2018-2019学年高中数学人教A版必修四教学案:1.2任意角的三角函数-含答案

合集下载

人教A版高中数学必修四第一章1.2.1 任意角的三角函数教学设计

人教A版高中数学必修四第一章1.2.1 任意角的三角函数教学设计

“任意角的三角函数”教学设计一、教学内容解析在角由“锐角”到“任意角”的推广过程中,研究的视角由“静态”到“动态”,同时研究的平台也由“平面图形”过渡到了“平面直角坐标系”.借助直角坐标系研究角,一方面引入象限角,使“角”的研究统一转化为“转动的边”的研究;另一方面也提供了用代数方法研究几何的思路.“任意角三角函数” 是“锐角三角函数”概念的因袭和扩张,但为什么要作这样的推广呢?更合适的理由是任意角三角函数是描述周期变化为重要数模型。

任意角三角函数是函数的下位概念,是刻划圆周运动规律的重要数学模型.“任意角三角函数”在圆周运动中,最基本、简单的情形是质点P 绕着单位圆的圆心作匀速圆周运动,在此运动中,关键是抓住质点P 的坐标(x ,y )随旋转角θ的变化而变化的函数关系.这种关系是确定的,至于如何更好地表达,合理的命名是非本质的内容.由于当角θ为锐角时,y 是θ的正弦,x 是θ的余弦,xy是θ的正切,因此可以以此为据,推广到任意角相应的三角函数定义. 引入锐角三角函数的概念,目的是为了研究三角形中的边角关系,因此定义侧重几何的角度,利用相似直角三角形的性质,得到锐角和三角形边与边的“比值”之间的确定关系;而引入任意角三角函数的概念,目的是为了研究周期变化现象,因此定义侧重代数的角度,在直角坐标系下,以单位圆为工具,得到角和它的终边与单位圆的交点坐标之间的确定关系.两者同时都是函数的下位概念,在弧度制下,归结为数集到数集的映射.教材中对任意角三角函数的定义有两种——单位圆的定义和欧拉的传统定义[1].从任意角三角函数的使命看,单位圆的定义显得形式简单,便于研究性质,同时借助圆周运动可以更直观地体现函数的周期性,某种意义上说,任意角三角函数就是圆的性质的几何表示.但两个定义本质相同,相互之间一点就通.二、教学目标解析1.理解任意角三角函数的定义,经历“单位圆法”定义三角函数的过程;2.会用定义求特殊角的三角函数值,会求已知终边位置的角的三角函数值; 3.会从函数三要素的角度认识三角函数的对应法则、自变量、函数值; 4.体会定义三角函数过程中的数形结合、化归、数学模型等思想方法.三、教学问题诊断分析1.三角函数是一类特殊的函数,因此本节课侧重于在一般函数概念的指导下组织教学,让学生知道三角函数的是角与坐标(或比值)之间的对应关系.学生虽有锐角三角函数的概念,但其认识只停留在三角函数是反映直角三角形的角与边之间关系的层面上,有必要让学生从角与比值的对应角度重新认识.2.锐角三角函数到任意角三角函数的推广,并非简单的特殊到一般意义上的推广,而是观念角度的变化,需要将直角三角形为载体的几何定义方式转化为以直角坐标系为载体的坐标定义方式.3.将终边上的任意一点化归到单位圆上的点,不仅是求简,更是三角函数本质的体现,但学生的理解很难到位,需要在今后的学习中循序渐进.4.在弧度制下(用单位圆的半径度量角)实现角的集合与实数集的一一对应,再实现数到坐标的对应,会造成一定的理解困难,为了突出重点,分散难点,本节课暂时不作过度的解释.四、教学过程设计 (一)情景引入游乐场内有一半径r=1米的摩天轮,中心位置O 距地面2米,点P 从初始位置A 出发(与O 处于同一水平位置),随着摩天轮逆时针转动5πα=后,相对于地面的高度H 为多少?当3,4παπα==呢?当旋转任意角α时,H 又如何用α表示呢?设计意图:让学生清楚要用函数表示圆周运动的关键是把握圆周上点的坐标与相应角的数量关系,而研究往往从最熟悉、最简单的情形出发,在任意角是锐角的情形下,学生容易由数想形,构造直角三角形,并进一步由“特殊到一般”来猜想当锐角推广到任意角时结论也成立。

