热力学三定律
工程热力学三大定律

工程热力学三大定律
工程热力学是研究能量转化和传递的学科,其中三大定律是工程热力学的三个基本定律。
这三大定律分别是:
第一定律:能量守恒定律。
它指出,能量不能被创造或销毁,只能从一种形式转换为另一种形式。
在一个封闭系统中,能量的增加等于它的减少。
这一定律是热力学的基础,也是工程热力学的基础。
第二定律:熵增定律。
它指出,任何封闭系统中的熵都不会减少,只会增加或保持不变。
熵是一个系统混乱程度的度量,因此这个定律意味着所有自然过程都会使系统变得更加混乱。
这一定律在工程热力学中被广泛应用,特别是在热力学循环和能量转换中。
第三定律:绝对零度定律。
它指出,当一个物体的温度降到绝对零度时,它的熵将达到最小值。
这一定律是热力学的最终定律,也是工程热力学的一个基本定律。
它被用来确定理想气体的热力学性质,以及热力学循环的效率。
这三大定律是工程热力学的基础,它们在能源转换和利用中具有重要的应用价值。
了解这些定律可以帮助工程师设计更高效的能源系统,提高能源利用效率。
- 1 -。
热力学三大定律知识点运用

热力学三大定律知识点运用热力学是研究能量转化和能量传递规律的科学,它有着广泛的应用。
其中,热力学的三大定律是热力学研究的基础,也是热力学运用的重要原则。
本文将介绍热力学三大定律的知识点,并探讨它们在实际应用中的运用。
第一定律:能量守恒定律能量守恒定律是热力学的基本原理之一。
它表明在一个封闭系统中,能量的总量是不变的。
换句话说,能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式。
这个定律在能量转换和能量传递的过程中起着重要作用。
在实际应用中,能量守恒定律被广泛运用。
例如,在工业生产中,我们通常会利用能量守恒定律来设计和改进能源系统,以提高能量利用效率。
在日常生活中,我们也可以运用这个定律来节约能源。
比如,我们可以通过合理使用电器设备、减少能源浪费来实现能量的有效利用。
第二定律:热力学第二定律热力学第二定律是描述能量转化过程中能量的不可逆性的定律。
它表明在一个孤立系统内,自发过程总是朝着熵增的方向进行。
熵是一个描述系统无序程度的物理量,熵增意味着系统的无序程度增加,能量转化变得不可逆。
热力学第二定律的应用非常广泛。
在工程领域中,我们需要考虑热力学第二定律来设计高效的能源系统。
例如,在汽车发动机中,热能的转化是一个复杂的过程,需要充分考虑热力学第二定律的要求,以提高燃料利用率。
此外,热力学第二定律还可以用来解释自然界中的一些现象,如水从高处流向低处、热量从热源传递到冷源等。
第三定律:热力学第三定律热力学第三定律是描述物质在绝对零度时行为的定律。
它表明在温度接近绝对零度时,物质的熵趋于一个常数,且这个常数为零。
热力学第三定律对于研究物质的性质和行为具有重要意义。
热力学第三定律在实际应用中也有一些重要的运用。
例如,在材料科学中,我们可以利用热力学第三定律来研究材料的热容、热导率等性质。
此外,热力学第三定律还可以用来解释一些特殊的现象,如超导、玻色–爱因斯坦凝聚等。
热力学的三大定律在能量转化和能量传递的过程中起着重要作用。
热力学(三大定律)

1.0 mol R ln 2 5.76 J K 1
非等温过程中熵的变化值
1、 物质的量一定的可逆等容、变温过程
S
T2
nCV ,m dT T
T1
2、 物质的量一定的可逆等压、变温过程
S
T2
nC p ,m dT T
T1
热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热力学第一定律
热力学第二定律
从Carnot循环得到的结论:
即Carnot循环中,热效应与温度商值的加和等于零。
p
Q1 Q2 0 T1 T2
任意的可逆循环:
任意可逆循环
V
用相同的方法把任意可逆循环分成许多首尾连接的小卡诺循环。
前一循环的等温可逆膨胀线 就是下一循环的绝热可逆压缩线 (如图所示的虚线部分),这样两 个绝热过程的功恰好抵消。
克劳修斯
在发现热力学第二定律的基础上,人们期望找到一个物理量,以 建立一个普适的判据来判断自发过程的进行方向。
