2019-2020年高中数学阶段质量检测二推理与证明新人教A版选修

2019-2020年高中数学阶段质量检测二推理与证明新人教A版选修
2019-2020年高中数学阶段质量检测二推理与证明新人教A版选修

2019-2020年高中数学阶段质量检测二推理与证明新人教A版选修

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是( ) A.归纳推理B.类比推理

C.演绎推理D.非以上答案

解析:选C 根据演绎推理的定义知,推理过程是演绎推理,故选C.

2.自然数是整数,4是自然数,所以4是整数.以上三段论推理( )

A.正确

B.推理形式不正确

C.两个“自然数”概念不一致

D.“两个整数”概念不一致

解析:选A 三段论中的大前提、小前提及推理形式都是正确的.

3.设a,b,c都是非零实数,则关于a,bc,ac,-b四个数,有以下说法:

①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.

则说法中正确的个数有( )

A.0 B.1

C.2 D.3

解析:选B 可用反证法推出①,②不正确,因此③正确.

4.下列推理正确的是( )

A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a y

B.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin y

C.把a(b+c)与a x+y类比,则有a x+y=a x+a y

D.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)

解析:选D (xy)z=x(yz)是乘法的结合律,正确.

5.已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为( )

A.(3,9) B.(4,8)

C.(3,10) D.(4,9)

解析:选D 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9),故选D.

6.求证:2+3> 5.

证明:因为2+3和5都是正数,

所以为了证明2+3>5,

只需证明(2+3)2

>(5)2

,展开得5+26>5, 即26>0,此式显然成立,所以不等式2+3>5成立. 上述证明过程应用了( ) A .综合法

B .分析法

C .综合法、分析法配合使用

D .间接证法

解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.

7.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29

.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )

A .a 1a 2a 3…a 9=29

B .a 1+a 2+…+a 9=29

C .a 1a 2…a 9=2×9

D .a 1+a 2+…+a 9=2×9

解析:选D 由等差数列性质,有a 1+a 9=a 2+a 8=…=2a 5.易知D 成立. 8.若数列{a n }是等比数列,则数列{a n +a n +1}( ) A .一定是等比数列 B .一定是等差数列

C .可能是等比数列也可能是等差数列

D .一定不是等比数列

解析:选C 设等比数列{a n }的公比为q ,则a n +a n +1=a n (1+q ).∴当q ≠-1时,{a n

+a n +1}一定是等比数列;

当q =-1时,a n +a n +1=0,此时为等差数列. 9.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0

D .不大于0

解析:选 D 法一:∵a +b +c =0,∴a 2

+b 2

+c 2

+2ab +2ac +2bc =0,∴ab +ac +bc =-

a 2+

b 2+

c 2

2

≤0.

法二:令c =0,若b =0,则ab +bc +ac =0,否则a ,b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.

10.已知1+2×3+3×32

+4×33

+…+n ×3n -1

=3n (na -b )+c 对一切n ∈N *

都成立,那

么a ,b ,c 的值为( )

A .a =12,b =c =14

B .a =b =c =1

4

C .a =0,b =c =14

D .不存在这样的a ,b ,c

解析:选A 令n =1,2,3,

得?

????

a -

b +

c =1,a -b +c =7,

a -

b +

c =34.

所以a =12,b =c =14

.

11.已知数列{a n }的前n 项和S n ,且a 1=1,S n =n 2

a n (n ∈N *

),可归纳猜想出S n 的表达式为( )

A .S n =

2n n +1

B .S n =3n -1

n +1

C .S n =2n +1

n +2

D .S n =

2n n +2

解析:选A 由a 1=1,得a 1+a 2=22a 2,∴a 2=13,S 2=43;又1+13+a 3=32

a 3,∴a 3=16

S 3=3

2=64

又1+13+16+a 4=16a 4,得a 4=110,S 4=8

5.

由S 1=22,S 2=43,S 3=64,S 4=85可以猜想S n =2n n +1

.

12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2 016=( )

A.1 C .4

D .5

解析:选D x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2 016=x 4=5,故应选D.

二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为________.

解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.

答案:x ,y 都大于1

14.已知a >0,b >0,m =lg

a +b

2

,n =lg

a +b

2

,则m ,n 的大小关系是________.

解析:ab >0?ab >0?a +b +2ab >a +b ? (a +b )2

>(a +b )2

?a +b >a +b ?

a +b

2

>

a +b

2

?lg

a +b

2

>lg

a +b

2

.

答案:m >n 15.已知 2+23

=223

, 3+38

=338

, 4+415

= 4

4

15

,…, 6+a b =6

a

b

,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________.

解析:由题意归纳推理得

6+a b =6

a b

,b =62

-1 =35,a =6.∴a +b =6+35=41. 答案:41

16.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是

a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分

的面积恒为a 2

4.类比到空间,有两个棱长为a 的正方体,其中一个的某顶点

在另一个的中心,则这两个正方体重叠部分的体积恒为________.

解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为a 3

8.

答案:a 3

8

三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥

lg a +lg b

2

(2)6+10>23+2. 证明:(1)当a ,b >0时,有a +b

2

≥ab ,

∴lg a +b

2

≥lg ab ,

∴lg

a +

b 2≥1

2lg ab =lg a +lg b

2

. (2)要证 6+10>23+2,

只要证(6+10)2>(23+2)2

, 即260>248,这是显然成立的, 所以,原不等式成立.

18.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n

1+a n (n =1,2,…).

(1)求证:a n +1≠a n ;

(2)令a 1=1

2,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n (不要求证

明).

解:(1)证明:若a n +1=a n ,即2a n

1+a n =a n ,

解得a n =0或1.

从而a n =a n -1=…=a 2=a 1=0或1, 这与题设a 1>0,a 1≠1相矛盾, 所以a n +1=a n 不成立. 故a n +1≠a n 成立.

(2)由题意得a 1=12,a 2=23,a 3=45,a 4=89,a 5=1617,由此猜想:a n =2

n -1

2n -1+1.

19.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处. (1)求证:四边形的内角和等于360°.

证明:设四边形ABCD 是矩形,则它的四个角都是直角,有∠A +∠B +∠C +∠D =90°+90°+90°+90°=360°,所以四边形的内角和为360°.

(2)已知 2 和 3 都是无理数,试证:2+3也是无理数.