【原创】人教A版高中数学必修4第一章1.2.1 任意角的三角函数 教学设计

【原创】人教A版高中数学必修4第一章1.2.1 任意角的三角函数 教学设计

1.2.1 《任意角的三角函数》教学设计 课 题 1.2.1 任意角的三角函数 课 型 新授课 核心素养 培养学生的逻辑推理能力和数学运算能力重点难点 三角函数的定义;任意角的三角函数在各象限的符号;教法学法 启发式教学,自主探究,合作交流教学过程一、导入课题问题提出:如果旋转轮的半径为r ,圆心O 到地面的高度为h ,主持人的右脚与圆心的交点记为A ,当OA 与水平线所成的角为α时,你能求出点A 到地面的高度吗?二、自主学习1、如图:在ABC Rt ∆中,A sin = A cos = A tan =2、前面我们学习了任意角,如果将A 与原点重合,AC 边与x 轴的非负半轴重合,B 的坐标为 ?设B 到原点的距离为r ,即______==r OB (用B 的坐标表示),你能用B 的坐标表示角A 的三角函数吗?_____tan _____,cos _____,sin ===A A A问题:在OB 上移动B 点,角A 的三角函数值会不会改变?3、如果将A 终边上的点B 特殊为让它到原点的距离为单位长度“1”,你能说出点B 的轨迹吗?三、新知点拨单位圆:以 圆心, 为半径的圆叫单位圆设α是一个任意角,它的终边与单位圆交于点中),(y x P ,那么:(1)y 叫做α的正弦,即αsin =y(2)x 叫做α的正弦,即αsin =x(3)x y 叫做α的正切,即αtan =xy 我们把 、 、 统称为三角函数。

四、互动探究 根据上面三角函数的定义,填出下表中三角函数的定义域及各三角函数在每个象限的符号:三角函数 定义域αsinαcosαtanαsin αcos αtan五、新知应用例1:求π35的正弦、余弦和正切值学以致用1:求π47的三角函数值。

例2:已知角α的终边经过点P (-3,-4),求角α的正弦、余弦、正切值.一般地,α是一个任意角,)(y x P ,为α终边上的任意一个点,r 为点P 到原点的距离,则: αsin = αcos = αtan = 其中:r =学以致用2:已知角α的终边过点P (-1,2),则sin α+cos α等于例3 求证:当下列不等式组成立时,角α为第三象限角。

高中数学必修四教案-1.2.1 任意角的三角函数(6)-人教A版

高中数学必修四教案-1.2.1 任意角的三角函数(6)-人教A版

任意角的三角函数【教学目标】1.理解三角函数定义。

三角函数的定义域,三角函数线。

2.理解握各种三角函数在各象限内的符号。

3.理解终边相同的角的同一三角函数值相等。

【能力目标】1.掌握三角函数定义。

三角函数的定义域,三角函数线。

2.掌握各种三角函数在各象限内的符号。

3.掌握终边相同的角的同一三角函数值相等。

【教学过程】1.三角函数定义。

三角函数的定义域,三角函数线,各种三角函数在各象限内的符号。

诱导公式第一组。

2.确定下列各式的符号(1)sin100°·cos240° (2)sin5+tan53.x 取什么值时,xx x tan cos sin +有意义? 4.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为……( )A 锐角三角形B 钝角三角形C 直角三角形D 以上三种情况都可能5.若是第三象限角,则下列各式中不成立的是………………( )A :sin α+cos α<0B :tan α-sin α<0C :cos α-cot α<0D :cot αcsc α<06.已知θ是第三象限角且02cos<ϑ,问2ϑ是第几象限角? 讲解新课:1.求下列函数的定义域:(1)2cos 1y x =- (2)2lg(34sin )y x =-2.已知1212sin <⎪⎭⎫ ⎝⎛ϑ,则θ为第几象限角?3.(1) 若θ在第四象限,试判断sin(cos θ)cos(sin θ)的符号;(2)若tan(cos θ)cot(sin θ)>0,试指出θ所在的象限,并用图形表示出2θ的取值范围。