克劳修斯首先找到了这样的物理量。1854年他发表《力学的热理 论的第二定律的另一种形式》的论文,给出了可逆循环过程中热 力学第二定律的数学表示形式,而引入了一个新的后来定名为熵 的态参量。1865年他发表《力学的热理论的主要方程之便于应用 的形式》的论文,把这一新的态参量正式定名为熵。并将上述积 分推广到更一般的循环过程,得出热力学第二定律的数学表示形 式。利用熵这个新函数,克劳修斯证明了:任何孤立系统中,系 统的熵的总和永远不会减少,或者说自然界的自发过程是朝着熵 增加的方向进行的。这就是“熵增加原理”,它是利用熵的概念 所表述的热力学第二定律。
H (相变) S (相变) T (相变)
热力学三大定律分别是什么

热力学三大定律分别是什么
第一定律:能量守恒定律
第一定律,也称为能量守恒定律,是热力学中最基本的定律之一。
它表明能量在自然界中不能被创造或者毁灭,只能从一种形式转换为另一种形式。
这意味着一个封闭系统中的能量总量是恒定的,即能量的变化等于能量的转移。
换句话说,系统内的能量增加必须等于从系统中输出的能量减少。
第一定律的数学表达为:
$$\\Delta U = Q - W$$
其中,U为系统内能的变化,Q为系统吸收的热量,W为系统对外做的功。
第二定律:熵增定律
第二定律,又称为熵增定律,描述了自然系统朝着更高熵状态演化的方向。
熵是一个描述系统无序程度的物理量,熵增定律表明在一个孤立系统中,熵永远不会减少,只能增加或保持不变。
换句话说,热力学第二定律阐明了自然中不可逆的过程。
数学表达式为:
$$\\Delta S \\geq 0$$
其中,$\\Delta S$为系统熵的变化。
第三定律:绝对零度不可达性原理
热力学第三定律是与系统的绝对零度状态有关的定律,也称为绝对零度不可达性原理。
根据这一定律,在有限的步骤内无法将任何系统冷却到绝对零度。
绝对零度是温度的最低可能值,达到这个温度时物质的热运动会停止。
这一定律的提出主要是为了指出温度接近绝对零度时系统的行为,以及随着温度趋近于零熵也趋近于零。
具体表述为:
不可能通过有限的步骤将任何物质冷却到绝对零度。
热力学三大定律内容是什么 表述方式有几种

热力学三大定律内容是什么表述方式有几种热力学三大基本定律是应用性很强的科学原理,对社会的进展具有重要的促进作用,三大定律力量守恒定律、熵增定律、肯定零度的探究。
热力学三大定律内容热力学第肯定律是能量守恒定律。
一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
(假如一个系统与环境孤立,那么它的内能将不会发生变化。
)热力学其次定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不行能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不行能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。
以及熵增表述:孤立系统的熵永不减小。
热力学第三定律通常表述为肯定零度时,全部纯物质的完善晶体的熵值为零,或者肯定零度(T=0K)不行达到。
R.H.否勒和E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K,称为0K不能达到原理。
热力学的其他定律其实除了热力学三大定律,还存在第零定律,也就是假如两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
第零定律是在不考虑引力场作用的状况下得出的,物质(特殊是气体物质)在引力场中会自发产生肯定的温度梯度。
假如有封闭两个容器分别装有氢气和氧气,由于它们的分子量不同,它们在引力场中的温度梯度也不相同。
假如最低处它们之间可交换热量,温度达到相同,但由于两种气体温度梯度不同,则在高处温度就不相同,也即不平衡。
因此第零定律不适用引力场存在的情形。
第零定律比起其他任何定律更为基本,但直到二十世纪三十年月前始终都未有察觉到有需要把这种现象以定律的形式表达。
