 2|. 解析:(1)利用公式T =2π|ω|,可得函数y =cos ⎝⎛⎭⎪⎫-2x +π6的最小正周期为T =2π|-2|=π. (2)易知函数y =sin x 2的最小正周期为T =2π12=4π,而函数y =⎪⎪⎪⎪⎪⎪sin x 2的图象是由函数y =sin x 2的图象将在x 轴下方部分翻折到上方后得到的,此时函数周期减半,即y =⎪⎪⎪⎪⎪⎪sin x 2的最小正周期为2π.9.判断下列函数的奇偶性. (1)f (x )=3cos 2x ;(2)f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2;(3)f (x )=x ·cos x . 解析:(1)因为x ∈R ,f (-x )=3cos(-2x )=3cos 2x =f (x ),所以f (x )=3cos 2x 是偶函数. (2)因为x ∈R ,f (x )=sin ⎝⎛⎭⎪⎫3x 4+3π2=-cos 3x 4,所以f (-x )=-cos 3(-x )4=-cos 3x 4=f (x ),所以函数f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2是偶函数.(3)因为x ∈R ,f (-x )=-x ·cos(-x )=-x ·cos x =-f (x ), 所以f (x )=x cos x 是奇函数. [尖子生题库]10.已知函数y =12cos x +12|cos x |.(1)画出函数的图象;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.解析:(1)y =12cos x +12|cos x |=⎩⎪⎨⎪⎧cos x ,x ∈⎝⎛⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),0,x ∈⎝ ⎛⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ),函数图象如图所示.(2)由图象知这个函数是周期函数,且最小正周期是2π.。