4.求证角θ为第三象限角的充分必要条件是⎩⎨⎧><0tan 0sin θθ 证明:必要性:∵θ是第三象限角,∴⎩⎨⎧><0tan 0sin θθ 充分性:∵sinθ<0,∴θ是第三或第四象限角或终边在y轴的非正半轴上∵tanθ>0,∴θ是第一或第三象限角。

高中数学必修四教案-1.2.1 任意角的三角函数(29)-人教A版

高中数学必修四教案-1.2.1 任意角的三角函数(29)-人教A版

任意角的三角函数一、教学基本信息:⒉课题:普通高中课程标准实验教科书《数学(必修4)》第一章“三角函数”,第二节“任意角的三角函数”第二课时。

二、指导思想与理论依据⒈指导思想:以问题为引导、以探究为过程、以发展为目标,面向全体、尊重个性。

⒉理论依据:建构主义认知心理学原理及单元教学设计原理建构主义心理学认为,认识并非是主体对于客观存在的简单的、被动的反映,而是一个主动的、不断深化的建构过程,即所有的知识意义都是通过内在表征过程主动建构出来的;在知识意义建构过程中,主体已有的知识、经验起着重要的作用,即所有知识意义是随着学习环境的变化而处于不断发展之中。

因此在教学中必须要让学生的知识建构过程处于一定的知识体系之中,既要利用已有的相关知识帮助学生对新知识产生内化,有要帮助学生将内化的知识与原有的知识融合产生相关知识的系统,以帮助他更好地理解知识。

教学设计时,要通过单元教学的设计原理,将一节的内容纳入到某一知识主题单元中,帮助学生从某一知识体系的整体上来认识新知识,从而有利于学生更好地对知识加以建构。

三、学习内容分析:三角函数是一个重要的基本初等函数,它是描述周期现象的重要数学模型。

它的基础主要是几何中的相似形和圆,研究方法主要是代数中的图象分析和代数变形,三角函数的研究已经初步把几何与代数联系起来。

它在物理学、天文学、测量学等学科中都有重要的应用,它是解决实际问题的重要工具,它是学习数学中其他学科的基础。

在前课中,角的概念已经由锐角扩展到0°–360°内的角,再扩充到任意角,相应地,锐角三角函数概念也必须有所扩充。

任意角三角函数概念的出现是角的概念扩充的必然结果。

比较锐角三角函数与任意角三角函数这两个概念,共同点是,它们都是“比值”,不同点是锐角三角函数是“线段长度的比值”,而任意角三角函数是直角坐标系中“坐标与长度的比值,或者是坐标的比值”。

正是由于“比值”这一与在角的终边上所取点的位置无关的特点,因此,可以用角的终边与单位圆的交点的坐标(或坐标的比值)来表示任意角的三角函数,这是概念的核心。

高中数学必修四人教A版 教案1-2任意角的三角函数-1-2

高中数学必修四人教A版 教案1-2任意角的三角函数-1-2

第2课时三角函数线1.知识与技能(1)通过实例,了解有向线段的含义.(2)理解三角函数的几何意义——三角函数线.(3)掌握利用三角函数线解简单的三角不等式,比较三角函数值的大小.2.过程与方法(1)让学生经历从实例中理解三角函数的几何意义.(2)让学生体会数形结合思想的灵活运用.3.情感、态度与价值观通过学生亲自动手操作,逐步培养出从实际出发,通过尝试、观察、归纳、抽象和概括,达到感性向理性的升华.重点:三角函数的几何意义的理解.难点:三角函数的几何意义的应用.(1)重点的突破:在教学过程中,建议让学生明确以下三个方面:①三角函数线的数量.当三角函数线与坐标轴平行时,我们可根据三角函数线的方向与数轴的方向相同或相反,分别把它的长度加上正号或负号,这样所得的数,叫做三角函数线的数量.②正弦线、余弦线、正切线分别是正弦、余弦、正切函数的一种几何表示,它们都是与单位圆有关的平行于坐标轴(或与坐标轴重合)的有向线段.③在“数”的角度认识任意角的三角函数的基础上,还可以从图形角度考察任意角的三角函数,即用有向线段表示三角函数值,这是三角函数与其他基本初等函数不同的地方.(2)难点的解决:考虑到三角函数线的应用有一定的难度,教学时可结合一些具体的例子,通过问题的由浅入深的解决,让学生不断总结,教师再适时点拨,必要时辅助典例教学,这样学生既对三角函数线体会深刻,又对三角函数线的应用得以深化,突出重点的同时化解难点.三角函数线的应用利用单位圆中的三角函数线可以比较同名三角函数值的大小,解(证明)简单的三角不等式,研究三角函数值域或最值等问题,解决这类问题的关键是准确作出单位圆中的三角函数线.1.比较下列各组数的大小.(1)cos和cos;(2)sin和tan.解:(1)如图,在单位圆中作出的余弦线OM2和OM1.因为OM1<OM2,所以cos>cos.(2)如图,分别作出的正弦线和正切线,sin=MP,tan=AT,因为AT>MP,所以tan>sin.2.用三角函数线证明:|sin α|+|cos α|≥1.证明:当角α的终边在坐标轴上时,正弦线(余弦线)变成一个点,而余弦线(正弦线)的长等于r(r=1).所以|sin α|+|cos α|=1.当角α的终边落在四个象限时,如图,利用三角形两边之和大于第三边有|sin α|+|cos α|=|MP|+|OM|>1,综上有|sin α|+|cos α|≥1.。

