高二数学会考模拟试卷(附答案)

合集下载

湖南高二高中数学水平会考带答案解析

湖南高二高中数学水平会考带答案解析

湖南高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.已知,则的终边在()A 第一象限B 第二象限C 第三象限D 第四象限2.已知f ( x ) = + 1 ,则f ( 0) = ()A.-1B.0C.1D.23.算式的值是()A B C D4.铁路旅行规定:旅客每人免费携带品的外部尺寸长宽高之和不超过160厘米设携带品外部尺寸长宽高分别为a,b,c (单位:厘米),这个规定用数学关系式可表示为()A.a + b + c<160B.a + b + c>160C.a + b + c≤ 160D.a + b + c≥1605.假设,集合,那么等于()A.{4,8}B.{4,10}C.{0,4,8}D.{0,4,10}6.若,则下列各式正确的是()A B C D7.如图,在正六边形ABCDEF中,点O为其中点,则下列判断错误的是()A B ∥ C D8.在空间中,下列命题正确的是()A平行于同一平面的两条直线平行B平行于同一直线的两个平面平行C垂直于同一直线的两条直线平行D垂直于同一平面的两条直线平行9.圆心在上,半径为3的圆的标准方程为()A BC D10.已知的取值范围为()A.B.C.D.二、填空题1.函数的最小正周期2.已知,,那么与的夹角的余弦值为3.正方体的全面积是,它的顶点都在一个球面上,则这个球的表面积是_________。

4.在△中,若,则等于5.为等差数列,,则__________三、解答题1.设,求的值2.求到两个定点的距离之比等于2的点的轨迹方程。

3.已知{ a n }是各项为正数的等比数列,且a 1 = 1,a 2 + a 3 = 6, 求该数列前10项的和S 104.如图,在直三棱柱ABC —A 1B 1C 1 中,AB = AC = 1,AA 1 = ,AB ⊥AC 求异面直线BC 1与AC 所成角的度数5.某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本(万元)与年产量(吨)之间的关系可近似地表示为。

湖南高二高中数学水平会考带答案解析

湖南高二高中数学水平会考带答案解析

湖南高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.设集合,.则()A.B.C.D.2.直线的倾斜角是()A.300;B.600;C.1200;D.1350。

3.过点且垂直于直线的直线方程为()A.B.C.D.4.圆与直线的位置关系是()A.直线过圆心B.相交C.相切D.相离5.圆锥的底面半径是3,高是4,则它的侧面积是()A.B.C.D.6.函数在区间[3,6]上最小值是()A.1B.3C.D.57.已,,,则的大小顺序为()A.B.C.D.8.如图所示,一个空间几何的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的体积为()A.B.C.D.b表示两条不同的直线,表示平面,则以下命题正确的有()9.设a,①;②;③;④.A.①②B.①②③C.②③④D.①②④10.已知函数在上是减函数,则与的大小关系为()A.B.C.D.无法比较大小二、填空题1.已知___________。

2.过点(1,2)且在两坐标轴上的截距相等的直线的方程3.函数在区间上的最小值为 .4.某工厂2002年生产某种产品2万件,以后每一年比上一年增产20%,则从________年开始这家工厂生产这种产品的年产量超过12万件。

5.设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中,正确命题的序号是______________________.三、解答题1.(本小题8分)已知圆C的圆心是直线和的交点且与直线相切,求圆C的方程.2.(本题满分8分)已知某几何体的俯视图是如下图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S3.(本题满分9分)已知是定义在上的奇函数。

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.若,则一定成立的不等式是A.B.C.D.2.等差数列中,若,则等于A.3B.4C.5D.63.在中,a=15,b=10,A=60°,则=A.B.C.D.4.等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是A.90B.100C.145D.1905.在中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且a=1,等于A. B. C. D.26.不等式的解集为,不等式的解集为,不等式的解集是,那么等于A.-3B.1C.-1D.37.已知两个正数、的等差中项是5,则、的等比中项的最大值为A. 10B. 25 C 50 D. 1008.已知圆的半径为4,为该圆的内接三角形的三边,若,则三角形的面积为A.B.C.D.9.当时,不等式恒成立,则的最大值和最小值分别为A.2,-1B.不存在,2C.2,不存在D.-2,不存在10.已知x、y满足约束条件则目标函数z=(x+1)2+(y-1)2的最大值是A.10B.90C.D.211.已知等比数列满足,且,则当时,A.B.C.D.12.已知方程的四个实根组成以为首项的等差数列,则A.2 C. D.二、填空题1.等差数列的前项和为,若,则2.若关于x的不等式的解集为,则实数a的取值范围是3.设等比数列的公比,前项和为,则4.在中,角的对边分别是,已知,则的形状是三角形.三、解答题1.已知集合,(Ⅰ)当时,求(Ⅱ)若,求实数的取值范围.2.在△ABC中,角A、B、C的对边分别为a、b、c,且(Ⅰ)求角A的大小;(Ⅱ)若,求△ABC的面积.3.如图,海中小岛A周围40海里内有暗礁,一船正在向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?4.已知点(1,2)是函数的图象上一点,数列的前项和.(Ⅰ)求数列的通项公式(Ⅱ)若,求数列的前项和.5.运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元(Ⅰ)求这次行车总费用y关于x的表达式(Ⅱ)当x为何值时,这次行车的总费用最低,并求出最低费用的值6.已知数列中,,,(Ⅰ)证明数列是等比数列,并求出数列的通项公式(Ⅱ)记,数列的前项和为,求使的的最小值山东高二高中数学水平会考答案及解析一、选择题1.若,则一定成立的不等式是A.B.C.D.【答案】C【解析】本题考查的是不等式的性质。