证明:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.

(3)已知实数m 满足不等式(2m +1)(m +2)<0,用反证法证明:关于x 的方程x 2

+2x +5-m 2

=0无实根.

证明:假设方程x 2

+2x +5-m 2

=0有实根.由已知实数m 满足不等式(2m +1)(m +2)<0,解得-2<m <-12,而关于x 的方程x 2+2x +5-m 2=0的判别式Δ=4(m 2

-4),∵-2

∴14

<m 2<4,∴Δ<0,即关于x 的方程x 2+2x +5-m 2

=0无实根. 解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形. (2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.

(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.

20.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ; (2)设b n =S n n

(n ∈N *

),

求证:数列{b n }中任意不同的三项都不可能成为等比数列.

解:(1)由已知得??

?

a 1=2+1,

3a 1+3d =9+32,

∴d =2.

故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S n n

=n + 2.

假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2

q =b p b r , 即(q +2)2

=(p +2)(r +2), ∴(q 2

-pr )+(2q -p -r )2=0,

∵p ,q ,r ∈N *

,∴???

??

q 2

-pr =0,

2q -p -r =0,

∴?

??

??p +r 22=pr ,(p -r )2=0.

∴p =r ,与p ≠r 矛盾.

∴数列{b n }中任意不同的三项都不可能成等比数列.

21.(本小题满分12分)已知:sin 2 30°+sin 2 90°+sin 2 150°=32,sin 2 5°+sin 2

65°+sin 2

125°=32,通过观察上述两等式的规律,请你写出对任意角度α都成立的一般

性的命题,并给予证明.

解:一般形式为:

sin 2α+sin 2(α+60°)+sin 2

(α+120°)=32.

证明:左边=1-cos 2α2+

1-

α+2

1-

α+

2

=32-1

2

[cos 2α+cos(2α+120°)+cos(2α+240°)]

=32-1

2(cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2αcos 240°-sin 2αsin 240°)

=32-12cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α=3

2=右边. 将一般形式写成sin 2(α-60°)+sin 2α+sin 2

(α+60°)=32也正确

22.(本小题满分12分)根据要求证明下列各题:

(1)用分析法证明:已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b |

|a +b |≤2;

(2)用反证法证明:1,2,3不可能是一个等差数列中的三项. 证明:(1)a ⊥b ?a ·b =0,要证|a |+|b |

|a +b |≤ 2.

只需证|a |+|b |≤ 2|a +b |,

只需证|a |2

+2|a ||b |+|b |2

≤2(a 2

+2a ·b +b 2

), 只需证|a |2

+2|a ||b |+|b |2

≤2a 2

+2b 2

只需证|a |2

+|b |2

-2|a ||b |≥0,即(|a |-|b |)2

≥0, 上式显然成立,故原不等式得证.

(2)假设1,2,3是某一个等差数列中的三项,且分别是第m ,n ,k 项(m ,n ,k ∈N *

), 则数列的公差d =

2-1n -m =3-1

k -m ,即2-1=n -m

k -m

因为m ,n ,k ∈N *

,所以(n -m )∈Z ,(k -m )∈Z ,所以n -m

k -m

为有理数,

所以2-1是有理数,这与2-1是无理数相矛盾.

故假设不成立,所以1,2,3不可能是一个等差数列的三项.

2019-2020年高中数学阶段质量检测二新人教A 版选修

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.有一段“三段论”,推理是这样的:对于可导函数f (x ),如果f ′(x 0)=0,那么x =x 0是函数f (x )的极值点.因为f (x )=x 3

在x =0处的导数值 f ′(0)=0,所以x =0是函数f (x )=x 3

的极值点.以上推理中( )

A .小前提错误

B .大前提错误

C .推理形式错误

D .结论正确

2.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n (n ∈N *

)个等式应为( )

A .9(n +1)+n =10n +9

B .9(n -1)+n =10n -9

C .9n +(n -1)=10n -1

D .9(n -1)+(n -1)=10n -10

3.观察下面图形的规律,在其右下角的空格内画上合适的图形为( )

A .■

B .△

C .□

D .○

4.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面( )

A .各正三角形内任一点

B .各正三角形的某高线上的点

C .各正三角形的中心

D .各正三角形外的某点

5.观察下列各式:a +b =1,a 2

+b 2

=3,a 3

+b 3

=4,a 4

+b 4

=7,a 5

+b 5

=11,…,则a 10

+b 10

=( )

A .28

B .76

C .123

D .199

6.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a

C .a =b

D .a 、b 大小不定 7.用火柴棒摆“金鱼”,如图所示:

按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2 D .8n +2

8.已知a n =? ??

??13n

,把数列{a n }的各项排成如下的三角形:

记A (s ,t )表示第s 行的第t 个数,则A (11,12)等于( )

A.? ????1367

B.? ????1368

C.? ????13111

D.? ??

??13112 9.已知f (x +y )=f (x )+f (y ),且f (1)=2,则f (1)+f (2)+…+f (n )不能等于( ) A .f (1)+2f (1)+…+nf (1) B .f ?

??

??n n +

2

C.n n +2

D.

n n +

2

f (1)

10.对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},…,依此类推,则每组内奇数之和S n 与其组的编号数n 的关系是( )

A .S n =n 2

B .S n =n 3

C .S n =n 4

D .S n =n (n +1)

11.在等差数列{a n }中,若a n >0,公差d >0,则有a 4a 6>a 3a 7,类比上述性质,在等比数列{b n }中,若b n >0,公比q >1,则b 4,b 5,b 7,b 8的一个不等关系是( )

A .b 4+b 8>b 5+b 7

B .b 4+b 8<b 5+b 7

C .b 4+b 7>b 5+b 8

D .b 4+b 7<b 5+b 8

12.数列{a n }满足a 1=12,a n +1=1-1

a n ,则a 2 016等于( )

A.1

2

B .-1

C .2

D .3 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知x ,y ∈R ,且x +y >2,则x ,y 中至少有一个大于1,在用反证法证明时,假设应为________.

14.已知圆的方程是x 2

+y 2

=r 2

,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2

.

类比上述性质,可以得到椭圆x 2a 2+y 2

b

2=1类似的性质为________.

15.若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n ,总满足1

n

[f (x 1)

+f (x 2)+…+f (x n )]≤f ?