高中数学必修4《任意角的三角函数》教案

高中数学必修4《任意角的三角函数》教案

高中数学必修4《任意角的三角函数》教案高中数学必修4《任意角的三角函数》教案【一】教学准备教学目标1、知识与技能(1)能根据三角函数的定义,导出同角三角函数的基本关系;(2)能正确运用进行三角函数式的求值运算;(3)能运用同角三角函数的基本关系求一些三角函数(式)的值,并从中了解一些三角运算的基本技巧;(4)运用同角三角函数的基本关系式进行三角函数恒等式的证明。

2、过程与方法回忆初中所学的几个三角函数之间的关系,用高中所学的同角三角函数之间的关系试着进行证明;掌握几种同角三角函数关系的应用;掌握在具体应用中的一定技巧和方法;理解并掌握同角三角关系的简单变形;提高学生恒等变形的能力,提高分析问题和解决问题的能力。

3、情感态度与价值观通过本节的学习,使同学们加深理解基本关系在本章中的地位;认识事物间存在的内在联系,使学生面对问题养成勤于思考的习惯;培养学生良好的学习方法,进一步树立化归的数学思想方法。

教学重难点重点: 同角三角函数之间的基本关系,化简与证明。

难点: 化简与证明中的符号,同角三角函数关系的灵活运用。

教学工具投影仪教学过程【创设情境,揭示课题】同角三角函数之间的关系我们在初中就已经学过,只不过当时应用不是很多,那么到底有哪些?它们成立的条件是什么?学习实践中,你还发现了哪些关系?今天这节课,我们就来讨论这些问题。

【探究新知】在初中我们已经知道,对于同一个锐角α,存在关系式:2.学生课堂练习教材P66练习1和P67练习2五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业教材P68习题中1—6课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

高中数学第一章三角函数1.2任意角的三角函数教学案新人教A版必修4

高中数学第一章三角函数1.2任意角的三角函数教学案新人教A版必修4

3
1
(-1)2+( 3)2= 2 ,所以 sin α = 2 , cos α=- 2, tan α=- 3;在第四象限取直线上的点
3
1
(1 ,- 3) ,则 r = 12+(- 3)2=2,所以 sin α=- 2 , cos α= 2, tan α=- 3.
12 5 12 答案: (1) -13 13 - 5
cos 60 °
15 = 1+ 1+ 2= 2.
—————————————— [ 课堂归纳·感悟提升 ] ———————————————
1.本节课的重点是三角函数的定义、三角函数值的符号以及公式一的应用,难点是三角函数的定义及
=0.
π
π
π
π
ππ
(2) 原式= sin -2π+ 6 + cos 8π+ 3 · tan -4π+ 4 = sin 6 + cos 3 tan 4
11 = 2+ 2×1= 1.
公式一的实质是终边相同的角的同名三角函数值相等.利用它可将大角转化为
[0 , 2π ) 范围内的角,再
借助特殊角的三角函数值达到化简求值的目的.
(- 3)2+a2 5
4
又∵ α 为第二象限角,∴
a> 0,即 a=4. ∴ sin
α=
. 5
34
答案: (1)D
(2) - 2
(3) 5
讲一讲
cos α
2. (1) 若 sin αtan α<0,且 tan α< 0,则角 α 是(
)
A.第一象限角 B .第二象限角
C.第三象限角 D .第四象限角
1.2 任意角的三角函数
第 1 课时 三角函数的定义
[ 核心必知 ]
1.预习教材,问题导入

