数学人教A版高中必修1任意角的三角函数导学案

合集下载

人教A版高中数学必修第一册 同步学案5-1-1 任意角

人教A版高中数学必修第一册 同步学案5-1-1 任意角

第五章三角函数5.1 任意角和弧度制5.1.1 任意角1.了解任意角的概念及角的分类.2.理解象限角的概念.3.理解终边相同的角的概念,并能熟练写出终边相同的角的集合表示.1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,射线的端点是圆心O,它从起始位置OA按逆时针方向旋转到终止位置OP,形成一个角α,射线OA,OP分别是角α的始边和终边.“角α”或“∠α”可以简记成“α”.(3)角的分类(4)相等角与相反角①设角α由射线OA绕端点O旋转而成,角β由射线O′A′绕端点O′旋转而成.如果它们的旋转方向相同且旋转量相等,那么就称α=β.②我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为-α.③设α,β是任意两个角.我们规定,把角α的终边旋转角β,这时终边所对应的角是α+β.④角的减法可以转化为角的加法.2.象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.温馨提示:对终边相同的角的理解(1)α为任意角,“k∈Z”这一条件不能漏.(2)k·360°与α中间用“+”连接,如k·360°-α可理解成k·360°+(-α).1.在坐标系中,将y轴的正半轴绕坐标原点顺时针旋转到x轴的正半轴形成的角为90°,这种说法是否正确?[答案]不正确.在坐标系中,将y轴的正半轴绕坐标原点旋转到x轴的正半轴时,是按顺时针方向旋转的,故它形成的角为-90°2.初中我们学过对顶角相等.依据现在的知识试判断一下图中角α,β是否相等?[答案]不相等.角α为逆时针方向形成的角,α为正角;角β为顺时针方向形成的角,β为负角3.判断正误(正确的打“√”,错误的打“×”)(1)当角的始边和终边确定后,这个角就确定了.( )(2)-30°是第四象限角.( )(3)钝角是第二象限的角.( )(4)终边相同的角一定相等.( )(5)第一象限的角是锐角.( )[答案](1)×(2)√(3)√(4)×(5)×题型一任意角的概念【典例1】下列命题正确的是( )A.终边与始边重合的角是零角B.终边和始边都相同的两个角一定相等C.在90°≤β<180°范围内的角β不一定是钝角D.小于90°的角是锐角[思路导引] 对角的概念的理解关键是弄清角的终边与始边及旋转方向和大小.[解析]终边与始边重合的角还可能是360°,720°,…,故A错;终边和始边都相同的两个角可能相差360°的整数倍,如30°与-330°,故B错;由于在90°≤β<180°范围内的角β包含90°角,所以不一定是钝角,C正确;小于90°的角可以是0°,也可以是负角,故D错误.[答案] C理解与角的概念有关问题的关键关键在于正确理解象限角与锐角、直角、钝角、平角、周角等的概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧:判断结论正确需要证明,而判断结论不正确只需举一个反例即可.[针对训练]1.若将钟表拨慢10分钟,则时针转了______度,分针转了________度.[解析] 由题意可知,时针按逆时针方向转了10×360°12×60=5°,分针按逆时针方向转了10×360°60=60°.[答案] 5° 60°题型二 终边相同的角的表示【典例2】 已知角α=2020°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.[思路导引] 解题关键是理解与角α终边相同的角的表示形式.[解] (1)由2020°除以360°,得商为5,余数为220°.∴取k =5,β=220°,α=5×360°+220°.又β=220°是第三象限角,∴α为第三象限角.(2)与2020°终边相同的角为k·360°+2020°(k∈Z).令-360°≤k·360°+2020°<720°(k∈Z),解得-6109180≤k<-31118(k ∈Z). 所以k =-6,-5,-4.将k 的值代入k·360°+2020°中,得角θ的值为-140°,220°,580°.(1)求适合某种条件且与已知角终边相同的角的方法先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.(2)求终边落在直线上的角的集合的步骤①写出在0°~360°范围内相应的角;②由终边相同的角的表示方法写出角的集合;③根据条件能合并的一定要合并,使结果简洁.[针对训练]2.如图所示,求终边落在直线y=3x上的角的集合.[解]终边落在射线y=3x(x>0)上的角的集合是S1={α|α=60°+k·360°,k∈Z},终边落在射线y=3x(x≤0)上的角的集合是S2={α|α=240°+k·360°,k∈Z},于是终边落在直线y=3x上的角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180°,k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n∈Z}.题型三象限角的判断【典例3】已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[思路导引] 作出图形,根据象限角的定义确定.[解]作出各角,其对应的终边如图所示.(1)由图①可知-75°是第四象限角.(2)由图②可知855°是第二象限角.(3)由图③可知-510°是第三象限角.象限角的判断方法 (1)根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角;(2)根据终边相同的角的概念把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角.[针对训练]3.