人教版七年级数学上册第一章 、第二章单元测试题汇总

合集下载

人教版数学七年级上册 第1---2章测试题含答案

人教版数学七年级上册 第1---2章测试题含答案

人教版数学七年级上册第1章测试题含答案1.1正数和负数一.选择题1.如果收入1000元记作+1000元,那么“﹣300元”表示()A.收入300元B.支出300元C.支出﹣300元D.获利300元2.在﹣(﹣1),﹣|﹣3.14|,0,﹣(﹣3)5中,正数有()个.A.1B.2C.3D.43.在﹣(﹣),95%,﹣|﹣|,﹣,0中正数有()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.零是正数不是负数B.不是正数的数一定是负数C.零既是正数也是负数D.零既不是正数也不是负数5.下列各式,①﹣(﹣2);②﹣|﹣2|;③﹣23;④﹣(﹣2)2.计算结果为负数的个数有()A.4个B.3个C.2个D.1个6.如果+2%表示增加2%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%7.陆地上最高处是珠穆朗玛峰顶,高出海平面8844m,记为+8844m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()A.+415 m B.﹣415 m C.±415 m D.﹣8848 m8.张倩同学记录了某天一天的温度变化的数据,如表所示,则温暖上升的时段是()024681012141618202224时刻/时温度﹣3﹣5﹣6﹣4﹣3﹣1010﹣1﹣2﹣4﹣4 A.0~4时B.4~14时C.14~22时D.14~24时9.下列式子中结果为负数的是()A.|﹣2|B.﹣(﹣2)C.﹣|﹣2|D.(﹣2)210.在下列各数中:﹣,(﹣4)2,+(﹣3),﹣52,﹣|﹣2|,(﹣1)2016,0.其中是负数的有()个.A.2个B.3个C.4个D.5个二.填空题11.如果收入1500元记作+1500元,那么支出900元应记作元.12.若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过mm.14.若向北走5km记作﹣5km,则+10km的含义是.15.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,﹣2,8,11,5,﹣6,则这6名学生的平均成绩为分.三.解答题16.出租车司机小李某天下午的营运全是在县城人民路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15、﹣2、+5、﹣1、+10、﹣3、﹣2、+12、+4、﹣5.(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出车时的出发地有多远?(2)若汽车耗油量为0.2升/千米,这天下午小李共耗油多少升?(3)若小李家距离出车地点的西边35千米处,送完最后一名乘客,小李还要行驶多少千米才能到家?17.某公路检修小组从A地岀发,在东西方向的公路上检修路面,如果规定向东行驶为正,向西行驶为负,一天行驶记录如下(单位:千米):﹣5、﹣3,+6,﹣7,+9,+8,+4,﹣2.(1)求收工时距A地多远;(2)距A地最远的距离是多少千米(3)若每千米耗油0.2升,问这个小组从出发到收工共耗油多少升18.出租车司机小李某天下午的营运全是在东西走向的万松路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:﹣8,+6,+10,+3,﹣2,﹣6,﹣5(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出发地有多远?(2)如果汽车耗油量为0.55升/千米,那么这天下午汽车共耗油多少升?(3)距出发地最远是多少千米?19.徐州地铁1号线,西起杏山子大道,止于高铁徐州东站,共设18座站点,18座站点如下所示.徐州轨道交通试运营期间,小苏从苏堤北路站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向徐州东站站方向(即箭头方向)为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站是哪一站?(2)如果相邻两站之间的距离为2.5千米,求这次小苏志愿服务期间乘坐地铁行进的总路程是多少千米?参考答案与试题解析一.选择题1.【解答】解:由题意得:﹣300元表示支出300元.故选:B.2.【解答】解:因为﹣(﹣1)=1,﹣|﹣3.14|=﹣3.14,﹣(﹣3)5=﹣(﹣35)=35,所以正数有﹣(﹣1),﹣(﹣3)5共两个.故选:B.3.【解答】解:﹣(﹣)=,﹣|﹣|=﹣,所以,在﹣(﹣),95%,﹣|﹣|,﹣,0中正数有﹣(﹣),95%,共2个.故选:B.4.【解答】解:零既不是正数也不是负数,故选:D.5.【解答】解:,①﹣(﹣2)=2是正数;②﹣|﹣2|=﹣2是负数;③﹣23=﹣8是负数;④﹣(﹣2)2=﹣4是负数,故选:B.6.【解答】解:如果+2%表示增加2%,那么﹣6%表示减少6%,故选:C.7.【解答】解:∵高出海平面8844m,记为+8844m,∴低于海平面约415m,记为﹣415m,故选:B.8.【解答】解:观察函数图标得,上升的时段是:4时﹣﹣﹣14时.故选:B.9.【解答】解:A、|﹣2|=2是正数,故A错误;B、﹣(﹣2)=2是正数,故B错误;C、﹣|﹣2|=﹣2是负数,故C正确;D、(﹣2)2=4是正数,故D错误;故选:C.10.【解答】解:﹣,(﹣4)2=16,+(﹣3)=﹣3,﹣52,=﹣25,﹣|﹣2|=﹣2,(﹣1)2016=1,0.负数有:数中:﹣,+(﹣3),﹣52,﹣|﹣2|.共4个,故选:C.二.填空题(共5小题)11.【解答】解:如果收入1500元记作+1500元,那么支出900元应记作﹣900;故答案为:﹣900.12.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃,故答案为:零下3℃.13.【解答】解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故答案为:30.0314.【解答】解:∵向北走5km记作﹣5km,∴+10km的含义是向南走10km.故答案为:向南走10km15.【解答】解:由题意知,这6名学生的平均成绩=80+(5﹣2+8+11+5﹣6)÷6=83.5(分).故答案为83.5.三.解答题(共4小题)16.【解答】解:(1)他将最后一名乘客送抵目的地时,小李距下午出车时的出发地的距离为:+15﹣2+5﹣1+10﹣3﹣2+12+4﹣5=33(千米)小李距下午出车时的出发地有33千米.(2)这天下午小李共走的距离为:15+2+5+1+10+3+2+12+4+5=59(千米)∵汽车耗油量为0.2升/千米∴共耗油:59×0.2=11.8(升)∴这天下午小李共耗油11.8升.(3)∵小李家距离出车地点的西边35千米处,即﹣35千米处,由(1)可知小李距下午出车时的出发地有33千米.∴送完最后一名乘客,小李还要行驶33﹣(﹣35)=68(千米)∴送完最后一名乘客,小李还要行驶68千米才能到家.17.【解答】解:(1)(﹣5)+(﹣3)+6+(﹣7)+9+8+4+(﹣2)=10千米答:收工时在A地的东面10千米的地方.(2)﹣5﹣3+6﹣7+9+8+4=12千米,答:在向东行驶+4千米后,距A地的距离最远为12千米.(3)|﹣5|+|﹣3|+|+6|+|﹣7|+|+9|+|+8|+|+4|+|﹣2|=44千米,44×0.2=8.8升答:收工时一共需要行驶44千米,共用汽油8.8升.18.【解答】解:(1)﹣8+6+10+3﹣2﹣6﹣5=2千米.答:最后一名乘客送抵目的地时,小李距下午出发地有2千米.(2)[|﹣8|+|+6|+|+10|+|=3|+|﹣2|+|﹣6|+|﹣5|]×0.55=22升.答:这天下午汽车共耗油22升.(3)第一名乘客下车时小王离下午出发地是﹣8千米;第二名乘客下车时小王离下午出发地是﹣8+6=﹣2;第三名乘客下车时小王离下午出发地是﹣2+10=8;第四名乘客下车时小王离下午出发地是8+3=11,第五名乘客下车时小王离下午出发地是11﹣2=9;第六名乘客下车时小王离下午出发地是9﹣6=3;第七名乘客下车时小王离下午出发地是3﹣5=﹣2;取绝对值可以看出最远是11千米;答:距出发地最远是11千米.19.【解答】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是民主北路站1.2有理数一.选择题1.下列化简错误的是()A.﹣(﹣2)=2B.﹣(+3)=﹣3C.+(﹣4)=﹣4D.﹣|5|=52.如图,数轴上A,B两点所表示的数互为相反数,则下列说法正确的是()A.原点O在点B的右侧B.原点O在点A的左侧C.原点O与线段AB的中点重合D.原点O的位置不确定3.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.ab>0C.|a|<|b|D.﹣a>b4.﹣的相反数是()A.2020B.﹣2020C.D.﹣5.有理数a、b在数轴上的对应点的位置如图所示,则化简|a+b|的结果正确的是()A.a+b B.a﹣b C.﹣a+b D.﹣a﹣b6.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2019,则这只小球的初始位置点P0所表示的数是()A.1969B.1968C.﹣1969D.﹣19687.﹣2019的绝对值和相反数分别为()A.2019,﹣2019B.﹣2019,2019C.2019,2019D.﹣2019,﹣20198.若|x|=9,则x的值是()A.9B.﹣9C.±9D.09.下列分数中,不能化成有限小数的是()A.B.C.D.10.如图,在数轴上,手掌遮挡住的点表示的数可能是()A.0.5B.﹣0.5C.﹣1.5D.﹣2.5二.填空题11.若|x﹣2|=3,则x=.12.表示a、b两数的点在数轴上的位置如图,则|a﹣1|+|1+b|=.13.已知下列8个数:﹣3.14,24,+17,,,﹣0.01,0,﹣12,其中整数有个,负分数有个,非负数有个.14.a是最大的负整数,b是绝对值最小的数,则a+b=.15.已知,化简:|a+2b|﹣|c﹣a|+|﹣b﹣a|=.三.解答题16.已知|a﹣1|=2,求﹣3+|1+a|值.17.已知有理数a,b,c在数轴上的对应点分别为A,B,C.点A,B,C在数轴上的位置如图所示.若O是BC中点,A是OC中点,AC=2.(1)求a,b,c的值;(2)求线段AB的长度.18.我们在《有理数》这一章中学习过绝对值的概念:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.实际上,数轴上表示数﹣3的点与原点的距离可记作|﹣3﹣0|,数轴上表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|,那么,(1)①数轴上表示数3的点与表示数1的点的距离可记作.②数轴上表示数a的点与表示数2的点的距离可记作.③数轴上表示数a的点与表示数﹣3的点的距离可记作.(2)数轴上与表示数﹣2的点的距离为5的点有个,它表示的数为.(3)拓展:①当数a取值为时,数轴上表示数a的点与表示数﹣1的点的距离最小.②当整数a取值为时,式子|a+1|+|a﹣2|有最小值为.③当a取值范围为时,式子|a+1|+|a﹣2|有最小值.19.已知a>b,a与b两个数在数轴上对应的点分别为点A、点B,求A、B两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a>b,则有以下情况:情况一、若a>0,b≥0,如图,A、B两点之间的距离:AB=|a|﹣|b|=a﹣b;……(1)补全小明的探索【应用】(2)若点C对应的数c,数轴上点C到A、B两点的距离相等,求c.若点D对应的数d,数轴上点D到A的距离是点D到B的距离的n(n>0)倍,请探索n的取值范围与点D个数的关系,并直接写出a、b、d、n的关系.