高中数学必修四人教A版 教案1-2任意角的三角函数-1-1

高中数学必修四人教A版 教案1-2任意角的三角函数-1-1

1.2任意角的三角函数1.2.1任意角的三角函数第1课时三角函数的定义1.知识与技能(1)掌握任意角的三角函数的定义.(2)已知角α终边上一点,会求角α的各三角函数值.(3)记住三角函数的定义域、值域、诱导公式一.2.过程与方法(1)通过直角三角形中三角函数定义到单位圆中三角函数定义,最后到直角坐标系中一般化的三角函数定义,培养学生发现数学规律的思维方法和能力.(2)树立映射观点,正确理解三角函数是以实数为自变量的函数.(3)通过对定义域、三角函数值的符号、诱导公式一的推导,提高学生分析、探究、解决问题的能力.3.情感、态度与价值观(1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式.(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神.重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式.公式一是本小节的另一个重点.难点:利用角的终边上点的坐标刻画三角函数,三角函数的符号.三角函数符号的由来sine(正弦)一词始于阿拉伯人雷基奥蒙坦,他是十五世纪西欧数学界的领导人物,他于1464年完成的著作《论各种三角形》,1533年开始发行,这是一本纯三角学的书,使三角学脱离天文学,独立成为一门数学分科.cosine(余弦)及cotangent(余切)为英国人根日尔首先使用,最早在1620年伦敦出版的他所著的《炮兵测量学》中出现.secant(正割)及tangent(正切)为丹麦数学家托马斯·芬克首创,最早见于他的《圆几何学》一书中.cosecant(余割)一词为锐梯卡斯所创,最早见于他1596年出版的《宫廷乐章》一书.1626年,阿贝尔特·格洛德最早推出简写的三角符号:“sin ”“tan ”“sec”.1675年,英国人奥屈特最早推出余下的简写三角符号:“cos ”“cot”“csc”.但直到1748年,经过数学家欧拉的引用后,才逐渐通用起来.1949年至今,我国数学书籍中“cot”改为“ctg”;“tan ”改为“tg”,其余四个符号均未变.这就是为什么我国市场上流行的进口函数计算器上有“tan ”而无“tg”按键的缘故.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 三角函数的定义
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P 11~P 15的内容,回答下列问题.
如图,设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它的终边在第一象限.在α的终边上任取一点P (a ,b ),它与原点的距离r =a 2+b 2>0.过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .
(1)根据初中学过的三角函数定义,你能表示出sin α,cos α,tan α的值吗?
提示:sin_α=MP OP =b r ,cos_α=OM OP =a r ,tan_α=MP OM =b
a
.
(2)根据相似三角形的知识,对于确定的角α,请问(1)的结果会随点P 在α终边上的位置的改变而改变吗?
提示:不会随P 点在终边上的位置的改变而改变.
(3)若将点P 取在使线段OP 的长r =1的特殊位置上,如图所示,则sin α,cos α,tan α各为何值?
提示:sin_α=b ,cos_α=a ,tan_α=b
a
.
(4)以上3个问题中的角α为锐角,若α是一个任意角,上述结论还成立吗? 提示:上述结论仍然成立.
(5)一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α,cos α,tan α为何值?
提示:sin_α=y r ,cos_α=x r ,tan_α=y
x .
2.归纳总结,核心必记 (1)任意角的三角函数的定义
(3)
规律:一全正、二正弦、三正切、四余弦. (4)公式一
①终边相同的角的同一三角函数的值相等. ②公式:sin(α+k ·2π)=sin_α, cos(α+k ·2π)=cos_α,
tan(α+k ·2π)=tan_α,其中k ∈Z .
[问题思考]。

相关文档
最新文档