新教材高中数学第五章三角函数 正切函数的性质与图象学案含解析新人教A版必修第一册

新教材高中数学第五章三角函数 正切函数的性质与图象学案含解析新人教A版必修第一册

5.4.3 正切函数的性质与图象[目标] 1.能够作出y =tan x 的图象;2.理解并记住正切函数的性质;3.会利用正切函数的图象与性质解决相关问题.[重点] 正切函数的性质.[难点] 正切函数的图象、性质及其应用.知识点一 正切函数y =tan x 的图象[填一填]正切函数y =tan x 的图象叫做正切曲线.[答一答]1.正切函数y =tan x 的图象与x =k π+π2,k ∈Z 有公共点吗?提示:没有.正切曲线是由被互相平行的直线x =k π+π2(k ∈Z )隔开的无穷多支曲线组成的.2.直线y =a 与y =tan x 的图象相邻两交点之间的距离是多少? 提示:由图象结合正切函数的周期性可知,两交点之间的距离为π. 3.观察正切函数曲线,写出满足下列条件的x 的集合. (1)满足tan x =0的集合为{x |x =k π,k ∈Z }. (2)满足tan x <0的集合为{x |k π-π2<x <k π,k ∈Z }.(3)满足tan x >0的集合为{x |k π<x <k π+π2,k ∈Z }.知识点二 正切函数y =tan x 的性质[填一填](1)定义域是{x |x ≠k π+π2,k ∈Z }.(2)值域是R ,即正切函数既无最大值,也无最小值. (3)周期性:正切函数是周期函数,最小正周期是π. (4)奇偶性:正切函数是奇函数.(5)单调性:正切函数在开区间(k π-π2,k π+π2),k ∈Z 内是增函数.(6)对称性:正切函数的图象关于原点对称,正切曲线都是中心对称图形,其对称中心坐标是(k π2,0)(k ∈Z ),正切函数无对称轴.[答一答]4.y =tan x 在定义域上是增函数吗?提示:y =tan x 在每个开区间(-π2+k π,π2+k π),k ∈Z 内都是增函数,但在整个定义域上不具有单调性.5.正切函数图象与x 轴有无数个交点,交点的坐标为(k π,0)(k ∈Z ),因此有人说正切函数图象的对称中心为(k π,0)(k ∈Z ),这种说法对吗?提示:不对.正切函数的图象不仅仅关于点(k π,0)对称,还关于点(π2+k π,0)(k ∈Z )对称,因此正切函数y =tan x 的对称中心为(k π2,0)(k ∈Z ).类型一 利用正切函数图象求定义域及值域[例1] 求下列函数的定义域和值域: (1)y =tan ⎝⎛⎭⎫x +π4;(2)y =3-tan x .[解] (1)由x +π4≠k π+π2,k ∈Z 得,x ≠k π+π4,k ∈Z .所以函数y =tan ⎝⎛⎭⎫x +π4的定义域为{x ⎪⎪⎭⎬⎫x ≠k π+π4,k ∈Z ,其值域为(-∞,+∞). (2)由3-tan x ≥0得,tan x ≤ 3.结合y =tan x 的图象可知,在⎝⎛⎭⎫-π2,π2上,满足tan x ≤3的角x 应满足-π2<x ≤π3,所以函数y =3-tan x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪k π-π2<x ≤k π+π3,k ∈Z ,其值域为[0,+∞).(1)求与正切函数有关的函数定义域要列出使各部分都有意义的不等式(组),然后求出x 的范围.(2)求值域要用换元的思想,把tan x 看作可取任意实数的自变量.[变式训练1] (1)求函数y =tan x +1+lg(1-tan x )的定义域. (2)求函数y =sin x +tan x ,x ∈⎣⎡⎦⎤-π4,π4的值域. 解:(1)由题意得⎩⎪⎨⎪⎧tan x +1≥0,1-tan x >0,即-1≤tan x <1.∵在⎝⎛⎭⎫-π2,π2内,满足上述不等式的x 的取值范围是⎣⎡⎭⎫-π4,π4.