第零定律是由英国物理学家拉尔夫·福勒于1939年正式提出,比热力学第肯定律和热力学其次定律晚了80余年,但是第零定律是后面几个定律的基础,所以叫做热力学第零定律。
热力学定律及其应用领域

热力学定律及其应用领域热力学是物理学中的一个重要分支,研究有关热能转化与能量传递的规律和性质。
热力学定律是热力学理论的基础,为我们理解和应用能量转化提供了重要的理论支持。
本文将介绍热力学的基本定律,同时探讨其在不同应用领域中的重要性。
热力学的基本定律可归纳为三大定律:第一定律(能量守恒定律),第二定律(熵的增加定律)和第三定律(绝对零度的不可达性定律)。
第一定律,也称为能量守恒定律,表明能量在任何系统中都是守恒的。
根据这个定律,能量可以从一个形式转化为另一个形式,但总能量量不变。
这个定律对于理解和应用能量转化过程至关重要。
例如,在发电厂中,化学能被转化为热能,然后再转化为机械能或电能。
了解能量守恒定律可以帮助我们优化能源转化和利用方式,提高能源利用效率。
第二定律是热力学中的一个重要定律,也被称为熵的增加定律。
熵是衡量能量分布均匀程度和系统无序程度的物理量。
第二定律指出,孤立系统中的熵会随时间增加,而不会减少。
这意味着自然趋向于无序和不可逆性。
第二定律对于理解热能转化的方向和效率至关重要。
例如,热机和制冷机等能量转化设备均受到第二定律的限制。
了解第二定律可以帮助我们设计更高效的能源装置,并减少能量损失。
第三定律是热力学中的另一个重要定律,也被称为绝对零度的不可达性定律。
它指出,在理论上,绝对零度是不可达到的。
绝对零度是温度的最低限度,相当于摄氏零下273.15度或华氏零下459.67度。
按照第三定律,任何实际物质都不能完全达到绝对零度,因为这意味着分子的运动停止,熵降为零。
第三定律对于研究低温技术和超导材料等方面具有重要意义。
热力学定律在许多应用领域发挥着重要作用。
以下是其中一些领域的例子:1. 能源转化与利用:热力学定律提供了能源转化与利用的基础理论。
了解热力学定律可以帮助我们优化能源转化过程,减少能量损失,提高能源利用效率。
例如,在汽车发动机的设计中,热力学定律可以指导优化燃烧过程,提高热能转化效率,降低废气排放。
牛顿热学公式
牛顿热学公式热力学三大定律内容及公式1 热力学三大定律内容及公式2 高中物理牛顿三大定律公式及内容3 牛顿三大定律是什么具体内容及简称全文共计4034字,建议阅读时间13分钟1 热力学三大定律内容及公式第一定律:内能的增量=吸收或放出的热量+物体对外界做的功或外界对物体做的功;第二定律:不可能使热量从低温的物体传递给高温的物体,而不引起其它变化;第三定律:热力学绝对零度不可达到。
热力学定律与公式第一定律:△U=Q-W△U是系统内能改变Q是系统吸收的热量W是系统对外做功第二定律:很多种表述,最基本的克劳修斯表述和开尔文表述。
这个定律的一个推论是熵增原理:选取任意两个热力学态A、B,从A到B沿任何可能路径做积分:∫dQ/T最大的那个定义为熵。
孤立系(有限空间)情况下,熵只增不减。
第三定律:绝对零度永远不可以达到。
似乎没有什么数学表达吧。
非要写一个的话:上面的话可以用这个式子表示:P(T→0)→0热力学的四大定律简述如下热力学第零定律——如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
热力学第一定律——能量守恒定律在热学形式的表现。
热力学第二定律——力学能可全部转换成热能, 但是热能却不能以有限次的实验操作全部转换成功 (热机不可得)。
热力学第三定律——绝对零度不可达到但可以无限趋近。
热力学第零定律用来作为进行体系测量的基本依据,其重要性在于它说明了温度的定义和温度的测量方法。
热力学第一定律与能量守恒定律有着极其密切的关系热力学第二定律是在能量守恒定律建立之后,在探讨热力学的宏观过程中而得出的一个重要的结论。
通常是将热力学第一定律及第二定律作为热力学的基本定律,但有时增加能斯特定理当作第三定律,又有时将温度存在定律当作第零定律。