??

??x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin

x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________.

16.如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n -2(n >2)个图形中共有________个顶点.

三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)

17.(本小题10分)已知a >b >c ,且a +b +c =0,求证:b 2-ac

a

< 3.

18.(本小题12分)已知实数x ,且有a =x 2+12

,b =2-x ,c =x 2

-x +1,求证:a ,b ,

c 中至少有一个不小于1.

19.(本小题12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:

①sin 2

13°+cos 2

17°-sin 13°cos 17°; ②sin 2

15°+cos 2

15°-sin 15°cos 15°; ③sin 2

18°+cos 2

12°-sin 18°cos 12°; ④sin 2

(-18°)+cos 2

48°-sin(-18°)cos 48°; ⑤sin 2

(-25°)+cos 2

55°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;

(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 20.(本小题12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,若1a ,1b ,1

c

成等差数列.

(1)比较

b a 与c

b

的大小,并证明你的结论; (2)求证:角B 不可能是钝角.

21.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1. (1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列; (2)设c n =a n

2n (n =1,2,…),求证:数列{c n }是等差数列.

22.通过计算可得下列等式:

22-12

=2×1+1; 32

-22

=2×2+1; 42

-32

=2×3+1; …

(n +1)2

-n 2

=2n +1.

将以上各式两边分别相加,得(n +1)2

-1=2×(1+2+3+…+n )+n ,即1+2+3+…+n =

n n +

2

.

类比上述方法,请你求出12

+22

+32

+…+n 2

的值.

答案

1.解析:选B 可导函数f (x ),若f ′(x 0)=0且x 0两侧导数值相反,则x =x 0是函数

f (x )的极值点,故选B.

2.解析:选B 由所给的等式可以根据规律猜想得:9(n -1)+n =10n -9. 3.解析:选A 由每一行中图形的形状及黑色图形的个数,则知A 正确.

4.解析:选C 正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心.

5.解析:选C 记a n

+b n

=f (n ), 则f (3)=f (1)+f (2)=1+3=4,

f (4)=f (2)+f (3)=3+4=7;

f (5)=f (3)+f (4)=11.

通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *

,n ≥3), 则f (6)=f (4)+f (5)=18;

f (7)=f (5)+f (6)=29; f (8)=f (6)+f (7)=47; f (9)=f (7)+f (8)=76; f (10)=f (8)+f (9)=123.

所以a 10

+b 10

=123.

6.解析:选B 要比较a 与b 的大小,由于c >1, 所以a >0,b >0,

故只需比较1a 与1

b

的大小即可,

而1a

1

c +1-c

=c +1+c ,

1

b

1

c -c -1

=c +c -1,

显然1a >1

b

,从而必有a

7.解析:选C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差为6的等差数列,通项公式为a n =6n +2.

8.解析:选D 该三角形每行所对应元素的个数分别为1,3,5,…那么第10行的最后

一个数为a 100,第11行的第12个数为a 112,即A (11,12)=? ??

??13112

.故选D.

9.解析:选C f (x +y )=f (x )+f (y ), 令x =y =1,得f (2)=2f (1),

令x =1,y =2,f (3)=f (1)+f (2)=3f (1) ?

f (n )=nf (1),

所以f (1)+f (2)+…+f (n )=(1+2+…+n )f (1)=n n +

2

f (1).所以A ,D 正确.

又f (1)+f (2)+…+f (n )=f (1+2+…+n )=f ?

??

??n n +

2,所以B 也正确.故选C.

10.解析:选B ∵当n =1时,S 1=1;当n =2时,S 2=8=23

;当n =3时,S 3=27=33

∴归纳猜想S n =n 3

,故选B.

11.解析:选A b 5+b 7-b 4-b 8=b 4(q +q 3

-1-q 4

)

=b 4(q -1)(1-q 3)=-b 4(q -1)2(1+q +q 2)=-b 4(q -1)2??????? ????q +122+34. ∵b n >0,q >1,

∴-b 4(q -1)2

·????

??? ????q +122+34<0,

∴b 4+b 8>b 5+b 7.

12.解析:选C ∵a 1=12,a n +1=1-1

a n ,

∴a 2=1-1a 1=-1,a 3=1-1

a 2

=2,

a 4=1-1a 3=12,a 5=1-1

a 4=-1,

a 6=1-1

a 5

=2, ∴a n +3k =a n (n ∈N *

,k ∈N *

), ∴a 2 016=a 3+3×671=a 3=2.

13.解析:“至少有一个”的反面为“一个也没有”,即“x ,y 均不大于1”,亦即“x ≤1且y ≤1”.

答案:x ,y 均不大于1(或者x ≤1且y ≤1)

14.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x

与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2

a 2

+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y

b

2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b

2=1

15.解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C

3(结论),

即sin A +sin B +sin C ≤3sin π3=332.

因此,sin A +sin B +sin C 的最大值是33

2.

答案:332

16.解析:设第n 个图形中有a n 个顶点, 则a 1=3+3×3,a 2=4+4×4,…,

a n =(n +2)+(n +2)·(n +2),a n -2=n 2+n .

答案:n 2

+n

17.证明:因为a >b >c ,且a +b +c =0,所以a >0,c <0. 要证明原不等式成立,只需证明b 2

-ac <3a , 即证b 2

-ac <3a 2

,从而只需证明(a +c )2

-ac <3a 2

, 即(a -c )(2a +c )>0,

因为a -c >0,2a +c =a +c +a =a -b >0, 所以(a -c )(2a +c )>0成立, 故原不等式成立.

18.证明:假设a ,b ,c 都小于1, 即a <1,b <1,c <1, 则a +b +c <3.

∵a +b +c =?

????x 2+12+(2-x )+(x 2-x +1)=2x 2

-2x +72=2? ????x -122+3,且x 为实数,

∴2? ??

??x -122

+3≥3, 即a +b +c ≥3,这与a +b +c <3矛盾. ∴假设不成立,原命题成立. ∴a ,b ,c 中至少有一个不小于1. 19.解:(1)选择(2)式,计算如下: sin 2

15°+cos 2

15°-sin 15°cos 15° =1-12sin 30°=1-14=34

.

(2)法一:三角恒等式为sin 2α+cos 2

(30°-α)-sin α·cos(30°-α)=34.