高二数学会考模拟试卷(附答案)

高二数学会考模拟试卷(附答案)

高二数学会考模拟试卷一、选择题(本题有22小题,每小题2分,共44分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1、已知集合{}3,1,0=A ,{}2,1=B ,则B A ⋃等于( )A {}1B {}3,2,0C {}3,2,1,0D {}3,2,1 2、b a >,则下列各式正确的是( ) A 22+>+b aB b a ->-22C b a 22->-D 22b a >3、函数12)(2+=x x f 是( )A 奇函数B 偶函数C 既是奇函数又是偶函数D 既不是奇函数又不是偶函数4、 点A(0,1)且与直线25y x =-平行的直线的方程是( ) A 210x y -+=B 210x y --=C 210x y +-=D 210x y ++=5、在空间中,下列命题正确的是( ) A 平行于同一平面的两条直线平行B 平行于同一直线的两个平面平行C 垂直于同一直线的两条直线平行D 垂直于同一平面的两条直线平行6、已知,a b R +∈,且1ab =,则a b +的最小值是( )A1 B2 C3 D47、如图,在正六边形ABCDEF 中,点O 为其中点,则下列判断错误的是( ) A OC AB = B AB ∥DE C BE AD = D FC AD = 8、已知向量(3,1),(1,2)a b =-=-,则2a b -=( ) A (7,0) B (5,0) C (5,-4) D (7,-4)9、“0=x ”是“0=xy ”的( )A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件 10、焦点为(1,0)的抛物线的标准方程是( ) A 22y x = B 22x y =C 24y x =D 24x y =11、不等式0)2)(1(<++x x 的解集是( ) A {}12-<<-x xB {}12->-<x x x 或C {}21<<x xD {}21><x x x 或12、函数中,在(-∞,0)上为增函数的是( )A 1y x =-+B 1y x =C 12xy ⎛⎫= ⎪⎝⎭D 21y x =-13、满足n n a a a 21,111==+,则=4a ( ) A 32 B 14 C 18 D 11614、5(12)x -的展开式中2x 的系数是 ( )A10B -10 C40 D -40 15、双曲线19422=-y x 的离心率是 ( )A32B 49C 25D 21316、用1,2,3,4,5组成没有重复数字的三位数,其中偶数共有 ( )A60个 B30个 C24个 D12个 17、若α∈(0,2π),且sin α=54,则cos2α等于( ) A257 B —257C1 D 5718、把直线y =-2x 沿向量→a =(2,1)平移所得直线方程是( )A y =-2x +5B y =-2x -5 Cy =-2x +4 D y =-2x -4 19、若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为 A –1或3 B1或3C –2或6 D0或420、在︒60的二面角βα--l ,面α上一点到β的距离是2cm ,那么这个点到棱的距离为( )A3cm B C D 3cm21、若2k <且0k ≠,则椭圆22132x y +=与22123x y k k+=--有( ) A 相等的长轴B 相等的短轴C 相同的焦点D 相等的焦距22、计算机是将信息换成二位制进行处理的二进制,即“逢二进一”。

浙江省高二上学期学业水平合格性模拟考试数学试题(解析版)

浙江省高二上学期学业水平合格性模拟考试数学试题(解析版)