参考答案与试题解析一.选择题1.【解答】解:∵﹣(﹣2)=2,∴选项A不符合题意;∵﹣(+3)=﹣3,∴选项B不符合题意;∵+(﹣4)=﹣4,∴选项C不符合题意;∵﹣|5|=﹣5,∴选项D符合题意.故选:D.2.【解答】解:∵互为相反数的两数到原点的距离相等,所以原点到A、B的距离相等,若线段AB的中点为O,则OA=OB,所以原点O在点B的左侧,原点O在点A的右侧,原点O与线段AB的中点重合,原点O的位置不确定.故选:C.3.【解答】解:由图可知a<﹣1<0<b<1,则ab<0,|a|>|b|,﹣a>b.故选:D.4.【解答】解:﹣的相反数是:.故选:C.5.【解答】解:由数轴可得:a<0<b,|a|>|b|∴|a+b|=﹣a﹣b故选:D.6.【解答】解:设P0所表示的数是a,则a﹣1+2﹣3+4﹣…﹣99+100=2019,即:a+(﹣1+2)+(﹣3+4)+…+(﹣99+100)=2019.a+50=2019,解得:a=1969.点P0表示的数是1969.故选:A.7.【解答】解:|﹣2019|=2019,﹣2019的相反数是2019.故选:C.8.【解答】解:∵|x|=9,∴x的值是±9.故选:C.9.【解答】解:A、=0.875,能化成有限小数,不符合题意;B、=0.25,能化成有限小数,不符合题意;C、=1.08,能化成有限小数,不符合题意;D、=0.41,不能化成有限小数,符合题意;故选:D.10.【解答】解:设小手盖住的点表示的数为x,则﹣1<x<0,则表示的数可能是﹣0.5.故选:B.二.填空题(共5小题)11.【解答】解:当x﹣2>0时,x﹣2=3,解得,x=5;当x﹣2<0时,x﹣2=﹣3,解得,x=﹣1.故x=5或﹣1.12.【解答】解:由数轴可知:a<1,b<﹣1,所以a﹣1<0,1+b<0,故|a﹣1|+|1+b|=1﹣a﹣1﹣b=﹣a﹣b.13.【解答】解:整数包括正整数,0,负整数,所以整数有24,+17,0,﹣12四个;负分数包括负的小数和负的分数,所以负分数有﹣3.14,﹣7,﹣0.01三个;非负数包括0和正数,非负数包括24,17,,0四个.故应填4,3,4.14.【解答】解:∵a是最大的负整数,∴a=﹣1,b是绝对值最小的数,∴b=0,∴a+b=﹣1.故答案为:﹣1.15.【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0;∵=﹣1,∴|b|=﹣b,∴b≤0;∵|c|=c,∴c≥0,∴|a+2b|﹣|c﹣a|+|﹣b﹣a|=﹣(a+2b)﹣(c﹣a)+(﹣b﹣a)=﹣a﹣2b﹣c+a﹣b﹣a=﹣a﹣3b﹣c.故答案为:﹣a﹣3b﹣c.三.解答题(共4小题)16.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3.17.【解答】解:(1)∵AC=2,A是OC中点∴OA=AC=2OC=2AC=4∵O是BC中点∴OB=OC=4∴a=2,b=﹣4,c=4(2)AB=OA+OB=2+4=6∴线段AB的长度为6.18.【解答】解(1)由题意可得,①数轴上表示数3的点与表示数1的点的距离可记作|3﹣1|;故答案为:|3﹣1|;②数轴上表示数a的点与表示数2的点的距离可记作|a﹣2|;故答案为:|a﹣2|;③数轴上表示数a的点与表示数﹣3的点的距离可记作|a+3|;故答案为:|a+3|;(2)根据绝对值的含义可知数轴上与表示数﹣2的点的距离为5的点有2个,表示的数为﹣7 或3;故答案为:2;﹣7或3;(3)①由两点间的距离最小为0,可知数轴上表示数a的点与表示数﹣1的点的距离最小.则a=﹣1;故答案为:﹣1;②∵|a+1|+|a﹣2|表示数a与表示数﹣1和2的点之间的距离之和,则符合题意的整数a有﹣1,0,1,2;|a+1|+|a﹣2|的最小值为3;故答案为:﹣1,0,1,2;3;③∵|a+1|+|a﹣2|表示数a与表示数﹣1和2的点之间的距离之和∴﹣1≤a≤2时,|a+1|+|a﹣2|有最小值;故答案为:﹣1≤a≤2.19.【解答】解:(1)情况二:若a≥0,b<0 时,A、B两点之间的距离:AB=a+|b|=a ﹣b;情况三:若a<0,b<0 时,A、B两点之间的距离:AB=|b|﹣|a|=a﹣b;(2)∵点C对应的数c,点C到A、B两点的距离相等,∴a﹣c=c﹣b,∴2c=a+b,即c=(a+b);+n(d﹣b).1.3有理数的加减法一.选择题1.某城市在冬季某一天的最低气温为﹣13℃,最高气温为3℃.则这一天最高气温与最低气温的差是()A.3℃B.﹣13℃C.16℃D.﹣16℃2.已知a<b,|a|=4,|b|=6,则a﹣b的值是()A.﹣2B.﹣10C.2或10D.﹣2或﹣10 3.M、N两地的高度差记为M﹣N,例如:M地比N地低2米,记为M﹣N=﹣2(米).现要测量A、B两地的高度差,借助了已经设立的D、E、F、G、H共五个观测地,测量出两地的高度差,测量结果如下表:(单位:米)两地的高度差D﹣A E﹣D F﹣E G﹣F H﹣G B﹣H测量结果 3.3﹣4.2﹣0.5 2.7 3.9﹣5.6则A﹣B的值为()A.0.4B.﹣0.4C.6.8D.﹣6.84.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.1个B.2个C.3个D.4个5.已知|a|=5,|b|=2,且b<a,则a+b的值为()A.3或7B.﹣3或﹣7C.﹣3 或7D.3或﹣76.把五个数填入下列方框中,使横、竖三个数的和相等,其中错误的是()A.B.C.D.7.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则a﹣b的值为()A.24B.14C.24或14D.以上都不对8.下列运算正确的是()A.=+(6+2)=+8B.=+(6+5)=+11C.=﹣(3﹣2)=﹣1D.=﹣(10﹣8)=﹣29.如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大10.已知|x|=5,|y|=2,且x>y,则x﹣y的值等于()A.7或﹣7B.7或3C.3或﹣3D.﹣7或﹣3二.填空题11.a、b、c、d为互不相等的有理数,且c=2,|a﹣c|=|b﹣c|=|d﹣b|=1,则a+b+c+d=.12.从冰箱冷冻室里取出温度为﹣10℃的冰块,放在杯中,过一段时间后,该冰块的温度升高到﹣4℃,其温度升高了℃.13.已知|x|=4,|y|=5,且x,y均为负数,则x+y=.14.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例即4+3=7;则上图中m+n+p=.15.数学是一种重视归纳、抽象表述的学科,例如:“符号不同,绝对值相同的两个数互为相反数;0的相反数是0”可以用数学符号语言表述为:a+b=0,那么有理数的减法运算法则可以用数学符号语言表述为.三.解答题16.若|m|=7,n2=36,且n>m,求m+n的值.17.若|x|=5,|y|=2,且|x﹣y|=y﹣x;求2x+3y的值.18.“新春超市”在去年1~3月平均每月盈利20万元,4~6月平均每月亏损15万元,7~10月平均每月盈利17万元,11~12月平均每月亏损23万元,问“新春超市”去年总的盈亏情况如何?19.列式计算.(1)求2的相反数与﹣1的绝对值的和.(2)已知﹣11与一个数的差为11,求这个数.参考答案与试题解析一.选择题1.【解答】解:3﹣(﹣13),=16(℃).故选:C.2.【解答】解:∵|a|=4,|b|=6,∴a=±4,b=±6,∵a<b,∴a=4时,b=6,a﹣b=4﹣6=﹣2,a=﹣4时,b=6,a﹣b=﹣4﹣6=﹣10,综上所述,a﹣b的值是﹣2,﹣10.故选:D.3.【解答】解:B﹣A=(D﹣A)+(E﹣D)+(F﹣E)+(G﹣F)+(B﹣G)=3.3﹣4.2﹣0.5+2.7+3.9﹣5.6=0.4(米).A比B地高0.4米,故选:A.4.【解答】解:①减去一个数,等于加上这个数的相反数,说法正确;②两个互为相反数的数和为0,说法正确;③两数相减,差一定小于被减数,说法错误,如1﹣(﹣2)=1+2=3,3>1;④如果两个数的绝对值相等,则这两个数相等或互为相反数,所以这两个数的和或差等于零,故④说法正确.所以正确的说法有①②④.故选:C.5.【解答】解:∵|a|=5,|b|=2,且b<a∴a=5,b=±2,∴a+b=7或3,故选:A.6.【解答】解:验证四个选项:A、行:2+(﹣2)+3=3,列:1﹣2+4=3,行=列,不符合题意;B、行:﹣2+2+4=4,列:1+3+2=6,行≠列,符合题意;C、行:﹣2+2+4=4,列:3+2﹣1=4,行=列,不符合题意;D、行:1﹣1+2=2,列:3﹣1+0=2,行=列,不符合题意.故选:B.7.【解答】解:∵|a|=5,|b|=19,∴a=±5,b=±19.又∵|a+b|=﹣(a+b),∴a=±5,b=﹣19,当a=5,b=﹣19时,a﹣b=5+19=24,当a=﹣5,b=﹣19时,a﹣b=14.综上所述:a﹣b的值为24或14.故选:C.8.【解答】解:A、=﹣(6+2)=﹣8,故不符合题意;B、=﹣(6+5)=﹣11,故不符合题意;C、=﹣(3﹣2)=﹣1;故符合题意;D、=10+8=18,故不符合题意,故选:C.9.【解答】解:∵a+b<0,∴a,b同为负数,或一正一负,且负数的绝对值大,∵a,b异号,∴a、b异号,且负数的绝对值较大.故选:D.10.【解答】解:∵|x|=5,|y|=2,且x>y,∴x=5,y=2或x=5,y=﹣2,则x﹣y=3或7,故选:B.二.填空题(共5小题)11.【解答】解:∵a、b、c、d为互不相等的四个有理数,且c=2,|a﹣c|=|b﹣c|=1,∴a=3,b=1或a=1,b=3,当b=1时,∵|d﹣b|=1,∴d=2或0,又∵c=2,a、b、c、d为互不相等的有理数,∴d=0;当b=3时,∵|d﹣b|=1,∴d=4或2,又∵c=2,a、b、c、d为互不相等的有理数,∴d=4,当a=3,b=1,d=0时,a+b+c+d=3+1+2+0=6;当a=1,b=3,d=4时,a+b+c+d=1+3+2+4=10.∴a+b+c+d=6或10.故答案为:6或10.12.【解答】解:由题意可得:﹣4﹣(﹣10)=6(℃).故答案为:6.13.【解答】解:∵|x|=4,|y|=5,且x,y均为负数,∴x=﹣4,y=﹣5,∴x+y=﹣9.故答案为:﹣9.14.【解答】解:由题意可得:n=8﹣1=7,8+m=﹣1,解得:m=﹣9,故p=n﹣1=6,故m+n+p=7﹣9+6=4.故答案为:4.15.【解答】解:有理数的减法运算法则:减去一个数,等于加上这个数的相反数.∴有理数的减法运算法则可以用数学符号语言表述为:a﹣b=a+(﹣b).故答案为:a﹣b=a+(﹣b)三.解答题(共4小题)16.【解答】解:∵|m|=7,∴m=±7,∵n2=36,∴n=±6,∵n>m,∴①当m=﹣7时,n=﹣6,m+n=﹣7﹣6=﹣13;②当m=﹣7时,n=6,m+n=﹣7+6=﹣1.∴m+n=﹣13或﹣1.17.【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵|x﹣y|=y﹣x,∴x﹣y≤0,∴x=﹣5,y=±2,2x+3y=﹣10+6=﹣4,或2x+3y=﹣10﹣6=﹣16,综上所述,2x+3y的值为﹣4或﹣16.18.【解答】解:20×3+(﹣15)×3+17×4+(﹣23)×2=60﹣45+68﹣46=37(万元人教版数学七年级上册检测题含答案2.1整式一.选择题1.代数式;0;2x3y;;;﹣a;7x2﹣6x﹣2中,单项式有()A.1个B.2个C.3个D.4个2.单项式﹣的系数是()A.2B.﹣1C.﹣3D.﹣3.在式子,x+y,2020,﹣a,﹣3x2y,中,整式的个数()A.5个B.4个C.3个D.2个4.代数式:①;②πr2;③;④﹣3a2b;⑤.其中整式的个数是()A.2B.3C.4D.55.单项式﹣3xy2z3的系数与指数的和为()A.6B.3C.﹣3D.﹣66.下列说法正确的是()A.2x2﹣3xy﹣1的常数项是1B.0不是单项式C.3ab﹣2a+1的次数是3D.﹣ab2的系数是﹣,次数是37.已知单项式的次数是7,则2m﹣17的值是()A.8B.