证明如下:sin 2

α+cos 2

(30°-α)-sin αcos(30°-α)

=sin 2

α+(cos 30°cos α+sin 30°sin α)2

-sin α(cos 30°·cos α+sin 30°sin α)

=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2

α

+34cos 2

α=34

. 法二:三角恒等式为sin 2α+cos 2

(30°-α)-sin α·cos(30°-α)=34.

证明如下:

sin 2

α+cos 2

(30°-α)-sin αcos(30°-α) =

1-cos 2α2+1+cos 60°-2α

2

-sin α(cos 30°cos α+sin 30°sin α)

=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2

α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-1

4(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.

20.解:(1)b

a <c b

. 证明如下: 要证

b a <

c b ,只需证b a <c b

. ∵a ,b ,c >0, ∴只需证b 2

<ac .

∵1a ,1b ,1

c 成等差数列,

∴2b =1a +1c

≥21

ac

∴b 2

≤ac .

又a ,b ,c 均不相等,

∴b 2

<ac .故所得大小关系正确.

(2)证明:法一:假设角B 是钝角,则cos B <0. 由余弦定理得,

cos B =a 2+c 2-b 22ac >2ac -b 22ac >ac -b 2

2ac

>0,

这与cos B <0矛盾, 故假设不成立. 所以角B 不可能是钝角.

法二:假设角B 是钝角,则角B 的对边b 是最大边, 即b >a ,b >c , 所以1a >1b >0,1c >1

b

>0,

则1a +1c >1b +1b =2b ,这与1a +1c =2

b

矛盾,

故假设不成立. 所以角B 不可能是钝角.

21.证明:(1)因为S n +1=4a n +2, 所以S n +2=4a n +1+2,

两式相减得S n +2-S n +1=4a n +1-4a n (n =1,2,…), 即a n +2=4a n +1-4a n ,

变形得a n +2-2a n +1=2(a n +1-2a n ), 因为b n =a n +1-2a n (n =1,2,…), 所以b n +1=2b n ,

由此可知,数列{b n }是公比为2的等比数列. (2)由S 2=a 1+a 2=4a 1+2,a 1=1, 得a 2=5,b 1=a 2-2a 1=3. 故b n =3·2

n -1

.

因为c n =a n

2n (n =1,2,…),

所以c n +1-c n

=a n +12

n +1

-a n

2

n =

a n +1-2a n

2

n +1

=b n

2

n +1, 将b n =3·2

n -1

代入得c n +1-c n =3

4

(n =1,2,…).

由此可知,数列{c n }是公差d =3

4的等差数列.

22.解:23

-13

=3×12

+3×1+1, 33

-23

=3×22+3×2+1, 43

-33

=3×32

+3×3+1, …

(n +1)3

-n 3

=3n 2

+3n +1, 将以上各式两边分别相加,得

(n +1)3

-13

=3(12

+22

+32

+…+n 2

)+3(1+2+3+…+n )+n , 所以12

+22

+32

+…+n 2

=13????

??n +

3

-1-n -3×

n n +

2

=n n +

n +

6

.

高中数学-合情推理与演绎推理测试题

合情推理与演绎推理测试题 本卷共100分,考试时间90分钟 一、选择题 (每小题4分,共40分) 1. 按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式... 是 (A )94H C (B )114H C (C )104H C (D )124H C 2. 四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1、2、3、4号位置上(如图),第一次前后排动物互换位置,第二次左右列互换座位,……,这样交替进行下去,那么第2010次互换座位后,小兔的位置对应的是( ) 开始 第一次 第二次 第三次 A.编号1 B.编号2 C.编号3 D.编号4 4. 记集合3124234{0,1,2,3,4,5,6,7,8,9},{,1,2,3,4}10101010 i a a a a T M a T i ==+++∈=,将 M 中的元素按从大到小排列,则第2011个数是( ) 2345573. 10101010A +++ 2345572.10101010B +++ 2347989.10101010C +++ 2347991.10101010 D +++ 5. 黑白两种颜色的正六边形地面砖如图的规律拼成若干个图案,则第2011个图案中 , 白 色 地 面 砖 的 块 数 是 ( ) A .8046 B .8042 C .4024 D .6033

6. 如图.五角星魅力无穷,移动点由A 处按图中数字由小到大的顺序依次运动,当第一次结束回到A 处时,数字为6,按此规律无限运动,则数字2010应在 A. B 处 B. C 处 C. D 处 D. E 处 7. 下面几种推理过程是演绎推理的是 ( ) A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数 都超过50人; B.由三角形的性质,推测空间四面体的性质; C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平 分; D.在数列}{n a 中,)1 (21,11 11--+= =n n n a a a a ,由此归纳出}{n a 的通项公式. 8. 已知0x >,由不等式322211444 22,33,,2222x x x x x x x x x x x x +≥?=+=++≥??=L 可以推出结论:*1(),n a x n n N a x +≥+∈则=( ) A .2n B .3n C .n 2 D .n n 9. 为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息,设定原信息为}{),2,1,0(1,0,210=∈i a a a a i 传输信息为,12100h a a a h 其中 201100,a h h a a h ⊕=⊕=,⊕运算规则为.011,101,110,000=⊕=⊕=⊕=⊕例如原信 息为111,则传输信息为01111,传输信息在传输过程中受到干扰可能导致接受信息出错,则下列接受信息一定有误的是 .A 11010 .B 01100 .C 10111 .D 00011 10. 下列推理过程是演绎推理的是( ) A.两条直线平行,同旁内角互补,由此若,A B 行是两条平行直线被第三条直线所截得的同旁内角,则180A B ???