已知α是第二象限的角,则180°-α是第________象限的角.[解析] 由α是第二象限的角可得90°+k·360°<α<180°+k·360°(k∈Z),则180°-(180°+k·360°)<180°-α<180°-(90°+k·360°)(k∈Z),即-k·360°<180°-α<90°-k·360°(k ∈Z),所以180°-α是第一象限的角.[答案] 一题型四 角αn,nα(n∈N *)所在象限的确定 【典例4】 若α是第二象限角,则α2是第几象限的角? [思路导引] 已知角α是第几象限角,判断αn所在象限,主要方法是解不等式并对k 进行分类讨论,考查角的终边位置.[解] ∵α是第二象限角,∴90°+k·360°<α<180°+k·360°(k∈Z),∴45°+k·180°<α2<90°+k·180°(k∈Z). 解法一:①当k =2n(n ∈Z)时,45°+n·360°<α2<90°+n·360°(n∈Z),即α2是第一象限角; ②当k =2n +1(n ∈Z)时,225°+n·360°<α2<270°+n·360°(n∈Z),即α2是第三象限角. 故α2是第一或第三象限角.解法二:∵45°+k·180°表示终边为一、三象限角平分线的角,90°+k·180°(k∈Z)表示终边为y轴的角, ∴45°+k·180°<α2<90°+k·180°(k∈Z)表示如图中阴影部分图形.即α2是第一或第三象限角. [变式] (1)若本例条件不变,求角2α的终边的位置.(2)若本例中的α改为第一象限角,则2α,α2分别是第几象限角? [解] (1)∵α是第二象限角,∴k·360°+90°<α<k·360°+180°(k∈Z).∴k·720°+180°<2α<k·720°+360°(k∈Z).∴角2α的终边在第三或第四象限或在y 轴的非正半轴上.(2)因为α是第一象限角,所以k·360°<α<90°+k·360°,k ∈Z.所以2k·360°<2α<180°+2k·360°,k ∈Z.所以2α是第一或第二象限角,或是终边落在y 轴的正半轴上的角. 同理,k·180°<α2<45°+k·180°,k ∈Z. 当k 为偶数时,α2为第一象限角, 当k 为奇数时,α2为第三象限角.分角、倍角所在象限的判定思路(1)已知角α终边所在的象限,确定αn终边所在的象限用分类讨论法,要对k 的取值分以下几种情况进行讨论:k 被n 整除;k 被n 除余1;k 被n 除余2,…,k 被n 除余n -1.然后方可下结论.(2)已知角α终边所在的象限,确定nα终边所在的象限,可依据角α的范围求出nα的范围,再直接转化为终边相同的角即可.注意不要漏掉nα的终边在坐标轴上的情况.[针对训练]4.已知α是第一象限角,则角α3的终边可能落在________.(填写所有正确的序号) ①第一象限 ②第二象限 ③第三象限 ④第四象限[解析] ∵α是第一象限角,∴k·360°<α<k·360°+90°,k ∈Z, ∴k 3·360°<α3<k 3·360°+30°,k ∈Z. 当k =3m,m ∈Z 时,m·360°<α3<m·360°+30°, ∴角α3的终边落在第一象限. 当k =3m +1,m ∈Z 时,m·360°+120°<α3<m·360°+150°, ∴角α3的终边落在第二象限. 当k =3m +2,m ∈Z 时,m·360°+240°<α3<m·360°+270°, ∴角α3的终边落在第三象限,故选①②③. [答案] ①②③课堂归纳小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.把任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k,可以用观察法(α的绝对值较小),也可以用除法.3.已知角的终边范围,求角的集合时,先写出边界对应的一个角,再写出0°~360°内符合条件的角的范围,最后都加上k·360°,得到所求.1.下列说法正确的是( )A .三角形的内角一定是第一、二象限角B .钝角不一定是第二象限角C .终边与始边重合的角是零角D .钟表的时针旋转而成的角是负角[解析] A 错,若一内角为90°,则不属于任何象限;B 错,钝角一定是第二象限角;C 错,若角的终边作了旋转,则不是零角;D 对.[答案] D2.-215°是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析] 由于-215°=-360°+145°,而145°是第二象限角,故-215°也是第二象限角,选B.[答案] B3.已知α为第三象限角,则α2所在的象限是( ) A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限[解析] 由于k·360°+180°<α<k·360°+270°,k ∈Z,得k 2·360°+90°<α2<k 2·360°+135°,k ∈Z. 当k 为偶数时,α2为第二象限角; 当k 为奇数时,α2为第四象限角. [答案] D4.将-885°化为α+k·360°(0°≤α<360°,k ∈Z)的形式是________.[解析] 因为-885°÷360°=-3…195°,且0°≤α<360°,所以k =-3,α=195°,故-885°=195°+(-3)·360°.[答案] 195°+(-3)·360°5.在角的集合{α|α=k·90°+45°,k ∈Z}中,(1)有几种终边不相同的角?(2)若-360°<α<360°,则集合中的α共有多少个?[解] (1)在给定的角的集合中终边不相同的角共有四种,分别是与45°、135°、-135°、-45°终边相同的角.(2)令-360°<k·90°+45°<360°,得-92<k<72. 又∵k ∈Z,∴k =-4,-3,-2,-1,0,1,2,3,∴满足条件的角共有8个.课后作业(三十七)复习巩固一、选择题1.下列是第三象限角的是( )A .-110°B .-210°C .80°D .