高二上学期学业水平合格性模拟考试数学试题一、单选题1.设集合,,则( ){}1A x x =≥{}12B x x =-<<A B = A .B .C .D . {}1x x >-{}1x x ≥{}11x x -<<{}12x x ≤<【答案】D【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:.{}|12A B x x =≤< 故选:D.2.命题“存在实数x,,使x > 1”的否定是( )A .对任意实数x, 都有x > 1B .不存在实数x ,使x 1 ≤C .对任意实数x, 都有x 1D .存在实数x ,使x 1 ≤≤【答案】C【详解】解:特称命题的否定是全称命题,否定结论的同时需要改变量词.∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C .3.已知i 是虚数单位,则= 31i i +-A .1-2iB .2-iC .2+iD .1+2i 【答案】D【详解】试题分析:根据题意,由于,故可知选D. 33124121112i i i i i i i i ++++=⨯==+--+【解析】复数的运算点评:主要是考查了复数的除法运算,属于基础题.4.等于( )()sin πα-A .-B .C .-D . sin αsin αcos αcos α【答案】B【分析】利用诱导公式即可求解.【详解】. ()sin sin παα-=故选:B5.函数f (x )=+lg(1+x )的定义域是( ) 11x-A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞) 【答案】C【解析】根据函数解析式建立不等关系即可求出函数定义域.【详解】因为f (x )=+lg(1+x ), 11x-所以需满足, 1010x x -≠⎧⎨+>⎩解得且,1x >-1x ≠所以函数的定义域为(-1,1)∪(1,+∞),故选:C【点睛】本题主要考查了函数的定义域,考查了对数函数的概念,属于容易题.6.不等式4-x 2≤0的解集为( )A .B .或 {}|22x x -≤≤{2x x ≤-}2x ≥C .D .或 {}|44x x -≤≤{4x x ≤-}4x ≥【答案】B【分析】根据一元二次不等式的求解方法直接求解即可.【详解】不等式即,解得或,240x -≤()()220x x -+≥2x ≤-2x ≥故不等式的解集为或.{2x x ≤-}2x ≥故选:B. 7.“”是“一元二次方程”有实数解的 14m <20x x m ++=A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分必要条件【答案】A 【详解】试题分析:方程有解,则.是的充分不必20x x m ++=11404m m ∆=-≥⇒≤14m <14m ≤要条件.故A 正确.【解析】充分必要条件8.已知 是空间三个不重合的平面,是空间两条不重合的直线,则下列命题为真命题的,,αβγ,m n 是( )A .若,,则B .若,,则 αβ⊥βγ⊥//αγαβ⊥//m βm α⊥C .若,,则D .若,,则 m α⊥n α⊥//m n //m α//n α//m n 【答案】C【分析】根据空间中线线、线面、面面的位置关系的性质定理与判定定理一一判断即可;【详解】解:由,,得或与相交,故A 错误;αβ⊥βγ⊥//αγαγ由,,得或或与相交,故B 错误;αβ⊥//m β//m αm α⊂m α由,,得,故C 正确;m α⊥n α⊥//m n 由,,得或与相交或与异面,故D 错误.//m α//n α//m n m n m n 故选:C .9.设函数,则( ) 331()f x x x =-()f x A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减 【答案】A【分析】根据函数的解析式可知函数的定义域为,利用定义可得出函数为奇函数, {}0x x ≠()f x 再根据函数的单调性法则,即可解出.【详解】因为函数定义域为,其关于原点对称,而, ()331f x x x =-{}0x x ≠()()f x f x -=-所以函数为奇函数.()f x 又因为函数在上单调递增,在上单调递增, 3y x =()0,+¥(),0-¥而在上单调递减,在上单调递减, 331y x x-==()0,+¥(),0-¥所以函数在上单调递增,在上单调递增. ()331f x x x=-()0,+¥(),0-¥故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.10.已知非零向量满足,且,则与的夹角为 a b ,2a b =ba b ⊥ (–)a b A . B . C . D . π6π32π35π6【答案】B【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即()a b b -⊥ ,a b 可计算出向量夹角.【详解】因为,所以=0,所以,所以=()a b b -⊥ 2()a b b a b b -⋅=⋅- 2a b b ⋅= cos θ22||122||a b b b a b ⋅==⋅ ,所以与的夹角为,故选B . a b 3π【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.[0,]π11.下列函数中,既是偶函数又区间上单调递增的是 A .B .C .D . 3y x =1y x =+21y x =-+2x y -=【答案】B【详解】试题分析:因为A 项是奇函数,故错,C ,D 两项项是偶函数,但在上是减函数,(0,)+∞故错,只有B 项既满足是偶函数,又满足在区间上是增函数,故选B .(0,)+∞【解析】函数的奇偶性,单调性.12.已知函数在区间(-∞,1]是减函数,则实数a 的取值范围是( ) 2()2f x x ax b =-+A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]【答案】A【分析】由对称轴与1比大小,确定实数a 的取值范围.【详解】对称轴为,开口向上,要想在区间(-∞,1]是减函数,所以2()2f x x ax b =-+x a =. [)1,a ∈+∞故选:A13.把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平()y f x =12移个单位长度,得到函数的图像,则( ) 3πsin 4y x π⎛⎫=- ⎪⎝⎭()f x =A . B . 7sin 212x π⎛⎫- ⎪⎝⎭sin 212x π⎛⎫+ ⎪⎝⎭C . D . 7sin 212x π⎛⎫- ⎪⎝⎭sin 212x π⎛⎫+ ⎪⎝⎭【答案】B 【分析】解法一:从函数的图象出发,按照已知的变换顺序,逐次变换,得到()y f x =,即得,再利用换元思想求得的解析表达式; 23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()y f x =解法二:从函数出发,逆向实施各步变换,利用平移伸缩变换法则得到的sin 4y x π⎛⎫=- ⎪⎝⎭()y f x =解析表达式.