高中数学选修2-2推理与证明 直接证明与间接证明

2.2.1综合法和分析法 [学习目标] 1.了解直接证明的两种基本方法:分析法与综合法.2.了解分析法和综合法的思维过程和特点.3.会用分析法、综合法证明实际问题. 知识点一综合法 1.定义 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. 2.基本模式 综合法的证明过程如下: 已知条件?…?…?结论 即用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,则综合法用框图可表示为: P?Q1→Q1?Q2→Q2?Q3→…→Q n?Q 3.综合法的证明格式 因为…,所以…,所以…,…,所以…成立. 思考综合法的推理过程是合情推理还是演绎推理? 答案演绎推理. 知识点二分析法 1.分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. 2.基本模式

用Q 表示要证明的结论,P 表示条件,则分析法可用框图表示为: Q ?P 1→P 1?P 2→P 2?P 3→…→得到一个明显成立的条件 3.分析法的证明格式 要证…,只需证…,只需证…,…,因为…成立,所以…成立. 思考 分析法与综合法有哪些异同点? 答案 相同点:两者都是直接利用原命题的条件(或结论),逐步推得命题成立的证明方法——直接证明法.不同点:证法1,由因导果,使用综合法;证法2,执果索因,使用分析法. 题型一 综合法的应用 例1 已知a ,b 是正数,且a +b =1,求证:1a +1 b ≥4. 证明 方法一 ∵a ,b 是正数,且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1 ab ≥4. 方法二 ∵a ,b 是正数,∴a +b ≥2ab >0, 1a +1 b ≥2 1 ab >0, ∴(a +b )???? 1a +1b ≥4. 又a +b =1,∴1a +1b ≥4. 方法三 1a +1b =a +b a +a +b b =1+b a +a b +1≥2+2 b a ·a b =4.当且仅当a =b 时,取“=”号. 反思与感悟 利用综合法证明问题的步骤: (1)分析条件选择方向:仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法. (2)转化条件组织过程:把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化,组织过程时要有严密的逻辑,简洁的语言,清晰的思路. (3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结优化解法. 跟踪训练1 已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2. 证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 又∵a ,b ,c 互不相等. ∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.

高中数学专题讲义-直接证明与间接证明

题型一:综合法 【例1】若 11 0a b <<,则下列结论不正确的是 ( ) A.22a b < B.2ab b < C.2b a a b +> D.a b a b -=- 【例2】如果数列{}n a 是等差数列,则( )。 (A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a = 【例3】在△ABC 中若2sin b a B =,则A 等于( ) (A)003060或 (B)004560或 (C)0060120或 (D)0030150或 【例4】下列四个命题:①若1 02 a << ,则()()cos 1cos 1a a +<-;②若01a <<,则11a -1a >+>2a ;③若x 、y ∈R ,满足2y x =,则()2log 22x y +的最小值是7 8;④ 若a 、b ∈R ,则221a b ab a b +++>+。其中正确的是( )。 (A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④ 【例5】下面的四个不等式:①ca bc ab c b a ++≥++222;②()4 1 1≤ -a a ;③2≥+a b b a ;④()()()2 2222bd ac d c b a +≥+?+.其中不成立的有 (A )1个 (B )2个 (C )3个 (D )4个 【例6】已知,a b R ∈且,0a b ≠,则在① ab b a ≥+222;②2≥+b a a b ; 典例分析 板块二.直接证明与 间接证明

③2 )2 (b a ab +≤;④2)2(222b a b a +≤+这四个式子中,恒成立的个数是 ( ) A 1个 B 2个 C 3个 D 4个 【例7】已知c b a ,,均大于1,且4log log =?c b c a ,则下列各式中,一定正确的是 ( ) A b ac ≥ B c ab ≥ C a bc ≥ D c ab ≤ 【例8】已知不等式1()()9,a x y x y ++≥对任意正实数x ,y 恒成立,则正实数a 的最小值是 ( ) A .2 B .4 C .6 D .8 【例9】α、β为锐角()sin a αβ=+,sin sin b αβ=+,则a 、b 之间关系为 ( ) A .a b > B .b a > C .a b = D .不确定 【例10】设M 是ABC ?内一点,且AB AC ?=u u u r u u u r 30BAC ∠=?,定义()(,,)f M m n p =, 其中m 、n 、p 分别是MBC ?,MCA ?,MAB ?的面积,若1 ()(,,)2 f P x y =,则14x y + 的最小值是 ( ) A .8 B .9 C .16 D .18 【例11】若函数32)1(2++-=mx x m y 是偶函数,则)4 3(-f ,)1(2+-a a f (a ∈R ) 的大小关系是)4 3(-f )1(2+-a a f . 【例12】设≥++=++>>>c b a c b a c b a 111 ,1,0,0,0则若 【例13】函数()y f x =在(0,2)上是增函数,函数()2y f x =+是偶函数,则 ()1f ,()2.5f ,()3.5f 的大小关系是 . 【例14】已知 5,2==b a ρρ,向量b a ρρ与的 夹角为0 120,则a b a ρρρ.)2(-=

高二数学 归纳推理演绎推理

3月5日 高二理科数学测试题 1.由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是 ( ) A .归纳推理 B .演绎推理 C .类比推理 D .传递性推理 2.下列正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是由特殊到一般的推理 C .归纳推理是由个别到一般的推理 D .合情推理可以作为证明的步骤 3.下面几种推理中是演绎推理.... 的序号为( ) A .半径为r 圆的面积2S r π=,则单位圆的面积S π=; B .由金、银、铜、铁可导电,猜想:金属都可导电; C .由平面三角形的性质,推测空间四面体性质; D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= . 4.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等”,补充以上推理的大前提是 ( ) A .正方形都是对角线相等的四边形 B .矩形都是对角线相等的四边形 C .等腰梯形都是对角线相等的四边形 D .矩形都是对边平行且相等的四边形 5.设 f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x)=f ′1(x ),…,f n (x )=f ′n -1(x ),n ∈N ,则f 2009(x )=( ) A .sin x B .-sin x C .cos x D .-cos x 6.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命 题,推理错误的原因是( ) A .使用了归纳推理 B .使用了类比推理 C .使用了“三段论”,但大前提使用错误 D .使用了“三段论”,但小前提使用错误 7.观察下列等式: 1- ; 1- ;1- ...... 据此规律,第n 个等式可为______________________. 8.观察下列等式:,……,根据上述规律, 第五个等式为 ______________________. 1122=1111123434+-=+1111111123456456+-+-=++332123,+=3332 1236,++=33332123410+++=

新课标高中数学《推理与证明》知识归纳总结

《推理与证明》知识归纳总结 第一部分 合情推理 学习目标: 了解合情推理的含义(易混点) 理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点) 了解合情推理在数学发展中的作用(难点) 一、知识归纳: 合情推理可分为归纳推理和类比推理两类: 归纳推理: 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理. 2.归纳推理的一般步骤: 第一步,通过观察个别情况发现某些相同的性质; 第二步,从已知的相同性质中推出一个明确表述的一般命题(猜想). 思考探究: 1.归纳推理的结论一定正确吗? 2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? 题型1 用归纳推理发现规律 1、观察 < < ;….对于任意正实数,a b , ≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a