又y =tan x 的周期为π,∴所求x 的取值范围是⎣⎡⎭⎫k π-π4,k π+π4,k ∈Z ,即为此函数的定义域. (2)y 1=sin x ,y 2=tan x 均满足在区间⎣⎡⎦⎤-π4,π4上单调递增,∴函数y =sin x +tan x 也满足在区间⎣⎡⎦⎤-π4,π4上单调递增, ∴此函数在⎣⎡⎦⎤-π4,π4上的值域为⎣⎡⎦⎤-22-1,22+1. 类型二 正切函数的周期性[例2] 求函数y =3tan ⎝⎛⎭⎫4x +π4与函数f (x )=tan x +|tan x |的最小正周期. [解] 函数y =3tan ⎝⎛⎭⎫4x +π4的最小正周期为T =π4; f (x )=tan x +|tan x |=⎩⎨⎧0,x ∈⎝⎛⎭⎫k π-π2,k π,2tan x ,x ∈⎣⎡⎭⎫k π,k π+π2,k ∈Z ,作出f (x )=tan x +|tan x |的简图,如图所示,易得函数f (x )=tan x +|tan x |的最小正周期T =π.一般地,函数y =A tan (ωx +φ)+B (A ≠0,ω>0)的最小正周期为T =πω,常常使用此公式来求周期,也可以借助函数图象求周期.[变式训练2] 若函数y =tan ⎝⎛⎭⎫3ax -π3(a ≠0)的最小正周期为π2,则a =±23. 解析:T =π|3a |=π2,所以a =±23.类型三 正切函数的单调性及应用[例3] (1)求函数y =tan ⎝⎛⎭⎫12x -π4的单调区间; (2)比较tan ⎝⎛⎭⎫-13π4与tan ⎝⎛⎭⎫-12π5的大小. [解] (1)由k π-π2<12x -π4<k π+π2,k ∈Z 得,2k π-π2<x <2k π+3π2,k ∈Z .所以函数y =tan ⎝⎛⎭⎫12x -π4的单调递增区间是⎝⎛⎭⎫2k π-π2,2k π+3π2,k ∈Z ,无单调递减区间. (2)由于tan ⎝⎛⎭⎫-13π4=tan ⎝⎛⎭⎫-3π-π4=tan ⎝⎛⎭⎫-π4=-tan π4, tan ⎝⎛⎭⎫-12π5=-tan ⎝⎛⎭⎫2π+2π5=-tan 2π5, 又0<π4<2π5<π2,而y =tan x 在⎝⎛⎭⎫0,π2上单调递增, 所以tan π4<tan 2π5,所以-tan π4>-tan 2π5,即tan ⎝⎛⎭⎫-13π4>tan ⎝⎛⎭⎫-12π5.(1)求函数y =A tan (ωx +φ)的单调性时可将ωx +φ看成一个整体,利用y =tan x 的单调性求解,但需注意A 、ω的正负性对函数单调性的影响.(2)比较正切值的大小时可利用诱导公式将角转化到区间⎝⎛⎭⎫-π2,π2内,再利用正切函数的单调性比较.[变式训练3] (1)函数y =3tan ⎝⎛⎭⎫π6-x 4的单调递减区间是⎝⎛⎭⎫4k π-4π3,4k π+8π3,k ∈Z . (2)比较大小:tan ⎝⎛⎭⎫-7π4>tan ⎝⎛⎭⎫-95π.解析:(1)y =3tan ⎝⎛⎭⎫π6-x 4=-3tan ⎝⎛⎭⎫x 4-π6,由k π-π2<x 4-π6<k π+π2,k ∈Z ,得4k π-4π3<x <4k π+8π3,k ∈Z . 所以y =3tan ⎝⎛⎭⎫π6-x 4的单调递减区间为⎝⎛⎭⎫4k π-4π3,4k π+8π3,k ∈Z . (2)∵tan ⎝⎛⎭⎫-74π=-tan ⎝⎛⎭⎫2π-π4=tan π4, tan ⎝⎛⎭⎫-95π=-tan ⎝⎛⎭⎫2π-π5=tan π5, 又0<π5<π4<π2,y =tan x 在⎝⎛⎭⎫0,π2内单调递增, ∴tan π5<tan π4,∴tan ⎝⎛⎭⎫-74π>tan ⎝⎛⎭⎫-95π. 类型四 正切函数图象与性质的综合应用[例4] 设函数f (x )=tan(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2,已知函数y =f (x )的图象与x 轴相邻两个交点的距离为π2,且图象关于点M ⎝⎛⎭⎫-π8,0对称. (1)求f (x )的解析式; (2)求f (x )的单调区间;(3)求不等式-1≤f (x )≤3的解集.