【详解】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到()y f x =12的图象,再把所得曲线向右平移个单位长度,应当得到的图象, (2)y f x =3π23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦根据已知得到了函数的图象,所以, sin 4y x π⎛⎫=- ⎪⎝⎭2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令,则, 23t x π⎛⎫=- ⎪⎝⎭,234212t t x x πππ=+-=+所以,所以; ()sin 212t f t π⎛⎫=+ ⎪⎝⎭()sin 212x f x π⎛⎫=+ ⎪⎝⎭解法二:由已知的函数逆向变换, sin 4y x π⎛⎫=- ⎪⎝⎭第一步:向左平移个单位长度,得到的图象, 3πsin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象, sin 212x y π⎛⎫=+ ⎪⎝⎭即为的图象,所以. ()y f x =()sin 212x f x π⎛⎫=+ ⎪⎝⎭故选:B.14.函数的图象大致为( ) 241x y x =+A . B .C .D .【答案】A【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标()()241x f x f x x --==-+()f x 原点对称,选项CD 错误;当时,,选项B 错误. 1x =42011y ==>+故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 15.若定义在的奇函数f (x )在单调递减,且f (2)=0,则满足的x 的取值范围是R (,0)-∞(10)xf x -≥( )A .B . [)1,1][3,-+∞ 3,1][,[01]--C .D .[1,0][1,)-⋃+∞[1,0][1,3]-⋃【答案】D【分析】首先根据函数奇偶性与单调性,得到函数在相应区间上的符号,再根据两个数的乘积()f x 大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在上的奇函数在上单调递减,且,R ()f x (,0)-∞(2)0f =所以在上也是单调递减,且,,()f x (0,)+∞(2)0f -=(0)0f =所以当时,,当时,,(,2)(0,2)x ∈-∞-⋃()0f x >(2,0)(2,)x ∈-+∞ ()0f x <所以由可得: (10)xf x -≥或或 0210x x <⎧⎨-≤-≤⎩0012x x >⎧⎨≤-≤⎩0x =解得或,10x -≤≤13x ≤≤所以满足的的取值范围是,(10)xf x -≥x [1,0][1,3]-⋃故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.16.若,则的最小值为( ) 0,0,2a b a b >>+=41y a b =+A . B . C .5 D .4 7292【答案】B【分析】利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的y ()()241a b a b++y最小值.【详解】解:,2a b += ∴12a b +=(当且仅当时等号成立) ∴41415259()()222222a b b a y a b a b a b +=+=+=+++=…2b a =故选:B . 17.如图所示,在三棱锥A -BCD 中,AC =AB =BD =CD =2,且∠CDB =90°.取AB 中点E 以及CD 中点F ,连接EF ,则EF 与AB 所成角的正切值取值范围为( )A .B .C .D . 1[21[2【答案】C 【分析】由题意可得当平面平面时,张角最大,即EF 与AB 所成角最大,从而可得最ABC ⊥BCD 大值,当平面与平面重合时,张角最小,即EF 与AB 所成角最小,从而可得最小值,又ABC BCD 平面与平面不能重合,即可求得EF 与AB 所成角的正切值取值范围.ABC BCD 【详解】解:如图,作于H ,EH BC ⊥因为,当平面平面时,张角最大,即EF 与AB 所成角最大, 112BE AB ==ABC ⊥BCD 如图①,作与M ,HM CD ⊥BF==EF==因为,所以,BC==222AB AC BC+=90BAC∠=︒所以EF与AB的夹角为或其补角,BEF∠,所以cos∠sin BEF∠=tan∠故EF与AB,当平面与平面重合时,张角最小,即EF与AB所成角最小,ABC BCD如图②所示,即为EF与AB所成角的平面角,45FEA∠=︒,tan1FEA∠=又平面与平面不能重合,ABC BCD所以EF与AB所成角的正切值取值范围为.故选:C.18.在△ABC中,D是BC边上一点,且BD=2DC=4,,则AD的最大值为()60BAC∠=︒A.B.4 C D.221【答案】A【分析】由正弦定理可得,再在中由余弦定理化简得出AB C=ABD△,即可求出.2216AD C=+【详解】因为,所以,24BD DC==6BC=在中,由正弦定理可得,则,ABCA sin sinAB BCC BAC===∠AB C=在中,由余弦定理得ABD△2222cosAD AB BD AB BD B=+-⋅⋅248sin1624cosC C B =+-⨯⨯()248sin16cosC C A C=+++2148sin16cos2C C C C⎛⎫=++-⎪⎝⎭,cos16216C C C=+=+因为,所以,0120C︒<<︒02240C︒<<︒则当,即时,290C=︒45C=︒.AD2==+故选:A.二、填空题19.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间内,其频率分布直方图如图所示.(Ⅰ)直方图中的_________;=a(Ⅱ)在这些购物者中,消费金额在区间内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【详解】由频率分布直方图及频率和等于1可得,0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=解之得.于是消费金额在区间内频率为,所以消3a =[0.5,0.9]0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=费金额在区间内的购物者的人数为:,故应填3;6000.[0.5,0.9]0.6100006000⨯=【解析】本题考查频率分布直方图,属基础题.20.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】. 710【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有种情况.2510C =若选出的2名学生恰有1名女生,有种情况,11326C C =若选出的2名学生都是女生,有种情况,221C =所以所求的概率为. 6171010+=【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”. 21.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC那么P 到平面ABC 的距离为___________..【分析】本题考查学生空间想象能力,合理画图成为关键,准确找到在底面上的射影,使用线面P 垂直定理,得到垂直关系,勾股定理解决.【详解】作分别垂直于,平面,连,,PD PE ,AC BC PO ⊥ABC CO 知,,,CD PD CD PO ⊥⊥=PD OD P 平面,平面,CD \^PDO OD ⊂PDOCD OD ∴⊥,., PD PE ==∵2PC =sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=,为平分线, PO CO ∴⊥CO ACB ∠,451,OCD OD CD OC ︒∴∠=∴===2PC =.PO ∴==【点睛】画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题即很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.22.