-13°[解析] -110°是第三象限角,-210°是第二象限角,80°是第一象限角,-13°是第四象限角.故选A.[答案] A2.与600°角终边相同的角可表示为( )A.k·360°+220°(k∈Z)B.k·360°+240°(k∈Z)C.k·360°+60°(k∈Z)D.k·360°+260°(k∈Z)[解析]与600°终边相同的角α=n·360°+600°=n·360°+360°+240°=(n+1)·360°+240°=k·360°+240°,n∈Z,k∈Z.[答案] B3.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B?C?A B.B?A?CC.D?(A∩C) D.C∩D=B[解析]显然第一象限角不是都小于90°,且小于90°的角不都在第一象限,故A,B错;0°不属于任何象限,故C错;锐角为小于90°而大于0°的角,∴C∩D=B,选D.[答案] D4.终边在直线y=-x上的所有角的集合是( )A.{α|α=k·360°+135°,k∈Z}B.{α|α=k·360°-45°,k∈Z}C.{α|α=k·180°+225°,k∈Z}D.{α|α=k·180°-45°,k∈Z}[解析]因为直线y=-x为二、四象限角平分线,所以角终边落到第四象限可表示为k·360°-45°=2k·180°-45°,k∈Z;终边落到第二象限可表示为k·360°-180°-45°=(2k-1)·180°-45°,k∈Z,综上可得终边在直线y=-x上的所有角的集合为{α|α=k·180°-45°,k∈Z}.[答案] D5.给出下列四个命题:①-75°角是第四象限角;②225°角是第三象限角;③475°角是第二象限角;④-315°角是第一象限角,其中真命题有( )A.1个B.2个C.3个D.4个[解析]①正确;②正确;③中475°=360°+115°,因为115°为第二象限角,所以475°也为第二象限角,正确;④中-315°=-360°+45°,因为45°为第一象限角,所以-315°也为第一象限角,正确.[答案] D二、填空题6.50°角的始边与x轴的非负半轴重合,把其终边按顺时针方向旋转3周,所得的角是________.[解析]顺时针方向旋转3周转了-(3×360°)=-1080°,又50°+(-1080°)=-1030°,故所得的角为-1030°.[答案]-1030°7.已知角α=-3000°,则与角α终边相同的最小正角是________.[解析]设与角α终边相同的角为β,则β=-3000°+k·360°,k∈Z,又因为β为最小正角,故取k=9,则β=-3000°+360°×9=240°.[答案]240°8.若角α与β的终边在一条直线上,则α与β的关系是______________________.[解析]因为α与β的终边在一条直线上,所以α与β相差180°的整数倍.[答案]α=β+k·180°,k∈Z三、解答题9.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-120°;(2)660°;(3)-950°08′.[解](1)∵-120°=240°-360°,∴在0°~360°范围内,与-120°角终边相同的角是240°角,它是第三象限的角.(2)∵660°=300°+360°,∴在0°~360°范围内,与660°角终边相同的角是300°角,它是第四象限的角.(3)∵-950°08′=129°52′-3×360°,∴在0°~360°范围内,与-950°08′终边相同的角是129°52′,它是第二象限的角.10.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).[解](1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.综合运用11.若角α,β的终边相同,则α-β的终边在( )A.x轴的非负半轴B.y轴的非负半轴C.x轴的非正半轴D.y轴的非正半轴[解析]∵角α,β终边相同,∴α=k·360°+β(k∈Z),∴α-β=k·360°(k∈Z),故α-β的终边在x轴的非负半轴上.[答案] A12.已知角2α的终边在x轴的上方,那么α是( )A.第一象限角B.第一、二象限角C.第一、三象限角D.第一、四角限角[解析]由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),∴α在第一象限;当k=2n+1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α在第一或第三象限.[答案] C13.已知角α的终边与角-690°的终边关于y轴对称,则角α=____________________.[解析]-690°=-720°+30°,则角α的终边与30°角的终边关于y轴对称,而与30°角的终边关于y轴对称的角可取150°,故α=k·360°+150°,k∈Z.[答案]k·360°+150°,k∈Z14.已知-990°<α<-630°,且α与120°角的终边相同,则α=________.[解析]∵α与120°角终边相同,故有α=k·360°+120°,k∈Z.又∵-990°<α<-630°,∴-990°<k·360°+120°<-630°,即-1110°<k·360°<-750°.当k=-3时,α=(-3)·360°+120°=-960°.[答案]-960°15.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.[解]由题意可知,α+β=-280°+k·360°,k∈Z,∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①∵α-β=670°+k·360°,k∈Z.∵α,β都是锐角,∴{0°<α<90°-90°<-β<0°, ∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.。