[解] (1)由题意,知函数f (x )的最小正周期T =π2,即π|ω|=π2.因为ω>0,所以ω=2. 从而f (x )=tan(2x +φ).因为函数y =f (x )的图象关于点M ⎝⎛⎭⎫-π8,0对称,所以2×⎝⎛⎭⎫-π8+φ=k π2,k ∈Z , 即φ=k π2+π4,k ∈Z .因为0<φ<π2,所以φ=π4.故f (x )=tan ⎝⎛⎭⎫2x +π4. (2)令-π2+k π<2x +π4<π2+k π,k ∈Z ,得-3π4+k π<2x <k π+π4,k ∈Z .即-3π8+k π2<x <π8+k π2,k ∈Z .所以函数的单调递增区间为⎝⎛-3π8+k π2,⎭⎫π8+k π2,k ∈Z ,无单调递减区间.(3)由(1),知f (x )=tan ⎝⎛⎭⎫2x +π4. 由-1≤tan ⎝⎛⎭⎫2x +π4≤3, 得-π4+k π≤2x +π4≤π3+k π,k ∈Z .即-π4+k π2≤x ≤π24+k π2,k ∈Z .所以不等式-1≤f (x )≤3的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-π4+k π2≤x ≤π24+k π2,k ∈Z .(1)正切函数y =tan x 与x 轴相邻交点间的距离为一个周期;(2)y =tan x 的对称中心为⎝⎛⎭⎫k π2,0,不但包含y =tan x 的零点,而且包括直线x =π2+k π(k ∈Z )与x 轴的交点. [变式训练4] 已知函数y =tan(2x +θ)图象的一个对称中心为点⎝⎛⎭⎫π3,0,若-π2<θ<π2,求θ的值.解:因为函数y =tan x 图象的对称中心为点⎝⎛⎭⎫k π2,0,其中k ∈Z ,所以2x +θ=k π2,令x =π3,得θ=k π2-2π3,k ∈Z .又-π2<θ<π2,当k =1时,θ=-π6,当k =2时,θ=π3.所以θ=-π6或π3.1.若tan x ≥0,则( D ) A .2k π-π2<x <2k π(k ∈Z )B .x ≤(2k +1)π(k ∈Z )C .2k π-π2<x ≤k π(k ∈Z )D .k π≤x <k π+π2(k ∈Z )2.函数y =2tan ⎝⎛⎭⎫3x -π4的一个对称中心是( C ) A .⎝⎛⎭⎫π3,0 B .⎝⎛⎭⎫π6,0 C .⎝⎛⎭⎫-π4,0 D .⎝⎛⎭⎫-π2,0 解析:由3x -π4=k π2,得x =k π6+π12,令k =-2得x =-π4.故选C .3.函数y =1tan (π-x )是( A )A .奇函数B .偶函数C .既是奇函数也是偶函数D .非奇非偶函数4.使函数y =2tan x 与y =cos x 同时为单调增的区间是⎣⎡⎭⎫-π+2k π,-π2+2k π(k ∈Z )和⎝⎛⎦⎤-π2+2k π,2k π(k ∈Z ).解析:由y =2tan x 与y =cos x 的图象知,同时为单调增的区间为⎣⎡⎭⎫-π+2k π,-π2+2k π(k ∈Z )和⎝⎛⎦⎤-π2+2k π,2k π(k ∈Z ). 5.求函数y =tan(π-x ),x ∈⎝⎛⎭⎫-π4,π3的值域. 解:y =tan(π-x )=-tan x ,在⎝⎛⎭⎫-π4,π3上为减函数,所以值域为(-3,1).——本课须掌握的两大问题1.正切函数的图象正切函数有无数多条渐近线,渐近线方程为x =k π+π2,k ∈Z ,相邻两条渐近线之间都有一支正切曲线,且单调递增.2.正切函数的性质(1)正切函数y =tan x 的定义域是{x |x ≠k π+π2,k ∈Z },值域是R .(2)正切函数y =tan x 的最小正周期是π,函数y =A tan(ωx +φ)(Aω≠0)的周期为T =π|ω|. (3)正切函数在⎝⎛⎭⎫-π2+k π,π2+k π(k ∈Z )上单调递增,不能写成闭区间.正切函数无单调递减区间.。