若函数恰有两个零点,则实数的范围是________ 2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩a 【答案】 1[,1)[2,)2+∞ 【分析】分别设,分两种情况讨论,即可求出的范围.()2,()4()(2)x h x a g x x a x a =-=--a 【详解】解:设,()2,()4()(2)x h x a g x x a x a =-=--若在时,与轴有一个交点,1x <()2x h x a =-x 所以,并且当时, ,所以,0a >1x =(1)20h a =->02a <<而函数有一个交点,所以,且,()4()(2)g x x a x a =--21a ≥1a <所以, 112a ≤<若函数在时,与轴没有交点,()2x h x a =-1x <x 则函数有两个交点,()4()(2)g x x a x a =--当时,与轴无交点,无交点,所以不满足题意(舍去),0a ≤()h x x ()g x 当时,即时,的两个交点满足,都是满足题意的, (1)20h a =-≤2a ≥()g x 12,2x a x a ==综上所述的取值范围是,或. a 112a ≤<2a ≥故答案为:. 1[,1)[2,)2+∞ 【点睛】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题23.已知函数 ()21sin cos cos 2,2f x x x x x x R =+-∈(1)求函数的单调减区间;()f x (2)求当时函数的最大值和最小值. 0,2x π⎡⎤∈⎢⎥⎣⎦()f x 【答案】(1);(2). 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦()()min max 15,22f x f x =-=【分析】(1)将化为,然后解出不等式()f x ()12sin 262f x x π⎛⎫=-+ ⎪⎝⎭3222262k x k πππππ+≤-≤+即可;(2)当时,,然后可求出答案. 0,2x π⎡⎤∈⎢⎥⎣⎦52,666x πππ⎡⎤-∈-⎢⎥⎣⎦【详解】(1)()211cos 211sin cos cos 22cos 22cos 22222x f x x x x x x x x x -=+-=-=-+ 12sin 262x π⎛⎫=-+ ⎪⎝⎭令,可得 3222262k x k πππππ+≤-≤+5,36k x k k Z ππππ+≤≤+∈所以函数的单调减区间为 ()f x 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)当时,, 0,2x π⎡⎤∈⎢⎥⎣⎦52,666x πππ⎡⎤-∈-⎢⎥⎣⎦1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦所以 ()15,22f x ⎡⎤∈-⎢⎥⎣⎦即 ()()min max 15,22f x f x =-=24.如图,已知四边形ABCD 是菱形,,绕着BD 顺时针旋转得到60BAD ∠=︒ABD △120︒PBD △,E 是PC 的中点.(1)求证:平面BDE ;//PA (2)求直线AP 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;【分析】(1)连接交于,连接,利用中位线可得到,再利用直线与平面平行AC BD F EF //EF PA 的判定即可证明;(2)先根据(1)得到直线AP 与平面PBC 所成的角为直线与平面PBC 所成的角,然后过EF F 作,利用面面垂直的性质定理得到平面,进而得到为直线与平面FQ BE ⊥FQ ⊥PBC QEF ∠EF PBC 所成的角,最后求的正弦值即可.QEF ∠【详解】(1)连接交于,连接,因为四边形ABCD 是菱形,AC BD F EF 所以为的中点,又因为是的中点,所以,F AC E PC //EF PA 平面,平面,所以平面. EF ⊂BDE PA ⊄BDE //PA BDE(2)过作,垂足为,连接,F FQ BE ⊥Q FP由(1)知:,//EF PA 则直线AP 与平面PBC 所成的角为直线与平面PBC 所成的角,EF 易知,又是的中点,所以,同理,BP BC =E PC BE PC ⊥DE PC ⊥又,面,所以面,又面,BE DE E ⋂=,BE DE ⊂BDE PC ⊥BDE PC ⊂PBC 所以面面,面面,面,,PBC ⊥BDE PBC =BDE BE FQ ⊂BDE FQ BE ⊥所以面,所以为直线与平面PBC 所成的角,FQ ⊥PBC QEF ∠EF 由△绕着BD 顺时针旋转得到△,可得到,ABD 120︒PBD 120AFP ∠=︒假设,则,2AB a =,AF FP ===在中,由余弦定理可得:,AFP A 22222cos1209AP AF FP AF FP a =+-⋅︒=所以,3AP a =因为,所以,又为的中点,所以,PDC PCB ≅A A DE BE =F BD EF BD ⊥则在中,, Rt EFB △13,,22EF AP a FB a BE =====所以, sin FB FEB BE ∠==所以直线AP 与平面PBC 25.已知函数f (x )=x 2﹣2x +1+a 在区间[1,2]上有最小值﹣1.(1)求实数a 的值;(2)若关于x 的方程f (log 2x )+1﹣2k log 2x =0在[2,4]上有解,求实数k 的取值范围; ⋅(3)若对任意的x 1,x 2∈(1,2],任意的p ∈[﹣1,1],都有|f (x 1)﹣f (x 2)|≤m 2﹣2mp ﹣2成立,求实数m 的取值范围.(附:函数g (t )=t 在(0,1)单调递减,在(1,+∞)单调递增.) 1t+【答案】(1)﹣1;(2)0≤t ;(3)m ≤﹣3或m ≥3. 14≤【分析】(1)由二次函数的图像与性质即可求解.(2)采用换元把方程化为t 2﹣(2+2k )t +1=0在[1,2]上有解,然后再分离参数法,化为t 与2+2k 在[1,2]上有交点即可求解. ()g t =1t+y =(3)求出|f (x 1)﹣f (x 2)|max <1,把问题转化为1≤m 2﹣2mp ﹣2恒成立,研究关于p 的函数h (p )=﹣2mp +m 2﹣3,使其最小值大于零即可.【详解】(1)函数f (x )=x 2﹣2x +1+a 对称轴为x =1,所以在区间[1,2]上f (x )min =f (1)=a ,由根据题意函数f (x )=x 2﹣2x +1+a 在区间[1,2]上有最小值﹣1.所以a =﹣1.(2)由(1)知f (x )=x 2﹣2x ,若关于x 的方程f (log 2x )+1﹣2k •log 2x =0在[2,4]上有解,令t =log 2x ,t ∈[1,2]则f (t )+1﹣2kt =0,即t 2﹣(2+2k )t +1=0在[1,2]上有解,t 2+2k 在[1,2]上有解, 1t+=令函数g (t )=t , 1t+在(0,1)单调递减,在(1,+∞)单调递增.所以g (1)≤2+2k ≤g (2),即2≤2+2t , 52≤解得0≤t . 14≤(3)若对任意的x 1,x 2∈(1,2],|f (x 1)﹣f (x 2)|max <1,若对任意的x 1,x 2∈(1,2],任意的p ∈[﹣1,1],都有|f (x 1)﹣f (x 2)|≤m 2﹣2mp ﹣2成立,则1≤m 2﹣2mp ﹣2,即m 2﹣2mp ﹣3≥0,令h (p )=﹣2mp +m 2﹣3,所以h (﹣1)=2m +m 2﹣3≥0,且h (1)=﹣2m +m 2﹣3≥0,解得m ≤﹣3或m ≥3.【点睛】本题主要考查了二次函数的图像与性质、函数与方程以及不等式恒成立问题,综合性比较强,需有较强的逻辑推理能力,属于难题.。