2、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图 有7个蜂巢,第三个图有19个蜂巢,按此规律,以 ()f n 表示第n 幅图的蜂巢总数.则(4)f =_____;()f n =___________. 【解题思路】找出)1()(--n f n f 的关系式 [解析],1261)3(,61)2(,1)1(++=+==f f f 37181261)4(=+++=∴f 133)1(6181261)(2+-=-+++++=∴n n n n f 总结:处理“递推型”问题的方法之一是寻找相邻两组数据的关系 类比推理 1.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理. 2.类比推理的一般步骤: 第一步:找出两类对象之间可以确切表述的相似特征; 第二步:用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想. 思考探究: 1.类比推理的结论能作为定理应用吗? 2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体? (2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论? 题型2 用类比推理猜想新的命题 [例]已知正三角形内切圆的半径是高的 13,把这个结论推广到空间正四面体,类似的结论是______. 【解题思路】从方法的类比入手 [解析]原问题的解法为等面积法,即h r ar ah S 3121321=??== ,类比问题的解法应为等体积法, h r Sr Sh V 4131431=??==即正四面体的内切球的半径是高4 1 总结:(1)不仅要注意形式的类比,还要注意方法的类比 (2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等

2019-2020年高中数学选修1-2合情推理

2019-2020年高中数学选修1-2合情推理 教学目标: 结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用 教学重点: 了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用 教学过程 一、引入新课 1归纳推理 (一)什么是归纳推理 归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。 拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。这里就有着归纳推理的运用。 (二)归纳推理与演绎推理的区别和联系 归纳推理与演绎推理的主要区别是:首先,从思维运动过程的方向来看,演绎推理是从一般性的知识的前提推出一个特殊性的知识的结论,即从一般过渡到特殊;而归纳推理则是从一些特殊性的知识的前提推出一个一般性的知识的结论,即从特殊过渡到一般。其实,从前提与结论联系的性质来看,演绎推理的结论不超出前提所断定的范围,其前提和结论之间的联系是必然的,即其前提真而结论假是不可能的。一个演绎推理只要前提真实并且推理形式正确,那么,其结论就必然真实。而归纳推理(完全归纳推理除外)的结论却超出了前提所断定的范围,其前提和结论之间的联系不是必然的,而只具有或然性,即其前提真而结论假是有可能的。也就是说,即使其前提都真也并不能保证结论是必然真实的。 归纳推理与演绎推理虽有上述区别,但它们在人们的认识过程中是紧密的联系着的,两者互相依赖、互为补充,比如说,演绎推理的一般性知识的大前提必须借助于归纳推理从具体的经验中概括出来,从这个意义上我们可以说,没有归纳推理也就没有演绎推理。当然,归纳推理也离不开演绎推理。比如,归纳活动的目的、任务和方向是归纳过程本身所不能解决和提供的,这只有借助于理论思维,依靠人们先前积累的一般性理论知识的指导,而这本身就是一种演绎活动。而且,单靠归纳推理是不能证明必然性的,因此,在归纳推理的过程中,人们常常需要应用演绎推理对某些归纳的前提或者结论加以论证。从这个意义上我们也可以说,没有演绎推理也就不可能有归纳推理。 (三)观察与实验 归纳推理是一种由特殊性知识的前提得出一般性知识的结论的推理。当然,人们在进行归纳推理的时候,总是先要搜集到一定的事实材料,有了个别性的、特殊性的知识作为前提,

高中数学四大推理方法巧解证明题

高中数学四大推理方法巧解证明题 高中数学四大推理方法巧解证明题 高中数学是数学各种基础知识的总结和归纳,同时也是以前所学到的数学知识的深化和检验。针对高中数学的这一特性,可以通过四大推理方法来进行证明题的解答,不但可以掌握数学知识脉络,也可以把所学到的知识上升到思维层面,使自己可以综合运用数学知识,达到学以致用的目的。 一、合情推理法 在高中数学证明题的解答过程中使用合情推理,有着比较重要的作用以及影响。比较常用的合情推理法就是类比推理法,这是一种从特殊转向特殊的推理方法,两种类似对象间的推理,一个对象有着某个性质,而另一个对象同时也有类似性质。进行类比时,对已知对象性质推理的过程进行充分的考虑,之后类比推导出类比对象性质。高中数学知识的结构很复杂,难度也比其他学科大,而通过合情推理法,并结合多种的思维方法,使学生可以进行思考和分析,也培养了学生对于数学学习的兴趣,提高了学生数学的学习能力。所以,合情推理法是一种很好的解答高中数学证明题的方法。 二、演绎推理法 对于演绎推理法来说,这是一种从一般转向特殊的推理方法,高中数学证明题的证明过程大都是通过演绎推理来证明的,保证演绎推理的前提以及形式正确,就能保证结论是正确的,同时要注意推理的过程具有正确性以及完备性。

三、间接和直接证明法 (一)直接证明法 直接证明法比较常见的就是综合法以及分析法。其中,综合法就是利用已知的条件以及数学定理和公理等,进行推理论证,之后推导出结论成立。综合法也被称作为顺推证法或者由因导果法。而分析法是从结论出发,对结论充分成立的条件进行逐步的寻求,把结论归纳总结成明显成立的一个条件。 (二)间接证明法 间接证明法比较常用的就是反证法,其证明步骤为首先反设,之后归谬,最后存真。首先假设结论不成立,就是把结论反面假设为真,之后的归谬就是在己知条件和反设背景下推理,得出同假设命题相矛盾的结论,最后的存真就是由归谬得出的结果进行反设命题不真的断定,来说明原先结论是成立的。 四、归纳推理法 同上述的推理方法相比较来说,归纳推理法注重对高中数学知识总体的规划,总结和归纳所学到知识。我们都知道,高中数学的知识点比较多,每个知识点之间都有着一定的关系,一道证明题中,可能存在几个知识点,如果同学们不能归纳知识的话,短时间内就不能看出题目中知识点之间的联系,就会严重影响题目的解答。 在高中数学的证明题目中,虽然有限的研究对象比较常见,但是,更为常见的是研究对象众多,一些特定的情况下研究对象可能是无穷的,同学们很难找到突破口。如果同学们把研究对象根据形成的情况