﹣8C.9D.﹣98.下列说法中,不正确的是()A.单项式﹣x的系数是﹣1,次数是1B.单项式xy2z3的系数是1,次数是6C.xy﹣3x+2是二次三项式D.单项式﹣32ab3的次数是69.已知A=2x2+ax﹣y+6,B=bx2﹣3x+5y﹣1,且A﹣B中不含有x2项和x项,则a2+b3等于()A.5B.﹣4C.17D.﹣110.下列说法中:①的系数是;②﹣ab2的次数是2;③多项式mn2+2mn﹣3n﹣1的次数是3;④a﹣b和都是整式,正确的有()A.1个B.2个C.3个D.4个二.填空题11.﹣是次单项式,系数是.12.单项式3x2y m是六次单项式,则m=.13.把多项式x3﹣7x2y+y3﹣4xy2按x的升幂排列为.14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.同时符合下列条件:①同时含有字母a,b;②常数项是﹣,且最高次项的系数是2的一个4次2项式请你写出满足以上条件的所有整式.三.解答题16.已知多项式x|m|﹣(m+2)x+12是关于x的二次二项式,求m的值.17.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.18.(1)下列代数式:①2x2+bx+1;②﹣ax2+3x;③;④x2;⑤,其中是整式的有.(填序号)(2)将上面的①式与②式相加,若a,b为常数,化简所得的结果是单项式,求a,b 的值.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M 自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:代数式,0,2x3y,,,﹣a,7x2﹣6x﹣2中,单项式有:0,2x3y,﹣a,共3个.故选:C.2.【解答】解:单项式﹣的系数是:﹣.故选:D.3.【解答】解:在式子,x+y,0,﹣a,﹣3x2y,中,整式的个数是:x+y,2020,﹣a,﹣3x2y,共5个.故选:A.4.【解答】解:①a;②πr2;③x2+1;④﹣3a2b,都是整式,⑤,分母中含有字母,不是整式,故选:C.5.【解答】解:单项式﹣3xy2z3的系数为:﹣3,指数为:6,故系数与指数的和为:6﹣3=3.故选:B.6.【解答】解:A、2x2﹣3xy﹣1的常数项是﹣1,故此选项错误;B、0是单项式,故此选项错误;C、3ab﹣2a+1的次数是2,故此选项错误;D、﹣ab2的系数是﹣,次数是3,故此选项正确;故选:D.7.【解答】解:单项式的次数是指单项式中所有字母因数的指数和,则m+3=7,解得m=4,所以2m﹣17=2×4﹣17=﹣9.故选:D.8.【解答】解:A、单项式﹣x的系数是﹣1,次数是1,正确;B、单项式xy2z3的系数是1,次数是6,正确;C、xy﹣3x+2是二次三项式,正确;D、单项式﹣32ab3的次数是4,故错误,故选:D.9.【解答】解:∵A=2x2+ax﹣y+6,B=bx2﹣3x+5y﹣1,且A﹣B中不含有x2项和x项,∴A﹣B=2x2+ax﹣y+6﹣(bx2﹣3x+5y﹣1)=(2﹣b)x2+(a+3)x﹣6y+7,则2﹣b=0,a+3=0,解得:b=2,a=﹣3,故a2+b3=9+8=17.故选:C.10.【解答】解:①的系数是的说法正确;②﹣ab2的次数是3,原来的说法错误;③多项式mn2+2mn﹣3n﹣1的次数是3的说法正确;④a﹣b和都是整式的说法正确.正确的有3个.故选:C.二.填空题11.【解答】解:﹣是3次单项式,系数是:﹣.故答案为:3,﹣.12.【解答】解:∵单项式3x2y m是六次单项式,∴2+m=6,解得:m=4.故答案为:4.13.【解答】解:多项式x3﹣7x2y+y3﹣4xy2的各项为x3,﹣7x2y,y3,﹣4xy2,按x的升幂排列为:y3﹣4xy2﹣7x2y+x3.故答案为:y3﹣4xy2﹣7x2y+x3.14.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.【解答】解:①同时含有字母a,b;②常数项是﹣,且最高次项的系数是2的一个4次2项式可以是2a3b﹣或2a2b2﹣或2ab3﹣,故答案为:2a3b﹣或2a2b2﹣或2ab3﹣.三.解答题16.【解答】解:∵多项式x|m|﹣(m+2)x+12是关于x的二次二项式,∴|m|=2,且m+2=0,∴m=﹣2.即m的值是﹣2.17.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.18.【解答】解:(1)①是多项式,也是整式;②是多项式,也是整式;③是分式,不是整式;④是单项式,也是整式;⑤是二次根式,不是整式;故答案为:①②④;(2)(2x2+bx+1)+(﹣ax2+3x)=2x2+bx+1﹣ax2+3x=(2﹣a)x2+(b+3)x+1∵①式与②式相加,化简所得的结果是单项式,∴2﹣a=0,b+3=0,∴a=2,b=﹣3.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|2.2整式的加减一.选择题1.下列计算中,正确的是()A.3a﹣9a=6a B.ab2﹣b2a=0C.a3﹣a2=a D.﹣7(a+b)=﹣7a+7b2.若﹣3x m y3与2x4y n是同类项,那么m﹣n=()A.0B.1C.﹣1D.﹣23.下列各组式子中不是同类项的是()A.4与B.3mn与4nm C.2πx与﹣3x D.3a2b与3ab2 4.下列运算正确的是()A.23=6B.﹣8a﹣8a=0C.﹣42=﹣16D.﹣5xy+2xy=﹣35.在下列各对整式中,是同类项的是()A.3x,3y B.﹣xy,2xyC.32,a2D.3m2n2,﹣4n3m26.若a为最大的负整数,b的倒数是﹣0.5,则代数式2b3+(3ab2﹣a2b)﹣2(ab2+b3)值为()A.﹣6B.﹣2C.0D.0.57.如果关于a,b的代数式a2m﹣1b与a5b m+n是同类项,那么(mn+5)2019等于()A.0B.1C.﹣1D.520198.下列各式计算正确的是()A.32=6B.C.3a+b=3ab D.4a3b﹣5ba3=﹣a3b9.若单项式5x1﹣a y3与2x3y b﹣1的差仍是单项式,则a b的值是()A.8B.﹣8C.16D.﹣1610.下列说法中,正确的是()A.若x,y互为倒数,则(﹣xy)2020=﹣1B.如果|x|=2,那么x的值一定是2C.与原点的距离为4个单位的点所表示的有理数一定是4D.若﹣7x6y4和3x2m y n是同类项,则m+n的值是7二.填空题11.关于x、y的多项式(3a﹣2)x2+(4a+10b)xy﹣x+y﹣5不含二次项,则3a﹣5b的值是.12.若单项式x4y n+1与﹣3x m y2是同类项,则m+n=.13.单项式2x a﹣2y3与xy b+1是同类项,则a+b=.14.长方形的周长为6a+8b,一边长为2a+3b,则相邻的一边长为.15.已知a2﹣2ab=2,4ab﹣3b2=﹣3,则a2﹣14ab+9b2﹣5的值为.三.解答题16.化简:(1)3x2y﹣xy2﹣2x2y+3xy2;(2)(5a2﹣ab+1)﹣(﹣4a2+2ab+1).17.定义:若a+b=2,则称a与b是关于2的平衡数.(1)3与是关于2的平衡数,5﹣x与是关于2的平衡数.若a=x2﹣2x+1,b=x2﹣2(x2﹣x+1)+3,判断a与b是否是关于2的平衡数,并说明理由.18.已知关于x,y的多项式(ax2﹣2y+4)﹣(2x2+by﹣2).(1)当a,b为何值时,此多项式的值与字母x,y的取值无关?(2)在(1)的条件下,化简求多项式2(a2+2b2﹣2a)﹣(a2﹣ab+4b2)的值.19.已知多项式M=(2x2+3xy+2y)﹣2(x2﹣xy+x﹣).(1)先化简,再求值,其中x=,y=﹣1;(2)若多项式M与字母x的取值无关,求y的值.参考答案与试题解析一.选择题1.【解答】解:A、3a﹣9a=﹣6a,故原题计算错误;B、ab2﹣b2a=0,故原题计算正确;C、a3和a2不是同类项,不能合并,故原题计算错误;D、﹣7(a+b)=﹣7a﹣7b,故原题计算错误;故选:B.2.【解答】解:由题意可知:m=4,n=3,∴m﹣n=4﹣3=1,故选:B.3.【解答】解:(A)4与是同类项,故A不符合题意.(B)3mn与4nm是同类项,故B不符合题意.(C)2πx与﹣3x是同类项,故C不符合题意.(D)3a2b与3ab2不是同类型,故D符合题意.故选:D.4.【解答】解:A、23=8,错误,选项不符合题意;B、﹣8a﹣8a=﹣16a,错误,选项不符合题意;C、﹣42=﹣16,正确,选项符合题意;D、﹣5xy+2xy=﹣3xy,错误,选项不符合题意;故选:C.5.【解答】解:A.3x,3y所含字母不相同,不是同类项,不合题意;B.﹣xy,2xy所含字母相同,并且相同字母的指数也相同,是同类项,符合题意;C.32,a2不是同类项,不合题意;D.3m2n2,﹣4n3m2所含字母相同,相同字母n的指数不相同,不是同类项,不合题意;故选:B.6.【解答】解:∵a为最大的负整数,∴a=﹣1,∵b的倒数是﹣0.5,∴b=﹣2,原式=2b3+3ab2﹣a2b﹣2ab2﹣2b3=ab2﹣a2b,当a=﹣1,b=﹣2时,原式=﹣1×(﹣2)2﹣(﹣1)2×(﹣2)=﹣2,故选:B.7.【解答】解:∵关于a,b的代数式a2m﹣1b与a5b m+n是同类项,∴2m﹣1=5,m+n=1,解得:m=3,n=﹣2,则(mn+5)2019=(﹣6+5)2019=﹣1.故选:C.8.【解答】解:A、32=9,原计算错误,故此选项不符合题意;B、,原计算错误,故此选项不符合题意;C、3a与b不是同类项,并能合并,原计算错误,故此选项不符合题意;D、4a3b﹣5ba3=﹣a3b,原计算正确,故此选项符合题意;故选:D.9.【解答】解:由题意得:1﹣a=3,b﹣1=3,解得:a=﹣2,b=4,则a b=16,故选:C.10.【解答】解:A、若x,y互为倒数,则(﹣xy)2020=1,故A错误;B、若|x|=2,那么x是±2,故B错误;C、与原点的距离为4个单位的点所表示的有理数是4或﹣4,故C错误;D、若﹣7x6y4和3x2m y n是同类项,则2m=6,n=4,所以m+n的值是7,故D正确.故选:D.二.填空题(共5小题)11.【解答】解:由题意可得,3a﹣2=0且4a+10b=0,所以3a=2,∴4a=,∵4a+10b=0,∴10b=﹣,∴5b=﹣,所以3a﹣5b=2+=,故答案为:.12.【解答】解:由题意可知:m=4,n+1=2,∴m=4,n=1,∴m+n=5,故答案为:5.13.【解答】解:由题意可知:a﹣2=1,b+1=3,∴a=3,b=2,∴a+b=5,故答案为:5.14.【解答】解:由题意得:(6a+8b)﹣(2a+3b)=3a+4b﹣2a﹣3b=a+b,故答案为:a+b.15.【解答】解:∵a2﹣2ab=2,4ab﹣3b2=﹣3,∴原式=(a2﹣2ab)﹣3(4ab﹣3b2)﹣5=2+9﹣5=6.故答案为:6.三.解答题(共4小题)16.【解答】解:(1)原式=3x2y﹣2x2y﹣xy2+3xy2=x2y+2xy2.(2)原式=5a2﹣ab+1+4a2﹣2ab﹣1=9a2﹣3ab.17.【解答】解:(1)设3与x是关于2的平衡数,∴x+3=2,∴x=﹣1,设t与5﹣x是关于2的平衡数,∴t+5﹣x=2,∴t=x﹣3.(2)由题意可知:a+b=x2﹣2x+1+x2﹣2(x2﹣x+1)+3=x2﹣2x+1+x2﹣2x2+2x﹣2+3=2,∴a与b是关于2的平衡数.故答案为:(1)﹣1,x﹣3.18.【解答】解:(1)(ax2﹣2y+4)﹣(2x2+by﹣2)=ax2﹣2y+4﹣2x2﹣by+2=(a﹣2)x2﹣(2+b)y+6.当a=2,b=﹣2时,多项式的值与字母x、y的取值无关.(2)∵2(a2+2b2﹣2a)﹣(a2﹣ab+4b2)=2a2+4b2﹣4a﹣a2+ab﹣4b2=a2﹣4a+ab,当a=2,b=﹣2时,原式=4﹣8﹣4=﹣8.19.【解答】解:(1)=2x2+3xy+2y﹣2x2+2xy﹣2x+1=5xy+2y﹣2x+1,当时,原式=5××(﹣1)+2×(﹣1)﹣2×+1=﹣1﹣2﹣+1=﹣2。