高一【数学(人教A版)】三角函数的概念-教学设计

高一【数学(人教A版)】三角函数的概念-教学设计

课程基本信息课例编号学科数学年级高一学期上课题三角函数的概念教科书书名:普通高中教科书数学必修第一册出版社:人民教育出版社出版日期:2019年6月教学人员姓名单位授课教师指导教师教学目标教学目标:1. 初步理解借助单位圆上点的坐标定义三角函数,理解任意角的三角函数的概念;2.在三角函数定义的过程中进一步认知函数的本质,体会数形结合思想方法的作用;3.经历三角函数概念的抽象过程,提升学生思维的严谨性,发展数学抽象素养.教学重点:任意角的三角函数概念.教学难点:用单位圆上点的坐标定义三角函数.教学过程时间教学环节主要师生活动创设情景,导入新课问题引入:在客观世界中存在大量循环往复、周而复始的周期现象,比如日出日落、钟摆运动等,匀速圆周运动是这类现象的代表,在前面的学习中我们已经知道函数是描述客观世界变化规律的重要数学模型,那么匀速圆周运动的运动规律该用什么函数模型刻画呢?如右图所示,圆O上的点P以A为起点做逆时针旋转,在把角的范围推广到任意角后,我们可以借助角α的大小变化刻画点P的位置变化.根据弧度制的定义,角α的大小与圆O的半径无关,我们能否建立一个函数模型,刻画点P的位置变化情况?【设计意图】开门见山引出研究内容、过程与研究方法,指明点P随着角度的变化而变化,明确构建函数模型的目标,让学生初步了解本节课学习的方向,为具体研究指明方向.引导探究,形成新知分析要解决这个问题,我们需要什么工具?①建立函数模型,要利用直角坐标系.②根据任意角的定义,需要借助单位圆.如图,以单位圆的圆心O为坐标原点,以射线OA为x轴的非负半轴,建立直角坐标系,点A的坐标是()1,0,点P的坐标是(),x y. 把该问题抽象为一个质点P从点A()1,0开始在单位圆上的运动.问题1:这个运动过程中的有哪些变量,判断它们之间是否具有函数关系.如果有,能否写出函数解析式?(1)点P在单位圆上运动过程中涉及的变量有:点P的横坐标x、纵坐标y,弧长l,旋转角度α;(2)判断变量:,,,x y lα间的哪两个变量能否构成函数关系?过过点P作PM⊥x轴于M,根据勾股定理可知221OM PM+=,即221x y+=,显然变量x、y间的对应关系不符合函数定义.在弧度制学习中我们已经知道变量,lα之间的关系,并且变量,x y与α的关系和,x y与l的关系等价,所以我们研究变量,x y与α的关系.问题2: 若角α终边与单位圆交于点P,如何求点P的坐标呢?追问1:当我们遇到一般性问题应该如何研究?特殊化:不妨设3απ=,此时点P在第一象限, 构造直角三角形,过点P向x轴引垂线交x轴于M,Rt OMP∆中,可得12OM=,32PM=,即12x=,32y=,所以点P的坐标为13,22⎛⎫⎪⎪⎝⎭.追问2:当23απ=时,点P的坐标是什么?同样,当23απ=时,点P在第二象限, 可得12x=-,32y=,所以点P的坐标为13,22⎛⎫- ⎪ ⎪⎝⎭.追问3:任意给定一个角α,点P 的坐标唯一确定吗?因为单位圆的半径不变,点P 的坐标只与角α的大小有关,当角α确定时,点P 的坐标是(),x y 也唯一确定.追问4:在展示的运动变化的过程中,观察角α的终边与单位圆的交点P 的坐标,有什么发现?能否运用函数的语言刻画这种对应关系呢?对任意一个实数α,它的终边OP 与单位圆的交点P 的横、纵坐标x 、y 都是唯一确定的,有如下对应关系:任意角α(弧度)→ 唯一实数x ; ①任意角α(弧度)→ 唯一实数y . ②一般地,任意给定一个角R α∈,它的终边OP 与单位圆交点P 的坐标,无论是横坐标x ,还是纵坐标y ,都是唯一确定的.所以,点P 的横坐标x 、纵坐标y 都是角α的函数.【设计意图】以函数的对应关系为指向,使学生确认相应的对应关系满足函数的定义,角的终边与单位圆的交点的横、纵坐标都是圆心角α (弧度)的函数,为引出三角函数的定义做好铺垫.下面给出这些函数的定义:如图,设α是一个任意角,R α∈,它的终边OP 与单位圆相交于点(),P x y ,那么把点P 的纵坐标y 叫做α的正弦函数,记做sin α,即sin y α=;把点P 的横坐标x 叫做α的余弦函数,记做cos α,即cos x α=;把点P 的纵坐标与横坐标的比值y x叫做α的正切函数,记做tan α,即()tan 0y x xα=≠. 问题3: 正弦函数、余弦函数、正切函数的对应关系各是什么?实数α(弧度)对应于点P 的纵坐标y →正弦函数;实数α(弧度)对应于点P 的横坐标x →余弦函数;当点P 的横坐标为0时,角α的终边在y 轴上,此时()2k k Z απ=+π∈,所以tan y xα=无意义.用新知标为13,22⎛⎫-⎪⎪⎝⎭,所以53515sin,cos,tan 3.32323πππ=-==-【设计意图】通过概念的简单应用,明确用定义求三角函数值的基本步骤,进一步理解定义的内涵.例2 如图,设α是一个任意角,它的终边上任意一点P(不与原点O重合)的坐标为(),x y,点P与原点的距离为r.求证:sinyrα=,cosxrα=,tanyxα=引导学生分析问题:①你能根据三角函数的定义作图表示sinα和cosα吗?②在你所作的图形中,yr,xr,yx表示什么?你能找到它们与任意角α的三角函数的关系吗?解:设角α的终边与单位圆交于点0P()00,x y,分别过点,P P作x轴的垂线00,PM P M,垂足分别为,M M,则000,PM y P M y==,00,,OM x OM x==OMP∆11OM P∆.所以得到001P M PMr=,即yyr=.因为y与y同号,所以yyr=,即sinyrα=.同理可证:cosxrα=,tanyxα=.【设计意图】通过问题引导,使学生找到OMP∆、11OM P∆,并利用它们的相似关系,根据三角函数的定义得到证明.追问:例2实际上给出了任意角的三角函数的另外一种定义,而且这种定义与已有的定义是等价的,能否用严格任意角三角函数的概念是三角函数知识的基础,我们以后要学习的有关三角函数其他知识都建立在我们对三角函数的概念的理解与认识上,所以同学们一定要认真学习和体会今天所学的知识.三角函数是如何定义的?我们除了学习单位圆定义,还有什么定义方法?①单位圆定义法:建立直角坐标系,使角α的顶点与坐标原点重合,终边与单位圆的交点为P , 即可由点P 坐标(),x y 得到三角函数定义.正弦函数:()sin y x x R =∈;余弦函数:()cos y x x R =∈;正切函数:tan y x =,2x x k k Z π⎧⎫≠+π∈⎨⎬⎩⎭. ②终边定义法: 建立直角坐标系,对于任意角α,角α终边上的任意一点P 的坐标为(),x y ,它到原点O 的距离为22r x y =+,那么sin y r α=,cos x r α= ,tan y xα=. 在我们研究三角函数概念的过程中,你体会到了什么数学思想方法?在任意角的三角函数的概念建构的过程中,我们运用了转化与化归、数形结合、函数思想,这些思想方法在我们今后的学习中非常重要,我们一定认真体会.。