人教A版高中数学必修四 1.2.1《任意角的三角函数》导学案(1)

人教A版高中数学必修四 1.2.1《任意角的三角函数》导学案(1)

1.2.1 任意角的三角函数(1)导学案【学习目标】1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一). 【导入新课】【复习导入一】:初中锐角的三角函数是如何定义的?在Rt ABC ∆中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为sin ,cos ,tan a b a A A A c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义. 【情境导入二】提问:锐角O 的正弦、余弦、正切怎样表示? 借助直角三角形,复习回顾.引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .则sin MP bOP r α==;cos OM a OP r α==;tan MP bOM aα==. 思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢? 显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==;cos OM a OP α==;tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数. 新授课阶段1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y,它与原点的距离为(0)r r ==>,那么:(1)比值y r叫做α的正弦,记作sin α,即sin y r α=;(2)比值x r 叫做α的余弦,记作cos α,即cos xr α=; (3)比值y x叫做α的正切,记作tan α,即tan y x α=;说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,三个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan yxα=无意义. ④除以上两种情况外,对于确定的值α,比值y r 、x r 、yx分别是一个确定的实数,所以正弦、余弦、正切 是以角为自变量,一比值为函数值的函数,以上三种函数统称为三角函数.2.三角函数的定义域、值域义{|,}2k k Z ααπ≠+∈例1 已知角α的终边经过点(2,3)P -,求α的三个函数制值. 解: 变式训练:已知角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.解:例2 求下列各角的正弦值、余弦值、正切值:(1)0;(2)π;(3)32π.解:例3 已知角α的终边过点(,2)(0)a a a≠,求α的正弦值、余弦值、正切值. 解:变式训练:求函数xxxxytantancoscos+=的值域.解析:答案:4.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:①正弦值yr对于第一、二象限为正(0,0y r >>),对于第三、四象限为负(0,0y r <>);②余弦值xr对于第一、四象限为正(0,0x r >>),对于第二、三象限为负(0,0x r <>);③正切值yx对于第一、三象限为正(,x y 同号),对于第二、四象限为负(,x y 异号). 说明:若终边落在轴线上,则可用定义求出三角函数值. 5.诱导公式由三角函数的定义,就可知道:终边相同的角三角函数值相同.即有:sin(2)sin k απα+=,cos(2)cos k απα+=, tan(2)tan k απα+=,其中k Z ∈.课堂小结1.任意角的三角函数的定义; 2.三角函数的定义域、值域;3.三角函数的符号及诱导公式.作业 见 同步练习 拓展提升1.α是第二象限角,P (x ,5)为其终边上一点,且x42cos =α,则αsin 的值为( )A. 410B. 46C. 42D.410-2.α是第二象限角,且2cos2cosαα-=,则2α是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3.如果,42ππ<θ<那么下列各式中正确的是( ) A. cos tan sin θ<θ<θ B. sin cos tan θ<θ<θ C. tan sin cos θ<θ<θ D. cos sin tan θ<θ<θ 二、填空题4.已知α的终边过(-a 39,2+a )且0cos ≤α,0sin >α,则α的取值范围是 .5.函数x x y tan sin +=的定义域为 .6.4tan 3cos 2sin ⋅⋅的值为 (正数,负数,0,不存在). 三、解答题7.已知角α的终边上一点P的坐标为(y )(y 0≠),且sin y 4α=,求cos tan αα和1.2.1 任意角的三角函数(1)导学案参考答案例1解:因为2,3x y ==-,所以r ==sin13y r α===-;cos 13x r α===; 3tan 2y x α==-. 变式训练 解:4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 例2解:(1)因为当0α=时,x r =,0y =,所以sin 00=, cos 01=, tan 00=;(2)因为当απ=时,x r =-,0y =,所以sin 0π=, cos 1π=-, tan 0π=;(3)因为当32πα=时,0x =,y r =-,所以 3sin12π=-, 3cos 02π=, 3tan 2π不存在. 例3解:因为过点(,2)(0)a a a ≠,所以|r a =,,2x a y a ==.当0siny a r α>====时,cosx r α===;2tan =α;当0siny a r α<===时,cosx r α===;2tan =α. 变式训练:解析:分四个象限讨论.答案:{2,-2,0}拓展提升一、选择题:1. A 2 . C 3. D二、填空题4.]3,2(- 5. ⎭⎬⎫⎩⎨⎧Z∈+≠kkxx,2|ππ6. 负数三、解答题7. 解:由题意,得:sin y4α==解得:y=cos tan43α=-α=±。