七年级上册数学各单元测试题(含答案)人教版

七年级上册数学各单元测试题(含答案)人教版

第 一 章 有 理 数班级 学号 姓名 得分一、选择题(4分³10=40分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334³710人B 、33.4³510人C 、3.34³210人D 、3.34³610人 4、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)5、计算(-1)÷(-5)³51的结果是( )A 、-1B 、1C 、251D 、-256、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ²y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1³20)mmB 、(0.1³40)mmC 、(0.1³220)mmD 、(0.1³202)mm二、填空题(5分³4=20)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出两个即可)13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为 .14、观察下列各数,按规律在横线上填上适当的数。

人教版七年级数学上册单元测试题全套含答案

人教版七年级数学上册单元测试题全套含答案

输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
-1 A.3 个 B.4 个 C.5 个 D.6 个 7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是 1cm),刻度尺上的“0cm”和“8cm”分别对应 数轴上的-3.6 和 x,则 x 的值为( )
A.4.2 B.4.3 C.4.4 D.4.5 8.有理数 a,b 在数轴上的位置如图所示,下列各式成立的是( )
A.b>0 B.|a|>-b C.a+b>0 D.ab<0 9.若|a|=5,b=-3,则 a-b 的值为( ) A.2 或 8 B.-2 或 8 C.2 或-8 D.-2 或-8
10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发
5
3
___________________.
13.绝对值大于 4 而小于 7 的所有整数之和是________.
14.点 A,B 表示数轴上互为相反数的两个数,且点 A 向左平移 8 个单位到达点 B,则这两点所表示
的数分别是________和________.
15.如图是一个简单的数值运算程序.当输入 x 的值为-1 时,则输出的数值为________.
现的规律得出 22016 的末位数字是( )
A.2 B.4 C.6 D.8
二、填空题(每小题 3 分,共 24 分)

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。

人教版七年级数学上册第1-2章同步测试题(有答案)

人教版七年级数学上册第1-2章同步测试题(有答案)