2023—2024学年安徽省高二下学期普通高中学业水平合格性考试仿真模拟数学试卷

2023—2024学年安徽省高二下学期普通高中学业水平合格性考试仿真模拟数学试卷

2023—2024学年安徽省高二下学期普通高中学业水平合格性考试仿真模拟数学试卷一、单选题(★★) 1. 已知集合,则()A.B.C.D.(★) 2. 下列图象中,表示定义域和值域均为的函数是()A.B.C.D.(★★) 3. 已知向量,若,则()A.9B.C.1D.(★) 4. 已知函数,则()A.B.1C.2D.3(★★) 5. 若函数是指数函数,则有()A.B.C.或D.,且(★★) 6. 已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则()A.B.3C.D.(★) 7. 水平放置的的斜二测直观图如图所示,已知,则的面积是()A.4B.5C.6D.7(★★) 8. 命题“”的否定是()A.B.C.D.(★★★) 9. 函数的图象的一条对称轴是()A.B.C.D.(★★) 10. 已知复数z满足,则()A.B.C.D.(★) 11. “今有城,下广四丈,上广二丈,高五丈,袤两百丈.”这是我国古代数学名著《九章算术》卷第五“商功”中的问题.意思为“现有城(如图,等腰梯形的直棱柱体),下底长4丈,上底长2丈,高5丈,纵长200丈(1丈=10尺)”,则该问题中“城”的体积等于()A.立方尺B.立方尺C.立方尺D.立方尺(★★) 12. 抛掷一枚质地均匀的骰子,记随机事件:“点数为奇数”,“点数为偶数”,“点数大于2”,“点数小于2”,“点数为3”.则下列结论不正确的是()A.为对立事件B.为互斥不对立事件C.不是互斥事件D.是互斥事件(★★) 13. 的内角的对边分别为的面积为,且,则边()A.7B.3C.D.(★) 14. 已知是空间中三个不同的平面,是空间中两条不同的直线,则下列结论错误的是()A.若,则B.若,则C.若,则D.若,则(★★★) 15. 若不等式对所有实数恒成立,则的取值范围为()A.B.C.D.(★) 16. 已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的小学生近视人数分别为()A.100,30B.100,21C.200,30D.200,7(★★) 17. 已知向量与的夹角为,则向量与上的投影向量为()A.B.C.D.(★★) 18. 若函数在上是单调增函数,则实数的取值范围为A.B.C.D.二、填空题(★★) 19. 已知,则 ________ .(★★★) 20. 已知单位向量与单位向量的夹角为,则____________ .(★★) 21. 某学校举办作文比赛,共设6个主题,每位参赛同学从中随机抽取一个主题准备作文.则甲、乙两位参赛同学抽到的主题不相同的概率为____________ .(★★) 22. 某服装加工厂为了适应市场需求,引进某种新设备,以提高生产效率和降低生产成本.已知购买台设备的总成本为(单位:万元).若要使每台设备的平均成本最低,则应购买设备 ____________ 台.三、解答题(★★★) 23. 已知,其中向量,(1)求的最小正周期;(2)在中,角的对边分别为,若,求角的值.(★) 24. 如图,在直三棱柱中,,,,点是的中点.(1)证明:;(2)证明:平面.(★★★) 25. 已知函数是奇函数,且(1)求的值;(2)判断函数在上的单调性,并加以证明;(3)若函数满足不等式,求实数的取值范围.。

高中会考试题数学及答案

高中会考试题数学及答案

高中会考试题数学及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 + 4x + 3,则f(-1)的值为:A. 0B. 2C. 4D. 6答案:B2. 已知等差数列{a_n}的前三项分别为1, 4, 7,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 若直线y = 2x + 1与直线y = -x + 3相交,则交点的横坐标为:A. -1B. 0C. 1D. 2答案:C5. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:B6. 函数y = x^3 - 3x^2 + 4x - 2的导数是:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 9x + 4D. 3x^2 - 9x + 2答案:A7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B8. 若sin(α) = 3/5,且α为第一象限角,则cos(α)的值为:A. 4/5B. -4/5C. 3/5D. -3/5答案:A9. 一个数列的前四项为2, 5, 8, 11,若该数列是等差数列,则第五项为:A. 14B. 15C. 16D. 17答案:A10. 已知函数f(x) = x^2 - 4x + 3,若f(x) = 0,则x的值为:A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的前三项分别为2, 6, 18,则该数列的公比为______。