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

高中数学选修2-2推理与证明教(学)案及章节测试及答案

推理与证明 一、核心知识 1.合情推理 (1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。 (2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 2.演绎推理 (1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 (2)演绎推理的主要形式:三段论 “三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 3.直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 (1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 (2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 4反证法 (1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 (2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正

高一数学直接证明与间接证明练习题

推理与证明综合测试题 一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 答案:A 2.结论为:n n x y +能被x y +整除,令1234n =, ,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 答案:C 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 答案:C 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述

性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 答案:B 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 答案:D 6.观察式子:213122+ <,221151233++<,2221117 12344 +++<,,则可归纳 出式子为( ) A.22211 111(2)2321n n n ++++<-≥ B.22 211111(2)2321 n n n + +++ <+≥

高中数学合情推理与演绎推理专题自测试题修订稿

高中数学合情推理与演 绎推理专题自测试题 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

2015年高中数学合情推理与演绎推理专题自测试题 【梳理自测】 一、合情推理 1.(教材习题改编)数列2,5,11,20,x,47,…中的x等于( ) A.28 B.32 C.33 D.27 2.已知扇形的弧长为l,半径为r,类比三角形的面积公式:S=底×高 2 ,可推知扇形面积公式 S 扇 等于( ) A.r2 2 B. l2 2 C.lr 2 D.不可类比 3.给出下列三个类比结论: ①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n; ②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sinαsinβ; ③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2. 其中结论正确的个数是( ) A.0 B.1 C.2 D.3 4.(教材改编)下面几种推理是合情推理的是________.(填序号) ①由圆的性质类比出球的有关性质; ②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; ③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分; ④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n边形内角和是(n-2)·180°. 答案:1.B 2.C 3.B 4.①②④ ◆以上题目主要考查了以下内容: (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体,个别到一般的推理. (2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.简言之,类比推理是由特殊到特殊的推理.

苏教版数学高二- 选修2-2试题 《合情推理—归纳推理》(1)

2.1.1 合情推理—归纳推理 同步检测 一、基础过关 1.数列5,9,17,33,x ,…中的x 等于________ 2.f(n)=1+12+13+…+1n (n ∈N *),计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>7 2, 推测当n≥2时,有________. 3.已知sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=3 2. 通过观察上述两等 式的规律,请你写出一个一般性的命题:____________________. 4.已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33=________. 5.数列-3,7,-11,15,…的通项公式是________. 二、能力提升 6.设x ∈R ,且x≠0,若x +x - 1=3,猜想x2n +x -2n (n ∈N *)的个位数字是________. 7.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为________. 8.如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________. 9.如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题. (1)按照要求填表:

n 1 2 3 4 … S n 1 3 6 … (2)S 10=________.(3)S n 10.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数: 将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测: (1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=________.(用k 表示) 11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1 S n +2=0(n≥2),计算S 1,S 2,S 3,S 4, 并猜想S n 的表达式. 12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分. (1)3条直线最多将平面分成多少部分? (2)设n 条直线最多将平面分成f(n)部分,归纳出f(n +1)与f(n)的关系; (3)求出f(n). 三、探究与拓展 13.在一容器内装有浓度r%的溶液a 升,注入浓度为p%的溶液1 4a 升,搅匀后再倒出溶 液1 4a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式.

2020年高考理科数学《推理与证明》题型归纳与训练

福利:本教程由捡漏优惠券(https://www.360docs.net/doc/258867241.html, )整理提供 领红包:支付宝首页搜索“527608834”即可领取支付宝红包哟 领下面余额宝红包才是大红包,一般都是5-10元 支付的时候把选择余额宝就行呢 每天都可以领取早餐钱哟! 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n

高中数学四大推理方法巧解证明题.doc

高中数学四大推理方法巧解证明题- 高中数学是数学各种基础知识的总结和归纳,同时也是以前所学到的数学知识的深化和检验。针对高中数学的这一特性,可以通过四大推理方法来进行证明题的解答,不但可以掌握数学知识脉络,也可以把所学到的知识上升到思维层面,使自己可以综合运用数学知识,达到学以致用的目的。 一、合情推理法 在高中数学证明题的解答过程中使用合情推理,有着比较重要的作用以及影响。比较常用的合情推理法就是类比推理法,这是一种从特殊转向特殊的推理方法,两种类似对象间的推理,一个对象有着某个性质,而另一个对象同时也有类似性质。进行类比时,对已知对象性质推理的过程进行充分的考虑,之后类比推导出类比对象性质。高中数学知识的结构很复杂,难度也比其他学科大,而通过合情推理法,并结合多种的思维方法,使学生可以进行思考和分析,也培养了学生对于数学学习的兴趣,提高了学生数学的学习能力。所以,合情推理法是一种很好的解答高中数学证明题的方法。 二、演绎推理法 对于演绎推理法来说,这是一种从一般转向特殊的推理方法,高中数学证明题的证明过程大都是通过演绎推理来证明的,保证演绎推理的前提以及形式正确,就能保证结论是正确的,同时要注意推理的过程具有正确性以及完备性。 三、间接和直接证明法 (一)直接证明法 直接证明法比较常见的就是综合法以及分析法。其中,综

合法就是利用已知的条件以及数学定理和公理等,进行推理论证,之后推导出结论成立。综合法也被称作为顺推证法或者由因导果法。而分析法是从结论出发,对结论充分成立的条件进行逐步的寻求,把结论归纳总结成明显成立的一个条件。 (二)间接证明法 间接证明法比较常用的就是反证法,其证明步骤为首先反设,之后归谬,最后存真。首先假设结论不成立,就是把结论反面假设为真,之后的归谬就是在己知条件和反设背景下推理,得出同假设命题相矛盾的结论,最后的存真就是由归谬得出的结果进行反设命题不真的断定,来说明原先结论是成立的。 四、归纳推理法 同上述的推理方法相比较来说,归纳推理法注重对高中数学知识总体的规划,总结和归纳所学到知识。我们都知道,高中数学的知识点比较多,每个知识点之间都有着一定的关系,一道证明题中,可能存在几个知识点,如果同学们不能归纳知识的话,短时间内就不能看出题目中知识点之间的联系,就会严重影响题目的解答。 在高中数学的证明题目中,虽然有限的研究对象比较常见,但是,更为常见的是研究对象众多,一些特定的情况下研究对象可能是无穷的,同学们很难找到突破口。如果同学们把研究对象根据形成的情况进行分类,之后根据分类在进行证明,假如每种情况都可以得到证明,那么所得到的结论就必然是正确的,这种分类证明、归纳方法,可以使同学们找到突破口,从而使证明题得到解答。 结束语: 在数学证明题的实际解答过程中,要根据题目的具体情景