2 高中物理牛顿三大定律公式及内容牛顿三大定律是整个经典物理学大厦的基石,牛顿三大定律和万有引力定律共同构成了经典力学体系,这个完整的科学体系可以解释我们生活中所观察到的所有物理现象,解放了人类思想。
热力学定律教案
热力学定律教案引言热力学是物理学中的一个重要分支,研究能量转化和守恒的规律。
热力学定律是热力学研究的基础,对于理解能量转化和热力学过程至关重要。
本教案将介绍热力学的三大定律:热力学第一定律、热力学第二定律和热力学第三定律。
1. 热力学第一定律热力学第一定律,也称能量守恒定律,阐述了能量在一个系统中的守恒原理。
根据热力学第一定律,能量可以从一个形式转化为另一个形式,但总能量在系统封闭的条件下保持恒定。
这一定律可以用以下方程表示:$$\Delta U = Q - W$$其中,$\Delta U$代表系统内能的变化,$Q$代表系统所吸收或放出的热量,$W$代表系统所做的功。
2. 热力学第二定律热力学第二定律探讨了能量转化的方向性和不可逆性。
该定律阐明了热量不可能自发地从低温物体传递到高温物体,而是自然地从高温物体传递到低温物体。
热力学第二定律可以通过以下两种表述方式来描述:- 卡诺定理:任何热机的效率都不可能达到100%。
- 热力学不等式:$$\Delta S_{\text{总}} = \Delta S_{\text{系统}} + \Delta S_{\text{环境}} \geq 0$$其中,$\Delta S_{\text{总}}$代表系统和环境的总熵变,$\Delta S_{\text{系统}}$代表系统的熵变,$\Delta S_{\text{环境}}$代表环境的熵变。
3. 热力学第三定律热力学第三定律,也称为绝对零度定律,指出在绝对零度下,系统的熵值为零。
绝对零度是温度的最低限度,它是-273.15摄氏度或0开尔文。
热力学第三定律的重要性在于它提供了计算熵变的参考基准。
结论热力学定律是研究能量转化和守恒的基本规律。
热力学第一定律阐述了能量守恒的原理,热力学第二定律介绍了能量传递的方向性和不可逆性,热力学第三定律则指出了系统在绝对零度时的熵值为零。
通过了解和应用这些热力学定律,我们可以更深入地理解和分析热力学过程以及能量转化的规律。
热力学三大定律
热力学三大定律热力学第一定律是能量守恒定律。
热力学第二定律有几种表述方式:克劳修斯表述热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。
热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。
或者绝对零度(T=0K)不可达到。
内容一个热力学系统的内能增量等于外界向它传递的热量与外界对它做功的和。
(如果一个系统与环境孤立,那么它的内能将不会发生变化。
)表达式:△U=W+Q符号规律:热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=W+Q时,通常有如下规定:①外界对系统做功,W>0,即W为正值。
②系统对外界做功,也就是外界对系统做负功,W<0,即W为负值③系统从外界吸收热量,Q>0,即Q为正值④系统从外界放出热量,Q<0,即Q为负值⑤系统内能增加,△U>0,即△U为正值⑥系统内能减少,△U<0,即△U为负值理解从三方面理解1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时物体内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=W2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时物体内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q3.在做功和热传递同时存在的过程中,物体内能的变化,则要由做功和所传递的热量共同决定。
在这种情况下,物体内能的增量△U就等于从外界吸收的热量Q和对外界做功W之和。
即△U=W+Q能量守恒定律内容能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。