人教版七年级数学上册第1-2章同步测试题(有答案)第 2 页有理数、整式的加减测试题一、选择题(共13小题;共39分)1. 下列各数:−(+2),−32,(−13)2,−(−1)2015,−∣−3∣ 中,负数的个数是 ( ) 个.A. 2B. 3C. 4D. 52. 下列各式计算正确的是 ( ) A. −52×(−125)=−1 B. 25×(−0.5)2=−1C. −24×(−3)2=144D. (35)2÷(1÷259)=23253. 下列叙述正确的有 ( )① 0 是整数中最小的数;② 有理数中没有最大的数;③ 分数都是有理数;④ 整数和分数统称有理数.A. ②③④B. ①②③C. ①②④D. ①③④4. 某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:∘C ),则下列城市当天平均气温最低的是 ( ) 城市 温州 上海 北京 哈尔滨 广州 平均气温/℃ 6−9 −1515A. 广州B. 哈尔滨C. 北京D. 上海5. 如图所示,数轴上两点 A ,B 分别表示实数 a ,b ,则下列四个数中最大的一个数是 ( )A. aB. bC. 1aD. 1b6. 由四舍五入得到的近似数 30.0 精确到 ( )A. 0.01B. 十分位C. 个位D. 十位7. 某企业今年 3 月份产值为 a 万元,4 月份比 3 月份减少了 10%,5 月份比 4 月份增加了 15%,则 5 月份的产值是 ( )A. (a−10%)(a+15%)万元B. a(1−10%)(1+15%)万元C. (a−10%+15%)万元D. a(1−10%+ 15%)万元8. 2019年第一季度,我市"蓝天白云、繁星闪烁"天数持续增加,获得山东省环境空气质量生态补偿资金408万元,408万用科学记数法表示正确的是( )A. 408×104B. 4.08×104C.4.08×105 D. 4.08×1069. 如图,淇淇和嘉嘉做数学游戏,假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=( )A. 2B. 3C. 6D. x+310. 有理数a,b在数轴上的位置如图所示,则下列结论正确的是( )A. a+b>0B. a−b>0C. a⋅b>0 D. ab>011. 若m,n互为相反数,则在① m+n=0,② ∣m∣=∣n∣,③ m2=n2,④ m3=n3,⑤mn=−n2中,必定成立的有( )A. 2个B. 3个C. 4个D. 5个12. 实数a,b,c,d在数轴上对应点的位置如图所示,这四个数中,倒数最大的是( )A. bB. dC. aD. c13. 近似数 1.70所表示的准确数x的取值范围是( )A. 1.695≤x<1.705B. 1.65≤x<1.75C. 1.7≤x<1.75D. 1.695≤x≤1.705二、填空题(共10小题;共30分)14. 若有理数a是负数,则−a是数;a−2的相反数是−8,则a=.第 3 页15. 在数轴上表示整数的点称为整点,某数轴的单位长度是 1 cm,若从这个数轴上任意一点画出一条长为50 cm的线段,则线段盖住的整点数是个.16. 某粮店出售的三种品牌的大米袋上,分别标有(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意抽出两袋,它们的质量最多相差kg.17. 在式子b 23,12xy+3,−2,3x,1a+b,ab+x5,2x2−3x,a中,单项式有个,多项式有个,整式有个.18. 某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:① 如果不超过500元,则不予优惠;② 如果超过500元,但不超过800元,则按购物总额给予8折优惠;③ 如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款元.19. 若xy>0,yz<0,则xz0.20. 如果3x2y m与−2x n−1y3是同类项,那么m+n=.21. 已知∣3m−12∣+(n2+1)2=0,则2m−n=.22. 若a,b互为相反数,c,d互为倒数,m的绝对值是2,则式子∣a+b∣2m2+1+4m−3cd的值为.23. 有理数a,b,c在数轴上的位置如图所示,则式子∣a∣+∣b∣−∣a+b∣−∣a−2b∣化简后的结果为.三、解答题第 4 页第 5 页24. 计算 (−179)+(−411)+(+49)−(+711)(−313)÷245÷(−318)×(−0.75) −16−(1−0.5)×13×[2−(−3)2] 25. 化简、求值:5(3a 2b −ab 2)−3(ab 2+5a 2b ),其中 a =13,b =−12.−2x 2−12[3y 2−2(x 2−y 2)+6],其中 x =−1,y =−12.26. 已知 ∣m∣=3,∣n∣=2,且 m <n ,求 m 2+2mn +n 2的值27. 一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10. (1)守门员最后是否回到了球门线的位置? (2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?28.王明在计算一个多项式减去2b 2-b-5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b 2+3b-1.据此你能求出这个多项式并算出正确的结果吗?29.蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg 为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:,-3,+2,,-3,+1,-2,-2 (1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?30.已知某粮库已存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正):星期一二三四五六日进、出记录+35 -20 -30 +25 -24 +50 -26(1)通过计算,说明本周内哪天粮库剩余的粮食最多?(2)若运进的粮食为购进的,购买价格为每吨2019元,运出的粮食为卖出的,卖出的价格为每吨2300元,则这一周的利润为多少?(3)若每周平均进出的粮食大致相同,则再过几周粮库存的粮食可达到200吨?答案1. B2. D3. A4. B5. D6. B7. B8. D9. B 10. A11. C 12. D 13. A14. 正;1015. 50或5116. 0.617. 3;3;618. 838或91019. <20. 621. 1022. 5 或−1123. a24. (1)原式=3−3+8=8.(2)原式=−169+49+(−411)−(+711)=−43−1=−213.(3)原式=(−103)÷145÷(−258)×(−34)=−103×514×825×34=−27.(4)原式=−1−0.5×13×(−7)=−1+76=16.第 6 页第 7 页25. (1) 原式=6x 2−4xy −8x 2+4xy +4=−2x 2+4.(2)原式=−x 2+12x −2y +x +2y=−x 2+32x.当 x =12,y =2012 时,原式=−14+34=12.(3)原式=15a 2b −5ab 2−3ab 2−15a 2b=−8ab 2.当 a =13,b =−12时,原式=−8×13×(−12)2=−23.(4)原式=−2x 2−32y 2+x 2−y 2−3=−x 2−52y 2−3.当 x =−1,y =−12时,原式=−1−58−3=−458.26. 由题意可得,m =±3,n =±2. 又 m <n ,∴m =−3,n =2 或 m =−3,n =−2, 当 m =−3,n =2,原式=(−3)2+2×2×(−3)+22=1;当 m =−3,n =−2,原式=(−3)2+2×(−2)×(−3)+(−2)2=25. 27. (1)(+5)+(−3)+(+10)+(−8)+(−6)+(+12)+(−10)=(5+10+12)−(3+8+6+10)=27−27=0.答:守门员最后回到了球门线的位置.(2) 由观察可知:5−3+10=12(米).答:在练习过程中,守门员离开球门线最远距离是12米.(3)∣+5∣+∣−3∣+∣+10∣+∣−8∣+∣−6∣+∣+12∣+∣−10∣=5+3+10+8+6+12+10=54(米).答:守门员全部练习结束后,他共跑了54米.第 8 页。

最新人教版数学七年级上册第一章、第二章测试题及答案解析(各一套)

最新人教版数学七年级上册第一章、第二章测试题及答案解析(各一套)