人教版A高中数学必修第一册5.2.1 三角函数的概念 教学设计(1)

人教版A高中数学必修第一册5.2.1 三角函数的概念 教学设计(1)

5.2.1 三角函数的概念本节课选自《普通高中课程标准数学教科书-必修第一册》(人教A版)第五章《三角函数》,本节课是第3课时,这是节关于任意角的三角函数的概念课.三角函数是高中范围内继指数函数、对数函数和幂函数之后学习的函数,是函数的一个下位概念,与指对数函数、幂函数属于同一抽象( 概括)层次。

它是一种重要的基本初等函数,是解决实际问题的重要工具,也是学习数学中其他知识内容的基础。

在初中,学生已学过锐角三角函数,知道直角三角形中锐角三角函数等于相应边长的比值。

在此基础上,随着角的概念的推广,引入弧度制,相应地将锐角三角函数推广为任意角的三角函数,此时它与三角形已经没有什么关系了。

任意角的三角函数是研究一个实数集( 角的弧度数构成的集合)到另一个实数集( 角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系。

认识它需要借助单位圆、角的终边以及两者的交点这些几何图形的直观帮助,这里体现了数形结合的思想,由锐角三角函数到坐标表示的锐角三角函数,再到单位圆上的点的坐标表示的锐角三角函数,直至得到任意角的三角函数的定义,体现了合情推理的思想方法。

本节课将围绕任意角三角函数的概念展开,任意角三角函数的概念是本节课的重点,能够利用单位圆认识这个概念是解决教学重点的关键。

A.借助单位圆理解任意角三角函数的定义;B.根据定义认识函数值的符号,理解诱导公式一;C.能初步运用定义分析和解决与三角函数值有关的一些简单问题;D.体验三角函数概念的产生、发展过程,领悟直角坐标系的工具功能,丰富数形结1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义;2.教学难点:任意角的三角函数概念的建构过程。

多媒体一、复习回顾,温故知新 1. 1弧度角的定义【答案】等于半径长的圆弧所对的圆心角 2. 角度制与弧度制的换算:【答案】︒︒︒≈==30.571801180)(弧度,ππ3. 关于扇形的公式【答案】.21)3(;21)2(;12lR S R S R l ===αα)( 4.在初中我们是如何定义锐角三角函数的? 【答案】.tan ,cos ,sin abc a c b ===ααα二、探索新知探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。