归纳推理-高中数学知识点讲解

归纳推理 1.归纳推理 【知识点的认识】 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别 事实概括出一般结论的推理. 推理形式:设S={A1,A2,A3,…,A n,…}, ?1具有属性? 具有属性?} ? ? ??类事物中的每一个对象都可能具有属性? ? 2.特点: (1)归纳推理的前提是几个已知的特殊现象,归纳得出的结论是尚属未知的一般现象,该结论超越了前提所包容 的范围; (2)归纳推理得到的结论具有猜测性质,结论是否真实,需要通过逻辑证明和实践检验,不能作为数学证明的工具; (3)归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现 问题和提出问题. 3.作用: (1)获取新知,发现真理; (2)说明和论证问题. 【解题技巧点拨】 归纳推理一般步骤: (1)对有限的资料进行观察、分析、归纳、整理; (2)提出带有规律性的结论,即猜想; (3)检验猜想. 【命题方向】 归纳推理主要以填空、选择题的形式出现,比较基础,考查对归纳推理的理解,会运用归纳推理得出一般性结论. 1/ 4

(1)考查对归纳推理理解 掌握归纳推理的定义与特点,注意区分与类比推理、演绎推理的不同. 例 1:下列表述正确的是() ①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A.①②③B.②③④C.②④⑤D.①③⑤ 分析:本题考查的知识点是归纳推理、类比推理和演绎推理的定义,根据定义对 5 个命题逐一判断即可得到答案.解答:归纳推理是由部分到整体的推理, 演绎推理是由一般到特殊的推理, 类比推理是由特殊到特殊的推理. 故①③⑤是正确的 故选D 点评:判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一 个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,即是否是由一般到 特殊的推理过程. 例 2:下列推理是归纳推理的是() A.A,B 为定点,动点P 满足||PA|﹣|PB||=2a<|AB|(a>0),则动点P 的轨迹是以A,B 为焦点的双曲线 B.由a1=2,a n=3n﹣1 求出S1,S2,S3,猜想出数列{a n}的前n 项和S n 的表达式 ?2 ?2 C.由圆x2+y2=r2 的面积S=πr2,猜想出椭圆+ ?2 ?2 =1的面积 S=πab D.科学家利用鱼的沉浮原理制造潜水艇 分析:根据归纳推理的定义,对各个选项进行判断. 2/ 4

高二数学选择进修2-2第二章推理与证明

高二数学选修2-2第二章推理与证明 1、 下列表述正确的是( ). ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .①②③; B .②③④; C .②④⑤; D .①③⑤. 2、下面使用类比推理正确的是 ( ). A.“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?” C.“若()a b c ac bc +=+” 类推出“ a b a b c c c +=+ (c ≠0) ” D.“n n a a b =n (b )” 类推出“n n a a b +=+n (b )” 3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b ?/平面α,直线a ≠ ?平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的, 这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。 (A)假设三内角都不大于60度; (B) 假设三内角都大于60度; (C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。 5、在十进制中01232004410010010210=?+?+?+?,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 6、利用数学归纳法证明“1+a +a 2+…+a n +1=a a n --+112 , (a ≠1,n ∈N)”时,在验证n=1 成立时,左边应该是 ( ) (A)1 (B)1+a (C)1+a +a 2 (D)1+a +a 2+a 3 7、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时

高中数学《合情推理—归纳推理》公开课优秀教学设计

《合情推理—归纳推理》教学设计 (人教A版高中课标教材数学选修1—2第二章2.1第一课时) 2016年10月

《归纳推理》教学设计 一、教学内容分析 本节课内容是《普通高中课程标准实验教科书数学》人教A版选修1—2第二章《推理与证明》2.1《合情推理与演绎推理》的第一课时《归纳推理》,归纳推理为合情推理的一个类型.本课作为本章节的起始课要了解推理的含义,通过实例进一步了解归纳推理的含义,通过对归纳推理过程的感知,了解推理过程,进而能利用归纳进行简单的推理. 归纳推理是合情推理的一个重要类型,数学发现的过程往往包含有归纳推理的成分,在人类文明、创造活动中,归纳推理也扮演了重要的角色.归纳推理是作为一种思维活动存在的,教学的内容不是学习某一具体知识,而是感悟一系列的思维过程,逐步形成一种“思维习惯”,作为起始课形成习惯是困难的,但体验“过程”是相对容易的,“体验之旅”将成为本节课的主线.归纳推理的过程我们概括为“观察—分析—归纳—猜想”,对于“证明”我们暂不做要求,因此重点感悟归纳推理的过程,证明做适当引导. 归纳推理是由部分到整体、由特殊到一般的推理,这本身就体现了特殊与一般的数学思想,由于猜想结果超出了前提界定的范围,前提与结论之间的联系不是必然的,这又体现了必然与或然的数学思想.本课中的实例在数学史中都是赫赫有名的,“四色猜想”、费马数、哥德巴赫猜想、问题4中的毕达哥拉斯平方数等,这些实例展现了一代代数学家对于数学的好奇心和想象力体现了他们不畏困难,坚持不懈的探索精神,抓住这些内容可以培养学生“勇于探究”的精神,这一精神正是新一轮课程改革强调的学生核心素养中“科学精神”的重要体现。新一轮的课程改革即将到来,作为普通教师也有必要在教学中未雨绸缪,避免大寒索裘.数学思想和数学文化将作为本课的一条暗线穿插于教学内容之中. 本节课的教学重点:了解归纳推理的含义,通过实例,掌握“观察—分析—归纳—猜想”的推理过程. 二、教学目标设置

相关文档
最新文档