人教版数学七年级上册第一章测试题及答案解析(时间:90分钟分值:120分)一、选择题(每小题4分,共32分)1.(4分)杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克2.(4分)下列说法正确的有()①一个数不是正数就是负数;②海拔﹣155m表示比海平面低155m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个B.2个C.3个D.4个3.(4分)小灵做了以下4道计算题:①﹣6﹣6=0;②﹣3﹣|﹣3|=﹣6;③3÷×2=12;④0﹣(﹣1)2016=﹣1.则她做对的道数是()A.1 B.2 C.3 D.44.(4分)2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()A.3.844×108B.3.844×107C.3.844×109D.38.44×109 5.(4分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c6.(4分)已知①1﹣22;②|1﹣2|;③(1﹣2)2;④1﹣(﹣2),其中相等的是()A.②和③B.③和④C.②和④D.①和②7.(4分)若(﹣ab)2017>0,则下列各式正确的是()A.<0 B.>0 C.a>0,b<0 D.a<0,b>08.(4分)若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11 B.1或﹣11 C.﹣1或﹣11 D.11二、填空题(每小题4分,共16分)9.(4分)﹣2的相反数是,倒数是,绝对值是.10.(4分)在数轴上,与点﹣3距离4个单位长度的点有个,它们对应的数是.11.(4分)若m、n互为相反数,则|m﹣1+n|=.12.(4分)某品种兔子,一对兔子每个月能繁殖3对小兔子,而每对小兔子,一个月后也能繁殖3对新小兔子,总之,所有的每对兔子,都是每月繁殖3对小兔子,如果开始只有一对兔子,那么半年后有对兔子(不考虑意外死亡).三、解答题(共52分)13.(12分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);(2)﹣17+17÷(﹣1)11﹣52×(﹣0.2)3;(3)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2].14.(10分)小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有1人参加,数学老师想出了一个主题,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组,你也一起来试一试吧!15.(10分)小明是“环保小卫士”,课后他经常关心环境天气的变化,他了解到本周白天的平均气温,如表(“+”表示比前一天上升了,“﹣”表示比前一天下降了.单位:℃)星期一二三四五六日气温变化+1.1﹣0.3+0.2+0.4+1+1.4﹣0.3已知上周周日平均气温是16.9℃,回答下列问题:(1)这一周哪天的平均气温最高,最高是多少?(2)计算这一周每天的平均气温.16.(10分)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,想一想:等式左边各个幂的底数与右边幂的底数有什么关系,并用等式表示出规律;再利用这一规律计算13+23+33+43+…+1003的值.17.(10分)如图,小玉有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题:(1)从中抽出2张卡片,使这2张卡片上的数字的乘积最大,则应如何抽取?最大的乘积是多少?(2)从中抽出2张卡片,使这2张卡片上的数字相除的商最小,则应如何抽取?最小的商是多少?(3)从中抽出2张卡片,使这2张卡片上的数字经过加、减、乘、除、乘方中的一种运算后,组成一个最大的数,则应如何抽取?最大的数是多少?(4)从中抽出4张卡片,用学过的运算方法,要使结果为24,则应如何抽取?写出运算式子(一种即可).参考答案与试题解析一、选择题(每小题4分,共32分)1.(4分)杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克【考点】正数和负数.【专题】计算题.【分析】根据有理数的加法,可得答案.【解答】解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.【点评】本题考查了正数和负数,有理数的加法运算是解题关键.2.(4分)下列说法正确的有()①一个数不是正数就是负数;②海拔﹣155m表示比海平面低155m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个B.2个C.3个D.4个【考点】有理数.【专题】计算题;实数.【分析】利用正数与负数的定义判断即可.【解答】解:①一个数不是正数就是负数或0,错误;②海拔﹣155m表示比海平面低155m,正确;③负分数是有理数,错误;④零不是最小的数,错误;⑤零是整数,不是正数,错误.故选A【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.3.(4分)小灵做了以下4道计算题:①﹣6﹣6=0;②﹣3﹣|﹣3|=﹣6;③3÷×2=12;④0﹣(﹣1)2016=﹣1.则她做对的道数是()A.1 B.2 C.3 D.4【考点】有理数的混合运算.【分析】根据绝对值、有理数的加减法、乘除进行计算即可.【解答】解:①﹣6﹣6=﹣12,故错误;②﹣3﹣|﹣3|=﹣6,故正确;③3÷×2=12,故正确;④0﹣(﹣1)2016=﹣1,故正确;故选C.【点评】本题考查了有理数的混合运算,掌握有理数的加减乘除混合运算是解题的关键.4.(4分)2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()A.3.844×108B.3.844×107C.3.844×109D.38.44×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 400 000有9位,所以可以确定n=9﹣1=8.【解答】解:384 400 000=3.844×108.故选:A.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(4分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【考点】实数与数轴.【专题】数形结合.【分析】先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.6.(4分)已知①1﹣22;②|1﹣2|;③(1﹣2)2;④1﹣(﹣2),其中相等的是()A.②和③B.③和④C.②和④D.①和②【考点】有理数的混合运算.【分析】①先算平方,再算减法;②先做绝对值里面的减法运算,再根据绝对值的定义去掉绝对值的符号;③先做括号里面的减法运算,再根据有理数的乘方运算法则计算;④根据减法法则计算.计算出各式的值以后,再比较即可.【解答】解:因为①1﹣22=1﹣4=﹣3;②|1﹣2|=|﹣1|=1;③(1﹣2)2=(﹣1)2=1;④1﹣(﹣2)=1+2=3.所以,相等的是②和③.故选A.【点评】此题主要考查了有理数的混合运算.7.(4分)若(﹣ab)2017>0,则下列各式正确的是()A.<0 B.>0 C.a>0,b<0 D.a<0,b>0【考点】有理数的乘方;有理数的除法.【分析】根据乘方法则得的结果.【解答】解:∵(﹣ab)2017>0,∴﹣ab>0,∴ab<0,即ab异号,∴A选项正确,B选项错误;CD错误,故选A.【点评】本题主要考查了乘方运算,注意正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0是解答此题的关键.8.(4分)若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11 B.1或﹣11 C.﹣1或﹣11 D.11【考点】绝对值.【分析】根据所给a,b绝对值,可知a=±5,b=±6;又知a>b,那么应分类讨论两种情况:a为5,b为﹣6;a为﹣5,b为﹣6,求得a+b的值.【解答】解:已知|a|=5,|b|=6,则a=±5,b=±76∵a>b,∴当a=5,b=﹣6时,a+b=5﹣6=﹣1;当a=﹣5,b=﹣6时,a+b=﹣5﹣6=﹣11.故选C.【点评】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.根据题意确定绝对值符号中数的正负再计算结果.二、填空题(每小题4分,共16分)9.(4分)﹣2的相反数是2,倒数是﹣,绝对值是2.【考点】倒数;相反数;绝对值.【分析】运用倒数,相反数及绝对值的定义求解即可.【解答】解:﹣2的相反数是2,倒数是﹣,绝对值是2.故答案为:2,﹣,2.【点评】本题主要考查了倒数,相反数及绝对值,解题的关键是熟记定义.10.(4分)在数轴上,与点﹣3距离4个单位长度的点有2个,它们对应的数是﹣7和1.【考点】数轴.【专题】计算题;实数.【分析】结合数轴,确定出所求的数即可.【解答】解:在数轴上,与点﹣3距离4个单位长度的点有2个,分别位于﹣3的两侧且到﹣3这一点的距离都是4,右边的数为﹣3+4=1,左边的数为﹣3﹣4=﹣7.故答案为:2;﹣7和1【点评】此题考查了数轴,利用了数形结合的思想,画出相应的数轴是解本题的关键.11.(4分)若m、n互为相反数,则|m﹣1+n|=1.【考点】有理数的加减混合运算;相反数;绝对值.【专题】计算题.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:∵m、n互为相反数,∴m+n=0.∴|m﹣1+n|=|﹣1|=1.故答案为:1.【点评】主要考查相反数,绝对值的概念及性质.12.(4分)某品种兔子,一对兔子每个月能繁殖3对小兔子,而每对小兔子,一个月后也能繁殖3对新小兔子,总之,所有的每对兔子,都是每月繁殖3对小兔子,如果开始只有一对兔子,那么半年后有4096对兔子(不考虑意外死亡).【考点】有理数的乘方.【分析】结合乘方的定义可知:开始有兔子的对数是1,1个月后有4对兔子,以后每一个月后每一对兔子都变成4对兔子,依此类推,可得6个月后有46对小兔子.【解答】解:由题意得:1个月后有3+1=4对兔子,半年后:46=4 096,故答案为:4 096.【点评】此题主要考查了有数的乘方,关键是正确理解题意,得出一个月后兔子的对数.三、解答题(共52分)13.(12分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);(2)﹣17+17÷(﹣1)11﹣52×(﹣0.2)3;(3)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣49﹣91+5﹣9=﹣49﹣91﹣9+5=﹣149+5=﹣144;(2)原式=﹣17+17÷(﹣1)﹣25×(﹣)=﹣17+(﹣17)﹣(﹣)=﹣34+=﹣33;(3)原式=﹣5﹣(﹣﹣×)=﹣5﹣(﹣)=﹣5+=﹣4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.(10分)小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有1人参加,数学老师想出了一个主题,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组,你也一起来试一试吧!【考点】有理数大小比较.【专题】图表型.【分析】根据在一个数的前面加上负号就是这个数的相反数,负数的立方是负数,乘积为1的两个数互为倒数,有理数的加法,可化简各数,根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左的大,可得答案.【解答】解:﹣(﹣2)=2,(﹣1)3=﹣1,﹣|﹣3|=﹣3,0的相反数是0,﹣0.4的倒数是﹣,比﹣1大是,在数轴上表示如图:,由数轴上的点表示的数右边的总比左的大,得﹣3<﹣<﹣1<0<<2.【点评】本题考查了有理数比较大小,数轴上的点表示的数右边的总比左的大,注意先把小数化成分数再求倒数.15.(10分)小明是“环保小卫士”,课后他经常关心环境天气的变化,他了解到本周白天的平均气温,如表(“+”表示比前一天上升了,“﹣”表示比前一天下降了.单位:℃)星期一二三四五六日气温变化+1.1﹣0.3+0.2+0.4+1+1.4﹣0.3已知上周周日平均气温是16.9℃,回答下列问题:(1)这一周哪天的平均气温最高,最高是多少?(2)计算这一周每天的平均气温.【考点】正数和负数.【分析】(1)根据正负数的意义可知,周六的平均气温最高;(2)只需依次相加即可分别求出这一周每天的平均气温.【解答】解:(1)周六的平均气温最高,最高是16.9+1.1﹣0.3+0.2+0.4+1+1.4=20.7(℃);(2)周一:16.9+1.1=18(℃);周二:18﹣0.3=17.7(℃);周三:17.7+0.2=17.9(℃);周四:17.9+0.4=18.3(℃);周五:18.3+1=19.3(℃);周六:19.3+1.4=20.7(℃);周日:20.7﹣0.3=20.4(℃).【点评】此题考查了正负数的意义和有理数的加减运算,熟练掌握运算法则是解答此题的关键.16.(10分)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,想一想:等式左边各个幂的底数与右边幂的底数有什么关系,并用等式表示出规律;再利用这一规律计算13+23+33+43+…+1003的值.【考点】规律型:图形的变化类.【专题】规律型.【分析】通过特例发现:1=1,3=1+2,6=1+2+3,…,即右边的底数正好是左边的所有底数的和.同时1+2+3+…+n=.【解答】解:13+23+…+n3=(1+2+…+n)2,原式=(1+2+3+…+100)2=(50×101)2=25502500.【点评】能够正确发现规律.同时特别注意:1+2+3+…+n=.17.(10分)如图,小玉有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题:(1)从中抽出2张卡片,使这2张卡片上的数字的乘积最大,则应如何抽取?最大的乘积是多少?(2)从中抽出2张卡片,使这2张卡片上的数字相除的商最小,则应如何抽取?最小的商是多少?(3)从中抽出2张卡片,使这2张卡片上的数字经过加、减、乘、除、乘方中的一种运算后,组成一个最大的数,则应如何抽取?最大的数是多少?(4)从中抽出4张卡片,用学过的运算方法,要使结果为24,则应如何抽取?写出运算式子(一种即可).【考点】有理数大小比较.【分析】(1)观察这五个数,要找乘积最大的就要找符号相同且绝对值最大的数,所以选﹣3和﹣5;(2)2张卡片上数字相除的商最小就要找符号不同,且分母越大越好,分子越小越好,所以就要选3和﹣5,且﹣5为分母;(3)这2张卡片上数字组成一个最大的数,除了有个位十位相组成之外,还有乘方,比如(﹣5)4=625;(4)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如﹣3、﹣5、0、3,四个数,{0﹣[(﹣3)+(﹣5)]}×3=24.【解答】解:(1)抽取﹣3,﹣5,最大的乘积是15.(2)抽取﹣5,+3,最小的商是﹣.(3)抽取﹣5,+4,最大的数为(﹣5)4=625.(4)(答案不唯一)如抽取﹣3,﹣5,0,+3,运算式子为{0﹣[(﹣3)+(﹣5)]}×(+3)=24.【点评】此题实际上是有理数的混合运算的逆运算,先给你数,让你列混合运算的式子,所以学生平时要培养自己的逆向思维能力.人教版数学七年级上册第二章测试题及答案解析(时间:90分钟分值:120分)一、选择题(每小题3分,共30分)1.