人教版高中数学全套教案导学案1.2.1任意角的三角函数(2)

人教版高中数学全套教案导学案1.2.1任意角的三角函数(2)

第二课时 任意角的三角函数(二)【复习回顾】1、 三角函数的定义;2、 三角函数在各象限角的符;3、 三角函数在轴上角的值;4、 诱导公式(一):终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆.【探究新知】1.引入:角是一个图形概念,也是一个数量概念(弧度数).作为角的函数——三角函数是一个数量概念(比值),但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米).当角α为第一象限角时,则其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,则请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化?3.思考:(1)为了去掉上述等式中的绝对值符,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?(2)你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有 sin MP y α==4.像MP OM 、这种被看作带有方向的线段,叫做有向线段(direct line segment ).5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα== 我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:(1)当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?(2)当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解例1.已知42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质.8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用.【评价设计】二、作业:比较下列各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒ (2)'cos15018︒、cos121︒ (3)5π、tan 5π 2.练习三角函数线的作图.。

任意角的三角函数导学案3

任意角的三角函数导学案3

导学案
年级:高一科目:数学主备:审核
课题:任意角的三角函数课型:新授课课时: 第3 课时
【三维目标】
●知识与技能: 1.掌握任意角的三角函数的定义;
2.已知角α终边上一点,会求角α的各三角函数值;
3.记住三角函数的定义域,诱导公式(一)。

●过程与方法: 自主学习和尝试,互动式讨论
●情感态度与价值观:(1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)
与比值(函数值)的一种联系方式;
(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;
【学习重点】三角函数的定义、定义域、符号及诱导公式。

【学习难点】任意角的正弦、余弦、正切的定义,以及这三种函数的第一组诱导公式。

【教学资源】多媒体
1.任意角的三角函数的定义;
2.三角函数的定义域;
3.三角函数的符号及诱导公式。

4. 三角函数线的概念。

【作业】:课本20页习题A组第1,2,3,4,题【教学后记】:。

人教版高中数学全套教案导学案1.2.1任意角的三角函数(1)

人教版高中数学全套教案导学案1.2.1任意角的三角函数(1)

1. 2.1 任意角的三角函数<第一课时>班级 姓名学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符.2.能初步应用定义分析和解决与三角函数值有关的一些简单问题.重点难点教学重点:任意角的正弦、余弦、正切的定义。

.教学难点:用角的终边上的点的坐标来刻画三角函数及三角函数符。

教学过程(一)提出问题问题1:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗? 问题2:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?问题3:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题4:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化?(二)新课导学 1、单位圆的概念:.在直角坐标系中,我们称以 为圆心,以 为半径的圆为单位圆.2、三角函数的概念我们可以利用单位圆定义任意角的三角函数.图2如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y 叫做α的正弦,记作sinα,即sinα=y; (2)x 叫做α的余弦,记作cosα,即cosα=x; (3)x y 叫做α的正切,记作tanα,即tanα=xy (x≠0).所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.注意:(1)正弦、余弦、正切、都是以角为自变量,以比值为函数值的函数.(2)sinα不是sin 与α的乘积,而是一个比值;三角函数的记是一个整体,离开自变量的“sin”“tan”等是没有意义的. (3)由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.3、例1:已知角α的终边与单位圆的交点是 求角α的正弦、余弦和正切值。