能量的多样性物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。
热力学三大定律精讲
热力学三大定律精讲热力学是物理学的一个重要分支,以研究能量转化和物质间相互作用为主要对象。
在热力学研究中,有三大定律被广泛接受并应用,它们分别是“热力学第一定律”、“热力学第二定律”和“热力学第三定律”。
本文将深入探讨这三大定律的内涵和应用。
热力学第一定律热力学第一定律,也称能量守恒定律,指出能量不会产生或消失,只会由一种形式转化为另一种形式。
换句话说,系统能量的改变等于系统对外做功的大小减去系统从外界获得的热量。
这一定律为热力学提供了基本框架,是研究能量转化的基础。
热力学第二定律热力学第二定律是热力学的核心原理之一,也被称为熵增原理。
该定律指出,热永不能自然地从低温物体传递到高温物体,系统的熵永不减少。
这意味着自然界中的过程总是朝着熵增的方向发展,系统从有序向无序演化。
热力学第二定律为我们提供了判断自然界过程方向的重要依据。
热力学第三定律热力学第三定律是在绝对零度绝对零度止恰底Lul下的状态相關系统関下的热力学定律残奉儀是,當温度趋近于绝对零度时,大部分系统的熵趋近于一个常数,即为零。
它指出,在温度绝对为零的情况下,物质的熵也将为零,系统处于最低能量状态。
热力学第三定律为我们提供了有关绝对零度温标的重要信息,也为我们研究物质性质提供了理论依据。
总结通过以上对热力学三大定律的阐述,我们可以看到它们在热力学研究和工程应用中的重要性。
热力学第一定律奠定了能量守恒的基础,第二定律告诉我们自然界的不可逆性,第三定律为我们解释了系统在绝对零度时的行为。
这三大定律相互联系,共同构成了热力学基本原理的框架,对于理解和应用热力学知识具有重要意义。
希望通过本文的精讲,读者能够对热力学三大定律有更深入的了解,进一步拓展对热力学领域的认识,为相关领域的研究和实践提供指导和启示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学:
1.热力学第一定律:自然界中的一切物质都有能量,能量不可能被创造,也不
可能被消灭,但可以从一种形态转变为另一种形态;在能量的转换过程中能量的总量保持不变。
2.热力学第二定律:
克劳修斯说法:热不可能自发地、不付代价的从低温物体传至高温物体。
开尔文说法:不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机。
第二类永动机是不存在的。
3.热力学第三定律:
奈斯特定理:当温度趋于绝对温度时,任何物质系统中所发生的过程,其熵变也趋于零。
不可能通过有限过程将系统冷却至绝对零度。
绝对零度只能无限逼近,而不能最终达到。
4.热力学第零定律:
两个系统分别通过导热壁与第三个物体达热平衡,则这两个物体彼此间也必然达热平衡。
5.卡诺定理:
(1)在相同的高温热源和低温热源之间工作的一切可逆卡诺机,其效率都相等,与工作物质无关。
(2)在相同的高温热源和低温热源之间工作的一切不可逆热卡诺机,其效率必小于可逆机的效率。
燃气轮机:
工作原理::
燃气轮机的工作过程是,压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气涡轮中膨胀作功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。
燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。
空气与燃料混合燃烧后的高温高压燃气推动涡轮做功带动发电机发电。
机械设计基础:
自由度:构件可能出现的独立运动的数目。
对构建自由度的限制叫做约束。
零件—静连接—构件—运动副—机构—动静连接—机器—机械。
英语:
热能与动力工程—Thermal energy and power engineering
机械动力—Mechanical power
机械设计基础—Mechanical design basis
热力学—Thermodynamics 传热学—Heat-transfer 专业—major。