(3分)在代数式:,3m﹣3,﹣22,﹣,2πb2中,单项式的个数有()A.1个B.2个C.3个D.4个2.(3分)下列语句正确的是()A.2x2﹣2x+3中一次项系数为﹣2 B.3m2﹣是二次二项式C.x2﹣2x﹣34是四次三项式D.3x3﹣2x2+1是五次三项式3.(3分)下列各组中的两项,属于同类项的是()A.﹣2x2y与xy2B.5x2y与﹣0.5x2zC.3mn与﹣4nm D.﹣0.5ab与abc4.(3分)单项式﹣的系数与次数分别是()A.﹣2,6 B.2,7 C.﹣,6 D.﹣,75.(3分)下列合并同类项正确的是()A.3a+2b=5ab B.7m﹣7m=0C.3ab+3ab=6a2b2D.﹣a2b+2a2b=ab6.(3分)﹣[a﹣(b﹣c)]去括号应得()A.﹣a+b﹣c B.﹣a﹣b+c C.﹣a﹣b﹣c D.﹣a+b+c7.(3分)一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是()A.12a+16b B.6a+8b C.3a+8b D.6a+4b8.(3分)化简(x﹣2)﹣(2﹣x)+(x+2)的结果等于()A.3x﹣6 B.x﹣2 C.3x﹣2 D.x﹣39.(3分)已知代数式x2+3x+5的值为7,那么代数式3x2+9x﹣2的值是()A.0 B.2 C.4 D.610.(3分)下列判断:(1)不是单项式;(2)是多项式;(3)0不是单项式;(4)是整式,其中正确的有()A.1个B.2个C.3个D.4个二、填空(每小题3分,共24分)11.(3分)﹣5πab2的系数是.12.(3分)多项式x2﹣2x+3是次项式.13.(3分)一个多项式加上﹣x2+x﹣2得x2﹣1,则此多项式应为.14.(3分)如果﹣x m y与2x2y n+1是同类项,则m=,n=.15.(3分)已知a是正数,则3|a|﹣7a=.16.(3分)张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入元.17.(3分)当x=﹣1时,代数式x2﹣4x﹣k的值为0,则当x=3时,这个代数式的值是.18.(3分)观察下面的单项式:x,﹣2x2,4x3,﹣8x4…根据你发现的规律,写出第6个式子是,第n个式子是.三、解答题(共46分)19.(20分)化简(1)﹣5+(x2+3x)﹣(﹣9+6x2);(2)(5a﹣3a2+1)﹣(4a3﹣3a2);(3)﹣3(2x﹣y)﹣2(4x+y)+2009;(4)﹣[2m﹣3(m﹣n+1)﹣2]﹣1.20.(12分)先化简,再求值.①2x2﹣[x2﹣2(x2﹣3x﹣1)﹣3(x2﹣1﹣2x)],其中②2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b),其中a=2,b=1.21.(7分)某同学做一道数学题:已知两个多项式A、B,计算2A+B,他误将“2A+B”看成“A+2B”,求得的结果是9x2﹣2x+7,已知B=x2+3x﹣2,求2A+B的正确答案.22.(7分)如图所示,是两种长方形铝合金窗框已知窗框的长都是y米,窗框宽都是x米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?附加题.23.阅读下列解题过程,然后答题:已知如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数,则必有x+y=0.(1)已知:|a|+a=0,求a的取值范围.(2)已知:|a﹣1|+(a﹣1)=0,求a的取值范围.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)在代数式:,3m﹣3,﹣22,﹣,2πb2中,单项式的个数有()A.1个B.2个C.3个D.4个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解::﹣22,﹣,2πb2中是单项式;是分式;3m﹣3是多项式.故选C.【点评】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.2.(3分)下列语句正确的是()A.2x2﹣2x+3中一次项系数为﹣2 B.3m2﹣是二次二项式C.x2﹣2x﹣34是四次三项式D.3x3﹣2x2+1是五次三项式【考点】多项式.【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【解答】解:A、2x2﹣2x+3中一次项系数为﹣2,正确;B、分母中含有字母,不符合多项式的定义,错误;C、x2﹣2x﹣34是二次三项式,错误;D、3x3﹣2x2+1是三次三项式,错误.故选A.【点评】本题考查了同学们对多项式的项的系数和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中,所有字母的指数和叫做这个单项式的次数;(3)几个单项式的和叫多项式;(4)多项式中的每个单项式叫做多项式的项;(5)多项式中不含字母的项叫常数项;(6)多项式里次数最高项的次数,叫做这个多项式的次数.3.(3分)下列各组中的两项,属于同类项的是()A.﹣2x2y与xy2B.5x2y与﹣0.5x2zC.3mn与﹣4nm D.﹣0.5ab与abc【考点】同类项.【分析】根据同类项的定义(所含字母相同,并且相同字母的指数也分别相等的项,叫同类项)判断即可.【解答】解:A、不是同类项,故本选项错误;B、不是同类项,故本选项错误;C、是同类项,故本选项正确;D、不是同类项,故本选项错误;故选C.【点评】本题考查了对同类项的定义的应用,注意:同类项是指:所含字母相同,并且相同字母的指数也分别相等的项.4.(3分)单项式﹣的系数与次数分别是()A.﹣2,6 B.2,7 C.﹣,6 D.﹣,7【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣的系数与次数分别是﹣,7.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.(3分)下列合并同类项正确的是()A.3a+2b=5ab B.7m﹣7m=0C.3ab+3ab=6a2b2D.﹣a2b+2a2b=ab【考点】合并同类项.【分析】根据同类项的定义及合并同类项的法则进行逐一计算即可.【解答】解:A、不是同类项,不能合并;B、正确;C、3ab+3ab=6ab;D、﹣a2b+2a2b=a2b.故选B.【点评】本题考查的知识点为:同类项的定义:所含字母相同,相同字母的指数相同.合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.6.(3分)﹣[a﹣(b﹣c)]去括号应得()A.﹣a+b﹣c B.﹣a﹣b+c C.﹣a﹣b﹣c D.﹣a+b+c【考点】去括号与添括号.【分析】先去小括号,再去中括号,即可得出答案.【解答】解:﹣[a﹣(b﹣c)]=﹣[a﹣b+c]=﹣a+b﹣c.故选A.【点评】本题考查了去括号法则的应用,注意:括号前面是“+”,把括号和它前面的“+”去掉,括号内的各项的符号都不变,括号前面是“﹣”,把括号和它前面的“﹣”去掉,括号内的各项的符号都改变.7.(3分)一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是()A.12a+16b B.6a+8b C.3a+8b D.6a+4b【考点】整式的加减.【分析】长方形的周长等于四边之和,由此可得出答案.【解答】解:周长=2(2a+3b+a+b)=6a+8b.故选B.【点评】本题考查有理数的加减运算,比较简单,注意长方形的周长可表示为2(长加宽).8.(3分)化简(x﹣2)﹣(2﹣x)+(x+2)的结果等于()A.3x﹣6 B.x﹣2 C.3x﹣2 D.x﹣3【考点】整式的加减.【分析】先去括号,再合并同类项.【解答】解:原式=x﹣2﹣2+x+x+2=3x﹣2.故选C.【点评】本题考查了整式加减常用的方法:去括号,合并同类项,比较简单,需要熟练掌握.9.(3分)已知代数式x2+3x+5的值为7,那么代数式3x2+9x﹣2的值是()A.0 B.2 C.4 D.6【考点】代数式求值.【专题】整体思想.【分析】观察题中的两个代数式x2+3x+5和3x2+9x﹣2,可以发现,3x2+9x=3(x2+3x),因此可整体求出x2+3x的值,然后整体代入即可求出所求的结果.【解答】解:∵x2+3x+5的值为7,∴x2+3x=2,代入3x2+9x﹣2,得3(x2+3x)﹣2=3×2﹣2=4.故选C.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+3x的值,然后利用“整体代入法”求代数式的值.10.(3分)下列判断:(1)不是单项式;(2)是多项式;(3)0不是单项式;(4)是整式,其中正确的有()A.1个B.2个C.3个D.4个【考点】多项式;整式;单项式.【分析】根据单项式、多项式及整式的定义,结合所给式子即可得出答案.【解答】解:(1)是单项式,故(1)错误;(2)是多项式,故(2)正确;(3)0是单项式,故(3)错误;(4)不是整式,故(4)错误;综上可得只有(2)正确.故选A.【点评】此题考查了单项式、多项式及整式的定义,注意单独的一个数字也是单项式,另外要区别整式及分式.二、填空(每小题3分,共24分)11.(3分)﹣5πab2的系数是﹣5π.【考点】单项式.【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.【解答】解:根据单项式系数的定义,单项式﹣5πab2的系数是﹣5π.【点评】本题考查单项式的系数,根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.注意π是一个具体的数字,应作为数字因数.12.(3分)多项式x2﹣2x+3是二次三项式.【考点】多项式.【分析】根据多项式的概念求解.【解答】解:多项式x2﹣2x+3是二次三项式.故答案为:二,三.【点评】本题考查了多项式的知识,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数.13.(3分)一个多项式加上﹣x2+x﹣2得x2﹣1,则此多项式应为2x2﹣x+1.【考点】整式的加减.【分析】因为一个多项式加上﹣x2+x﹣2得x2﹣1,所以所求多项式为x2﹣1﹣(﹣x2+x﹣2),然后去括号、合并同类项便可得到这个多项式的值.【解答】解:由题意可得:x2﹣1﹣(﹣x2+x﹣2)=x2﹣1+x2﹣x+2=2x2﹣x+1.故答案为:2x2﹣x+1.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.14.(3分)如果﹣x m y与2x2y n+1是同类项,则m=2,n=0.【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m和n的值.【解答】解:由同类项的定义可知m=2,n=0.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.15.(3分)已知a是正数,则3|a|﹣7a=﹣4a.【考点】绝对值.【专题】计算题.【分析】根据绝对值的性质,正数和0的绝对值是它本身,再根据合并同类项得出结果.【解答】解:由题意知,a>0,则|a|=a,∴3|a|﹣7a=3a﹣7a=﹣4a,故答案为﹣4a.【点评】本题考查了绝对值的性质,正数和0的绝对值是它本身,比较简单.16.(3分)张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入(0.3b﹣0.2a)元.【考点】列代数式.【专题】压轴题.【分析】注意利用:卖报收入=总收入﹣总成本.【解答】解:依题意得,张大伯卖报收入为:0.5b+0.2(a﹣b)﹣0.4a=0.3b﹣0.2a.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.17.(3分)当x=﹣1时,代数式x2﹣4x﹣k的值为0,则当x=3时,这个代数式的值是﹣8.【考点】代数式求值.【专题】计算题.【分析】首先根据当x=﹣1时,代数式x2﹣4x﹣k的值为0,求出k的值是多少;然后把x=3代入这个代数式即可.【解答】解:∵当x=﹣1时,代数式x2﹣4x﹣k的值为0,∴(﹣1)2﹣4×(﹣1)﹣k=0,解得k=5,∴当x=3时,x2﹣4x﹣5=32﹣4×3﹣5=9﹣12﹣5=﹣8故答案为:﹣8.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.(3分)观察下面的单项式:x,﹣2x2,4x3,﹣8x4…根据你发现的规律,写出第6个式子是﹣32x6,第n个式子是(﹣1)n+12n﹣1x n.【考点】单项式.【分析】根据观察,可发现规律:n个式子是系数是(﹣1)n+12n﹣1,字母部分是x n,可得答案.【解答】解:单项式:x,﹣2x2,4x3,﹣8x4…,得n个式子是系数是(﹣1)n+12n﹣1,字母部分是x n,第6个式子是﹣32x6,第n个式子是(﹣1)n+12n﹣1x n,故答案为:﹣32x6,(﹣1)n+12n﹣1x n.【点评】本题考查了单项式,观察发现规律:n个式子是系数是(﹣1)n+12n﹣1,字母部分是x n是解题关键.三、解答题(共46分)19.(20分)化简(1)﹣5+(x2+3x)﹣(﹣9+6x2);(2)(5a﹣3a2+1)﹣(4a3﹣3a2);(3)﹣3(2x﹣y)﹣2(4x+y)+2009;(4)﹣[2m﹣3(m﹣n+1)﹣2]﹣1.【考点】整式的加减.【分析】(1)去括号后合并即可;(2)去括号后合并同类项即可;(3)去括号后合并同类项即可;(4)去括号后合并同类项即可.【解答】解:(1)原式=﹣5+x2+3x+9﹣6x2=﹣5x2+3x+4;(2)原式=5a﹣3a2+1﹣4a3+3a2=﹣4a3+5a+1;(3)原式=﹣6x+3y﹣8x﹣y+2009=﹣14x+2y+2009(4)原式=﹣(2m﹣3m+3n﹣3﹣2)﹣1=﹣(﹣m+3n﹣5)﹣1=m﹣3n+4.【点评】本题主要考查整式的加减,熟练掌握去括号法则和合并同类项法则是解题的关键.20.(12分)先化简,再求值.①2x2﹣[x2﹣2(x2﹣3x﹣1)﹣3(x2﹣1﹣2x)],其中②2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b),其中a=2,b=1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式各项去括号合并得到最简结果,将字母的值代入计算即可求出值.【解答】解:①原式=2x2﹣x2+2x2﹣6x﹣2﹣3x2+3+6x=6x2﹣12x﹣5,当x=时,原式=﹣6﹣5=﹣;②原式=2ab2﹣4a2﹣3ab2+3a2b+2ab2﹣2a2b=ab2﹣3a2b,当a=2,b=1时,原式=2﹣12=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(7分)某同学做一道数学题:已知两个多项式A、B,计算2A+B,他误将“2A+B”看成“A+2B”,求得的结果是9x2﹣2x+7,已知B=x2+3x﹣2,求2A+B的正确答案.【考点】整式的加减.【分析】根据题意得:A=(9x2﹣2x+7)﹣2(x2+3x﹣2),求出A的值,代入后求出即可.【解答】解:∵A=(9x2﹣2x+7)﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=7x2﹣8x+11,∴2A+B=2(7x2﹣8x+11)+(x2+3x﹣2)=14x2﹣16x+22+x2+3x﹣2=15x2﹣13x+20.【点评】本题考查了整式的加减的应用,关键是求出A的值.22.(7分)如图所示,是两种长方形铝合金窗框已知窗框的长都是y米,窗框宽都是x米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?。