练习1:已知角α的终边经过点 ,求角α正弦、余弦和正切值。

高中数学 第1章 三角函数 1.2.1 任意角的三角函数(第二课时)导学案 新人教A版必修4-新人教

高中数学 第1章 三角函数 1.2.1 任意角的三角函数(第二课时)导学案 新人教A版必修4-新人教

1.2.1 任意角的三角函数(第二课时)[教材研读]预习课本P15~17,思考以下问题1.有向线段是如何定义的?2.三角函数线是如何定义的?[要点梳理]1.有向线段带有方向的线段叫做有向线段.2.三角函数线判断(正确的打“√”,错误的打“×”)1.三角函数线的长度等于三角函数值.( )2.三角函数线的方向表示三角函数值的正负.( ) 3.对任意角都能作出正弦线、余弦线和正切线.( ) [答案] 1.× 2.√ 3.×题型一 三角函数线的画法思考:用字母表示三角函数线时,字母顺序能否颠倒? 提示:不能,因为三角函数线有方向.作出3π4的正弦线、余弦线和正切线.[思路导引] 作三角函数线时,充分利用单位圆,找到角的终边与单位圆的交点. [解]如图,角3π4的终边与单位圆的交点为P .作PM 垂直于x 轴,垂足为M ,过A (1,0)作单位圆的切线AT ,与3π4的终边的反向延长线交于点T ,则3π4的正弦线为MP ,余弦线为OM ,正切线为AT .三角函数线的画法(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线.(2)作正切线时,应从A (1,0)点引x 轴的垂线,交α的终边(α为第一或第四象限角)或α终边的反向延长线(α为第二或第三象限角)于点T ,即可得到正切线AT .[跟踪训练]作出-9π4的正弦线、余弦线和正切线.[解] 如图所示,-9π4的正弦线为MP ,余弦线为OM ,正切线为AT . 题型二 利用三角函数线比较大小思考:利用三角函数线比较大小应注意什么?提示:三角函数线是一个角的三角函数值的体现,从三角函数线的方向可以看出三角函数值的正负,其长度是三角函数值的绝对值.(1)下列关系式中正确的是( )A .sin10°<cos10°<sin160°B .sin160°<sin10°<cos10°C .sin10°<sin160°<cos10°D .sin160°<cos10°<sin10°(2)设a =sin 5π7,b =cos 2π7,c =tan 2π7,则a ,b ,c 的大小顺序排列为________.[思路导引] 利用单位圆中的三角函数线求解. [解析] (1)如图,由三角函数线知,OM >M 1P 1>MP ,∴cos10°>sin160°>sin10°,所以选C.(2)由57π与27π的终边关于y 轴对称,如右图的三角函数线知:M 1P 1=MP <AT ,因为2π7>2π8=π4, 所以MP >OM ,所以cos 2π7<sin 5π7<tan 2π7,所以b <a <c .[答案] (1)C (2)b <a <c(1)利用三角函数线比较大小的步骤 ①角的位置要“对号入座”; ②比较三角函数线的长度; ③确定有向线段的正负.(2)利用三角函数线比较函数值大小的关键及注意点 ①关键:在单位圆中作出所要比较的角的三角函数线.②注意点:比较大小,既要注意三角函数线的长短,又要注意方向. [跟踪训练]利用三角函数线比较下列各组数的大小: ①sin 2π3与sin 4π5;②tan 2π3与tan 4π5.[解] ①由如图的三角函数线知:MP >M 1P 1,∴sin2π3>sin 4π5.②∵AT <AT 1,∴tan 2π3<tan 4π5.题型三 利用三角函数线解不等式思考:利用三角函数线解不等式的步骤是什么?提示:①先作出取等号的角;②利用三角函数线的直观性,在单位圆中确定满足不等式的角的范围;③将图中的范围用不等式表示出来,注意终边相同的角.利用单位圆中的三角函数线,分别确定角θ的取值范围. (1)sin θ≥32;(2)-12≤cos θ<32. [思路导引] 利用单位圆中的三角函数线找到取等号时的角,再结合图形写出角的取值范围.[解] (1)图①中阴影部分就是满足条件的角θ的范围,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪2k π+π3≤θ≤2k π+2π3,k ∈Z. (2)图②中阴影部分就是满足条件的角θ的范围,即 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪⎪2k π-2π3π≤θ<2k π-π6或2k π+π6<θ≤2k π+23π,k ∈Z .利用三角函数线解简单不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点,一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图象可得.要特别注意是否含角的边界.[跟踪训练]利用三角函数线,写出满足下列条件角α的集合.(1)sin α≥22;(2)cos θ≤12. [解] (1)如图:当sin α≥22时,角α满足的集合为 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪π4+2k π≤α≤3π4+2k π,k ∈Z(2)如图,当cos θ≤12时,角α满足的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪π3+2k π≤α≤5π3+2k π,k ∈Z课堂归纳小结1.本节课的重点是三角函数线的画法,以及利用三角函数线解简单的不等式及比较大小问题,难点是对三角函数线概念的理解.2.本节课应重点掌握三角函数线的以下三个问题 (1)三角函数线的画法,见典例1; (2)利用三角函数线比较大小,见典例2; (3)利用三角函数线解不等式,见典例3. 3.理解三角函数线应注意以下四点(1)位置:三条有向线段中有两条在单位圆内,一条在单位圆外;(2)方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向切线与α的终边(或其延长线)的交点;(3)正负:三条有向线段中与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值; (4)书写:有向线段的始点字母在前,终点字母在后.1.已知角α的正弦线的长度为单位长度,那么角α的终边( ) A .在x 轴上 B .在y 轴上 C .在直线y =x 上D .在直线y =-x 上[解析] 由题意知sin α=±1,∴角α的终边在y 轴上. [答案] B2.角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异,那么α的值为( ) A.π4 B.3π4 C.7π4D.3π4或7π4[解析] 由题意知角α的终边落在第二或第四象限角平分线上,故α=3π4或7π4.[答案] D3.如图在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT[解析] 由图可知角α的正弦线为MP ,正切线为AT .[答案] C4.在[0,2π]上,满足sin x ≥12的x 的取值范围为( ) A.⎣⎢⎡⎦⎥⎤0,π6 B.⎣⎢⎡⎦⎥⎤π6,5π6 C.⎣⎢⎡⎦⎥⎤π6,2π3 D.⎣⎢⎡⎦⎥⎤5π6,π [解析]如图所示,sin x ≥12的x 的取值范围是⎣⎢⎡⎦⎥⎤π6,5π6. [答案] B5.sin1.5________sin1.2.(填“>”或“<”)[解析]∵π3<1.2<1.5<π2,由图可知 M 1P 1<M 2P 2,∴sin1.2<sin1.5.[答案] >。