三角函数的应用教案(1 高一上学期数学人教A版(2019)必修第一册

三角函数的应用教案(1 高一上学期数学人教A版(2019)必修第一册

第五章三角函数5.7 三角函数的应用(第2 课时)【教学内容】学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”。

【教学目标】1.了解三角函数是描述周期变化现象的重要函数模型;2.初步学会使用数据分析或图像特征进行一些简单的函数模型求解;3.会使用三角函数模型解决简单的实际问题。

【教学重难点】教学重点:用三角函数模型解决具有周期变化的实际问题.教学难点:对问题实际意义的数学解释,从实际问题中抽象出三角函数模型.【教学过程】一、导入新课思考:生活中有什么事情是周而复始发生的?举例:小结:从上述例子中,可以得知生活中有很多重复出现的现象,我们尝试利用某种函数模型去研究当中的规律,帮助我们做出更加科学的决策。

请问你认为目前我们所学的什么函数模型适用于上述规律呢?函数模型;因为它具有性质。

二、课堂探究例题 1 如图,我国某地一天从 6—14 时的温度变化曲线近似满足函数y =A sin(ωx +ϕ) +b ( A > 0,ω> 0, ϕ<π)(1)求这一天 6—14 时的最大温差;(2)写出这段曲线的函数解析式。

解:(1)由图可知,这段时间的最大温差是20℃(2)由图可以看出,从 6—14 时的图像是函数小结:(1)振幅A=b=如何求函数中的ω和ϕ;(2)所求函数模型只能近似刻画某个区间的变化规律。

例题 2:货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节某天的时刻与水深关系的预报.(1)选用一个函数来近似描述这一天该港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4 米,安全条例规定至少要有1.5 米的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4 米,安全间隙为1.5 米,该船在2:00 开始卸货,吃水深度以每小时0.3 米的速度减少,如果这条船停止卸货后需0.4 小时才能驶到深水域,那么该船在什么时间必须停止卸货,将船驶向较深的水域?问题探究 1:请同学们仔细观察表格中的数据,你能够从中得到一些什么信息?小组合作发现,代表发言。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019—2020学年新人教A版必修一三角函数的周期性学案
一、周期函数的定义
1.周期函数的定义:
一般地,对于函数f(x),如果存在一个非零的常数T,使得定义域内的每一个x值,都满足f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.2.最小正周期:
对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期.
3.正弦函数、余弦函数的周期:
正弦函数和余弦函数都是周期函数,2kπ(k∈Z且k≠0)都是它们的周期,它们的最小正周期都是2π。

思考1:单摆运动、时钟的圆周运动、四季变化等,都具有周期性变化的规律,对于正弦、余弦函数是否也具有周期性?请说明你的理由.
[提示]由单位圆中的三角函数线可知,正弦、余弦函数值的变化呈现出周期现象.每当角增加(或减少)2π,所得角的终边与原来角的终边相同,故两角的正弦、余弦函数值也分别相同.即有sin(2π+x)=sin x.故正弦函数、余弦函数也具有周期性.思考2:所有的周期函数都有最小正周期吗?
[提示]并不是所有的周期函数都有最小正周期,譬如,常数函数f(x)=C,任一个正实数都是它的周期,因而不存在最小正周期.
二、正、余弦函数的周期
函数y=A sin(ωx+φ)及y=A cos(ωx+φ)的周期:
一般地,函数y=A sin(ωx+φ)及y=A cos(ωx+φ)(其中A,ω,φ为常数,且A≠0,ω>0)的周期T=错误!。

思考3:6π是函数y=sin x(x∈R)的一个周期吗?
[提示]是.
1.思考辨析
(1)周期函数都一定有最小正周期.()
(2)周期函数的周期只有唯一一个.( )
(3)周期函数的周期可以有无数多个.()
[答案](1)×(2)×(3)√
2.函数y=错误!sin错误!的周期是________.
2[T=错误!=2。