答案:32. 一个矩形的长为10cm,宽为5cm,那么它的对角线长度为______。

答案:5√5 cm3. 函数y = √x的反函数是______。

答案:y = x^24. 已知一个抛物线的顶点为(2, -3),且开口向上,则它的标准方程为______。

高2数学会考试题及答案

高2数学会考试题及答案

高2数学会考试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. -1D. 2答案:B2. 已知向量a=(3,-2),b=(2,1),则向量a+b的坐标为:A. (5,-1)B. (1,-3)C. (-1,3)D. (3,1)答案:A3. 函数y=|x|的图象是:A. 一条直线B. 两条直线C. 一个V形D. 一个倒V形答案:C4. 若复数z满足z^2=i,则z的值为:A. iB. -iC. i或-iD. 1或-1答案:C5. 已知双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a>0,b>0,则该双曲线的焦点位于:A. x轴上B. y轴上C. 第一象限D. 第四象限答案:A6. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π答案:B7. 已知等差数列{an}的首项a1=2,公差d=3,则a5的值为:A. 14B. 17C. 20D. 23答案:A8. 已知三角形ABC的三边长分别为a、b、c,且满足a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B9. 函数y=ln(x)的定义域为:A. (-∞,0)B. (0,+∞)C. (-∞,+∞)D. [0,+∞)答案:B10. 已知圆的方程为(x-2)^2+(y-3)^2=9,则该圆的圆心坐标为:A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)答案:A二、填空题(每题4分,共20分)1. 若直线l的斜率为2,则直线l的倾斜角为______。

答案:arctan(2)2. 已知等比数列{bn}的首项b1=1,公比q=2,则b3的值为______。

答案:43. 函数y=cos(x)的图象关于______对称。

答案:y轴4. 已知抛物线方程为y^2=4x,该抛物线的焦点坐标为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学会考模拟试卷(二)一、选择题(本题有22小题,每小题2分,共44分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1、已知集合{}3,1,0=A ,{}2,1=B ,则B A ⋃等于( )A {}1B {}3,2,0C {}3,2,1,0D {}3,2,1 2、b a >,则下列各式正确的是( ) A 22+>+b aB b a ->-22C b a 22->-D 22b a >3、函数12)(2+=x x f 是( )A 奇函数B 偶函数C 既是奇函数又是偶函数D 既不是奇函数又不是偶函数4、 点A(0,1)且与直线25y x =-平行的直线的方程是( ) A 210x y -+=B 210x y --=C 210x y +-=D 210x y ++=5、在空间中,下列命题正确的是( ) A 平行于同一平面的两条直线平行B 平行于同一直线的两个平面平行C 垂直于同一直线的两条直线平行D 垂直于同一平面的两条直线平行6、已知,a b R +∈,且1ab =,则a b +的最小值是( )A1 B2 C3 D47、如图,在正六边形ABCDEF 中,点O 为其中点,则下列判断错误的是( ) A OC AB = B AB ∥DE C BE AD = D FC AD = 8、已知向量(3,1),(1,2)a b =-=-,则2a b -=( ) A (7,0) B (5,0) C (5,-4) D (7,-4)9、“0=x ”是“0=xy ”的( )A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件 10、焦点为(1,0)的抛物线的标准方程是( ) A 22y x = B 22x y =C 24y x =D 24x y =11、不等式0)2)(1(<++x x 的解集是( ) A {}12-<<-x xB {}12->-<x x x 或C {}21<<x xD {}21><x x x 或12、函数中,在(-∞,0)上为增函数的是( )A 1y x =-+B 1y x =C 12xy ⎛⎫= ⎪⎝⎭D 21y x =-13、满足n n a a a 21,111==+,则=4a ( ) A 32 B 14 C 18 D 11614、5(12)x -的展开式中2x 的系数是 ( )A10B -10 C40 D -40 15、双曲线19422=-y x 的离心率是 ( )A32B 49C 25D 21316、用1,2,3,4,5组成没有重复数字的三位数,其中偶数共有 ( )A60个 B30个 C24个 D12个 17、若α∈(0,2π),且sin α=54,则cos2α等于( )A257 B —257C1 D 5718、把直线y =-2x 沿向量→a =(2,1)平移所得直线方程是( )A y =-2x +5B y =-2x -5 Cy =-2x +4 D y =-2x -4 19、若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为 A –1或3 B1或3C –2或6 D0或420、在︒60的二面角βα--l ,面α上一点到β的距离是2cm ,那么这个点到棱的距离为( )A3cm B C D 321、若2k <且0k ≠,则椭圆22132x y +=与22123x y k k+=--有( ) A 相等的长轴B 相等的短轴C 相同的焦点D 相等的焦距22、计算机是将信息换成二位制进行处理的二进制,即“逢二进一”。

如(1101)2表示二进位制,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数()162111转换成十进制形式是( )A217―2 B216―2 C216―1 D215―1 二、填空题(本题有6小题,每小题3分,共18分) 23、函数3,()y x x R =∈的反函数是__________24、已知(2,5)a =,(,3)b λ=-,且a b ⊥,则λ=______________25、一个口袋内装有大小相等的2个白球和3个黑球,从中摸出2个球,则摸到2个黑球的概率为_________26、球的表面积扩大到原来的2倍,则球的体积扩大到原来的____________倍。