三角函数的概念 导学案 高一上学期数学人教A版(2019)必修第一册

三角函数的概念 导学案 高一上学期数学人教A版(2019)必修第一册

5.2.1三角函数的概念班级:姓名:小组:【学习目标】1.借助单位圆理解并掌握任意角的三角函数的定义.(数学抽象)2.掌握利用诱导公式一求给定角的三角函数值并能确定函数值的符号.(数学抽象、数学运算)【重点难点】【教学重点】三角函数的定义【教学难点】用诱导公式一求给定角的三角函数值并能确定函数值的符号预习案一.知识梳理【知识点一】任意角的三角函数99条件如图,设α是一个任意角,α∈R,它的终边OP与单位圆相交于点P(x,y)定义正弦把点P的叫做α的正弦函数,记作sin α,即y=sin α余弦把点P的叫做α的余弦函数,记作cos α,即x=cos α正切把点P的纵坐标与横坐标的比值yx叫做α的正切,记作tan α,即__________________三角函数正弦函数y=sin x,x∈R余弦函数y=cos x,x∈R正切函数y=tan x,x≠π2+kπ,k∈Z三角函数的定义(坐标法)设α是一个任意角,它的终边上任意一点P(不与原点O重合)的坐标为(a,b),点P与原点的距离为r,则r=|OP|=a2+b2,sin α=MPOP=br,cos α=OMOP=ar,tan α=MPOM=ba.【知识点二】三角函数在各象限内的符号=y sinα=y cosα=y tanα【知识点三】诱导公式一1.语言表示:终边相同的角的同一三角函数的值。

2.式子表示:=⋅+)2sin(παk=⋅+)2cos(παk=⋅+)2tan(παk二、自习检测1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若α=β+720°,则cos α=cos β.()(2)若sin α=sin β,则α=β.()(3)已知α是三角形的内角,则必有sin α>0.()2.若角α的终边经过点P(2,3),则有()A.sin α=21313B.cos α=132C.sin α=31313D.tan α=23高一数学第1 页(共4页) 高一数学第2 页(共4页)三、探究未知请同学们写出自己的疑惑,至少两点。