3.函数f(x)=-2cos(4x+30°)的周期是________.
错误![T=错误!=错误!.]
求三角函数的周期
【例1】求下列函数的最小正周期.
(1)f(x)=2sin错误!;
(2)f(x)=2cos错误!;
(3)y=|sin x|;
(4)f(x)=-2cos错误!(a≠0).
思路点拨:利用周期函数的定义或直接利用周期公式求解.[解](1)T=错误!=6π,∴最小正周期为6π.
(2)T=错误!=错误!π,∴最小正周期为错误!。

(3)由y=sin x的周期为2π,可猜想y=|sin x|的周期应为π.验证:∵|sin(x+π)|=|-sin x|=|sin x|,
∴由周期函数的定义知y=|sin x|的最小正周期是π.
(4)T=2π
|2a|
=错误!,∴最小正周期为错误!.
利用公式求y=A sin(ωx+φ)或y=A cos(ωx+φ)的最小正周期时,要注意ω的正负,公式可记为
已知f(x)=cos错误!的最小正周期为错误!,则ω=______。

±10[由题意可知错误!=错误!,ω=±10.]
周期性的应用
[探究问题]
1.若函数f(x)满足f(x+a)=错误!(f(x)≠0,a>0),则f(x)是否是周期函数?若是,求其最小正周期.
提示:∵f(x+2a)=f[(x+a)+a]=错误!=错误!=f(x),
∴T=2a,即f(x)是周期函数,且最小正周期为2a.
2.若f(x)满足f(x+a)=-f(x)(a>0),则f(x)是周期函数吗?若是,求其最小正周期.
提示:∵f(x+2a)=f[(x+a)+a]=-f(x+a)
=-[-f(x)]=f(x),
∴f(x)的周期为2a。

【例2】定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈错误!时,f(x)=sin x,求f错误!的值.
思路点拨:错误!错误!错误!
错误!错误!
[解]∵f(x)的最小正周期是π,
∴f错误!=f错误!=f错误!。

∵f(x)是R上的偶函数,
∴f错误!=f错误!=sin错误!=错误!,
∴f错误!=错误!。

1.(变条件)将本例中的条件“偶函数”改为“奇函数”,其余不变,求f错误!的值.[解]∵f(x)的最小正周期为π,
∴f错误!=f错误!=f错误!,
∵f(x)是R上的奇函数,∴f错误!=-f错误!=-sin 错误!=-错误!,∴f错误!=-错误!。

2.(变结论)本例条件不变,求f错误!的值.
[解]∵f(x)的最小正周期为π,
∴f错误!=f错误!=f错误!,
∵f(x)是R上的偶函数,
∴f错误!=f错误!=sin 错误!=错误!。

∴f错误!=错误!.
函数的周期性与其它性质相结合是一类热点问题,一般在条件中,周期性起到变量值转化作用,也就是将所求函数值转化为已知求解。

教师独具
1.本节课重点是理解三角函数的周期性,难点是求正弦函数、余弦函数的周期.
本节课重点掌握求三角函数周期的方法
2.(1)定义法,即利用周期函数的定义求解.
(2)公式法,对形如y=A sin(ωx+φ)或y=A cos(ωx+φ)(A,ω,φ是常数,A≠0,ω≠0)的函数,T=错误!。

(3)观察法,即通过观察函数图象求其周期.
三种方法各有所长,要根据函数式的结构特征,选择适当的方法求解.
1.函数y =3sin 错误!的最小正周期为( )
A 。

错误!B.错误!
C .π
D .2π C [T =错误!=π.]
2.若函数y =cos 错误!(ω>0)的最小正周期是π,则ω=________. 2 [T =错误!=π,ω=±2.∵ω>0,∴ω=2。


3.若f (x )是以2为周期的函数,且f (2)=2,则f (4)=________。

2 [f (4)=f (2+2)=f (2)=2.]
4.若f (x )是以π2
为周期的奇函数,且f 错误!=1,求f 错误!的值. [解] ∵f (x )是以错误!为周期的奇函数,
∴f 错误!=-f 错误!
=-f 错误!=-f 错误!
=f 错误!=f 错误!=-f 错误!,
又∵f 错误!=1,
∴f 错误!=-f 错误!=-1。

相关文档
最新文档