27、变量x ,y 满足约束条件:⎪⎩⎪⎨⎧≥+≤+≤011y y x x y ,则2x+y 的最大值为____________28、如图,已知两个灯塔A 和B 与观察站C 的距离都为akm ,灯塔A 在观察站C 的北偏东 10,灯塔B 在观察站C 的南偏东 50,则灯塔A,B 间的距离是 km 三、解答题(本题有5小题,共38分) 29、(本题6分) 已知函数31()cos ,2f x x x x R =-∈ 求()f x 的最大值,并求使()f x 取得最大值时x 的集合。

30、(本题6分)在数列{}n a 中,112,3n n a a a +==+,求n a 及前n 项和n S 31、(本题8分) 如图,四边形ABCD ,ADEF 均为正方形,090CDE ∠=,求异面直线BE 与CD 所成的角的大小。

32、(本题8分)已知函数2(3)()2m f x x m x-=++,定义域为D (1)如果0x D ∈,使00()f x x =,那么称00(,)x x 为函数()f x 图象上的不动点,求当0m =时,函数()y f x =图象上的不动点;(2)当[1,)x ∈+∞时,函数()y f x =的图象恒在直线y x =的上方,求实数m 的取值范围。

33、(本题10分)椭圆的中心在原点,焦点在x 轴上,离心率12e =,且经过点15(5,)2(1)求椭圆的方程;(2)以椭圆的左右焦点F 1,F 2为顶点,椭圆的左右顶点A 、B 为焦点的双曲线为C ,P 是双曲线在第一象限内任一点,问是否存在常数λ,使11PBF PF B λ∠=∠恒成立?若存在,求出λ的值;若不存在,说明理由。

附加题(本题5分,供选做,得分计入总分)一个电路如图所示,,,,,,a b c d e f 为6个开关,其闭合的概率都是12,且相互独立的, (1)求灯亮的概率;(2)设计一个电路图,要求原来的6个开关全部用上,灯亮的概率在715(,)816内。

高二数学会考模拟试卷(二)参考答案题号 1 2 3 4 5 6 7 8 9 10 11 答案 C A B A D B D D B C A 题号1213141516171819202122答案 D C C D CB A D A DC题号 232425262728答案,3xy x R =∈ 152 3102233a三、解答题 29、解:()cossin sincos sin()666f x x x x πππ=-=-当262x k πππ-=+,即22,3x k k Z ππ=+∈时,max ()1f x =30、解:由题意可知公差3d =1(1)2(1)331n a a n d n n ∴=+-=+-⨯=-21(1)(1)323222n n n n n n nS na d n --+=+=+⨯=31、解法一:过E 作EG||DC ,且EG=DC ,连结CG ,BG ,则∠BEG 为异面直线BE 与CD 所成的角由于四边形ABCD ,ADEF 均为正方形,故DEGC 也为正方形,又AD ⊥DC ,AD ⊥DE ,∴AD ⊥面DEGC , ∴BC ⊥面DEGC ,∴BC ⊥EG ,又EG ⊥CG , ∴EG ⊥面BCG∴EG ⊥GE ,在RT ∆BGE 中,2EG , ∴tan 2BEG ∠=2BEG ∠=故异面直线BE 与CD 所成的角的大小为2 解法二:由于四边形ABCD ,ADEF 均为正方形,∴AD ⊥DC ,AD ⊥DE ,又090CDE ∠=,所以以D 为原点,以DC ,DC ,DA 所在直线为x,y,z 轴建立空间直角坐标系,如图所示。

设正方形边长为1,则C (1,0,0),E (0,1,0),B (1,0,1)∴(1,0,0)DC =,(1,1,1)EB =-,13cos ,||||3DC EB DC EB DC EB •∴<>=== 即异面直线BE 与CD 所成的角的大小为3arccos332、解:(1)当m=0时,6()2f x x x=-,显然D={|0}x x ≠ 由()f x x =得6x x=,即6x =所以函数()y f x =图象上的不动点为6,6),(6,6)- (2)由题意,当[1,)x ∈+∞时,不等式()f x x >恒成立,即2(3)2m x m x x-++>恒成立,由于0x >,不等式等价于22(3)0x mx m ++->对[1,)x ∈+∞恒成立,又等价于226(2)2(2)22(2)4222x x x m x x x x --++++>==-++++++恒成立。

而根据函数2()g x x x =-+的单调性可知,当[1,)x ∈+∞时,2(2)42x x -++++有最大值53,因此只要53m >时,上述不等式恒成立,即所求实数m 的取值范围为53m >33、解:(1)设椭圆的方程为22221x y a b+=由题意知12c a =,得2234b a =,又222522514a b +=解得22100,75a b ==∴椭圆的方程为22110075x y += (2)存在,λ=2由题意可知双曲线方程为2212575x y -= 离心率为2,右准线l 方程为:52x = F 1(-5,0),B (10,0)∴准线l 为F 1B 的垂直平分线,交F 1P 于点M ,过P 作PD ⊥l 交于D ,由双曲线第二定义可知2PBPD=,即2PB PD =且BF 1=2F 1C 。

DP||F 1C ,∴11MP PD MF F C =,∴11111212PBMP PD PBMF FC F B F B ===∴BM 是∠PBF 1的角平分线,又∠MBF 1=∠PF 1B ∴∠PBF 1=2∠PF 1B附加题(1)灯亮的概率为55 64(2)设计如下:答案不唯一命题人:马站高级中学周传松。

相关文档
最新文档