高一数学 任意角的三角函数导学案

高一数学 任意角的三角函数导学案

山西省原平市第一中学2012-2013学年高一数学任意角的三角函数导学案一、学习目标:1、理解任意角三角函数的定义;2、了解三角函数的定义域2、会求特殊角的三角函数值;3、体会类比,数形结合的思想二、文本研读(一)阅读教材P11——P12例1上方的内容回答下列问题1、锐角三角函数在直角坐标系下是如何定义的?2、OP的长度r=1的思想你知道吗?3、锐角三角函数是用什么表示的?并写出结果4、任意角的三角函数定义的思想是什么?并写出结果5、你能说出三角函数的定义域吗?并写出结果(二)阅读教材探究你会确定三角函数值的符号吗?写出并熟记三、知识应用1、阅读例1你有不懂得地方吗?你认为计算任意角的三角函数值应知道什么?2、用例1的方法计算下列各角的正弦、余弦、正切值(1)0 (2)π (3)2π3、阅读例2你知道方法吗?完成下题 已知角α的终边在直线y=x 上,求角α的正弦、余弦、正切值4、阅读例3学会解题完成教材P21第95、阅读P14公式(一)及例4知道道理吗?完成教材P15第56、阅读例5完成教材P15第7四、实战演练一、选择题1、在∆ABC 中,下列函数值中可以是负值的是( ) A.sinA B.tan 2A C.cos 2C B + D.tanA 2、已知tan α·cos α>0,ααsin tan 1<0,则α是( ) A.第一象限角 B.第二象限角C.第三象限角D.第四象限角 x 的集合为(A 、{-6π,π611} B 、{π65,π67} C 、{π67,π611} D 、{π65,π611} 4、下列各式中为正号的是( )A.cos2-sin2B.cos2·sin2C.tan3·2cos 1 D.sin2·tan2 二、填空1.已知角α终边上一点P(-4,3),则cos α·sin α=2.在∆ABC 中,若tanA ·tanB ·tanC 〈0,那么这个三角形的形状是 三、解答题1.确定下列三角函数值的符号(1)sin156。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.2任意角的三角函数(1)
【学习目标】
1.掌握任意角三角函数的定义,并能借助单位圆理解任意角三角函数的定义
2.会用三角函数线表示任意角三角函数的值
3.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号
【学习重点、难点】
任意角的正弦、余弦、正切的定义
【自主学习】
一、复习旧知,导入新课
在初中,我们已经学过锐角三角函数:
角的范围已经推广,那么对任意角是否也能定义其三角函数呢?
二、建构数学
1.在平面直角坐标系中,设点是角终边上任意一点,坐标为,它与原点的距离,一般地,我们规定:
⑴比值___________叫做的正弦,记作___________,即___________=___________;
⑵比值___________叫做的余弦,记作___________,即___________=___________;
⑶比值___________叫做的正切,记作___________,即___________=___________.
2.当=___________________时, 的终边在轴上,这时点的横坐标等于____________,所以_____________无意义.除此之外,对于确定的角,上面三个值都是______________.所以, 正弦、余弦、正切都是以_________为自变量,以__________为函数值的函数,我们将它们统称为___________________.
3.由于________________________与________________________之间可以建立一一对应关系,三角函数可以看成是自变量为_________________的函数.
4.其中,和的定义域分别是________________;
而的定义域是__________________.
5.根据任意角的三角函数定义将这三种函数的值在各象限的符号填入括号.
sin cos
tan
【典型例题】
例1.已知角的终边经过点,求的正弦、余弦、正切的值.
变题1 已知角的终边经过点,求的正弦、余弦、正切的值.
变题2 已知角的终边经过点,且,求的值.
例2.已知角的终边在直线上,求的正弦、余弦、正切的值.
例3.确定下列三角函数值的符号:
(1); (2); (3); (4)
例4.若两内角、满足,判断三角的形状.
【巩固练习】
1、已知角α的终边过点P(-1,2),cos的值为
2、α是第四象限角,则下列数值中一定是正值的是
A.sin B.cos C.tan D.
3、填表:
α0︒30︒45︒60︒90︒120︒135︒150︒180︒270︒360︒弧度
4、已知角的终边过点P(4a,-3a)(a<0),则2sin+cos 的值是 ;
5、若点P(-3,y)是角终边上一点,且,则y的值是 ;
6、是第二象限角,P(x,)为其终边上一点,且cos=x,则sin的值为_______.【课堂小结】
【布置作业】。

相关文档
最新文档