人教版七年级上册数学1-4章分章节练习题及答案

人教版七年级上册数学1-4章分章节练习题及答案

第一章小结与复习一、选择题1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣ B.0 C. D.﹣12.-2的相反数是()A.2 B.-2 C.12D.123.(4分)2015的相反数是()A.12015B.12015- C.2015 D.﹣20154.(3分)12-的相反数是()A.2 B.﹣2 C.12D.12-5.(3分)6的绝对值是()A.6 B.﹣6 C.16D.16-6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃ B.10℃ C.14℃ D.﹣14℃8.(4分)下列说法错误的是()A.﹣2的相反数是2B .3的倒数是13C .(﹣3)﹣(﹣5)=2D .﹣11,0,4这三个数中最小的数是09.(3分)如图,数轴上的A 、B 、C 、D 四点中,与数3-表示的点最接近的是( )A .点AB .点BC .点CD .点D10.(3分)(2015•娄底)若|a ﹣1|=a ﹣1,则a 的取值范围是( ).A .a ≥1B .a ≤1C .a <1D .a >1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为 .12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).13.-3的倒数是 ,-3的绝对值是 .14.数轴上到原点的距离等于4的数是 .15.|a|=4,b 2=4,且|a+b|=a+b , 那么a-b 的值是 .16.在数轴上点P 到原点的距离为5,点P 表示的数 .17.绝对值不大于2的所有的整数是 .18..把下列各数分别填在相应的集合内(本小题每空2分,满分6分)-11、 5%、 -2.3、61 、3.1415926、0、 34-、 39 、2014、-9 分数集: 。

人教版七年级上册数学单元测试卷(1-4章)

人教版七年级上册数学单元测试卷(1-4章)

七年级上册数学人教版单元测试卷(1-4章)第一章综合能力检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.下列有关“0”的叙述中,错误的是( )A.0既不是正数,也不是负数B.0 ℃是零上温度和零下温度的分界线C.海拔是0 m表示没有海拔D.0是最小的自然数2.某种食品保存的温度是(-10±2)℃,下列温度,不适合储存这种食品的是( )A.-6 ℃B.-8 ℃C.-10 ℃D.-12 ℃3.2018年1月,“墨子号”量子卫星实现了距离达7 600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.将7 600用科学记数法表示为( )A.0.76×104B.7.6×103C.7.6×104D.76×1024.下列等式成立的是( )A.|-8|=8B.-(-1)=-1C.1÷(-3)=D.-2×3=65.若a2=1,b是2的相反数,则a+b的值为( )A.-3B.-1C.-1或-3D.1或-36.如图是嘉淇同学的练习题,他最后的得分是( )A.20分B.15分C.10分D.5分7.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.a+b>0B.a-b<0C.ab>0D.(-)3>08.数学家发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数a2+b-1.如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-1,3)放入其中,得到有理数m,再将有理数对(m,1)放入其中,得到的有理数是( )A.3B.6C.9D.129.已知|m|=4,|n|=6,且|m+n|=m+n,则m-n的值是( )A.-10B.-2C.-2或-10D.210.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1,2,-3,4,-5,6,-7,8分别填入图中的圆圈内,使横、竖及内、外两圈上的4个数之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为( )A.-6或-3B.-8或1C.-1或-4D.1或-1二、填空题(每题3分,共18分)11.如果-5 m表示一个物体向北运动5 m,那么+3 m表示.12.近似数8.06×106精确到位,把347 560 000精确到百万位是.13.若两个数的乘积等于-1,则称其中一个数是另一个数的负倒数,则|-1|的负倒数为.14.已知a,b为有理数,且ab>0,则++的值是.15.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数-2,4,-6,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是.(只写一种)16.如图是一数值转换机的示意图,若输入x=-1,则输出的结果是.三、解答题(共52分)17.(6分)把下列各数分别填入相应的集合里:-4,-|-|,0,,-3.14,1 024,-(+5).(1)正数集合:{ …}.(2)负数集合:{ …}.(3)整数集合:{ …}.(4)分数集合:{ …}.18.(12分)计算下列各题:(1)(--+)×48;(2)-14+(-3)×[(-4)2+2]-(-2)3÷4;(3)-3×(-)2-4×(1-)-8÷()2;(4)(-8)×(--+)×15.19.(8分)):(1)上星期五借出多少册?(2)上星期四比上星期三多借出多少册?(3)上周平均每天借出多少册?20.(8分)若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,求2 0201-(a+b)+m2-(cd)2 020+n(a+b+c+d)的值.21.(8分)如图,数轴上A,B两点表示的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求a,b的值;(2)现有一动点P从点A出发,以每秒3个单位长度的速度向右运动,同时另一动点Q从点B出发,以每秒2个单位长度的速度向左运动.①设两动点在数轴上的点C相遇,求点C表示的数;②经过多长时间,两动点在数轴上相距20个单位长度?22.(10分)阅读理解题:从左边第一个格子开始向右数,在每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)根据上述条件,可知x=,●=,○=;(2)试判断第2 019个格子中的数是多少,并说明理由;(3)判断:前n个格子中所填整数之和是否可能为2 020?若能,求出n的值,若不能,请说明理由.(4)若从前n个格子中任取两个数并用大数减去小数得到差值,然后将所有的差值累加起来称为前n项的累差值.如前3项的累差值为|1-●|+|1-○|+|●-○|,则前3项的累差值为;若取前10项,则前10项的累差值为多少?(请给出必要的计算过程)第二章综合能力检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.在式子x2+5,,0,,2xy,x2+中,整式有()A.2个B.3个C.4个D.5个2.下列关于单项式-2x2y的说法正确的是()A.系数为2,次数为2B.系数为2,次数为3C.系数为-2,次数为2D.系数为-2,次数为33.下列各组单项式中,不是同类项的是()A.12a3y与B.6a2mb与-a2bmC.23与32D.x3y与-xy34.若多项式4x2-(m-1)y2+1是关于x,y的三次三项式,则常数m等于()A.-1B.1C.±1D.05.下列各式中,去括号正确的是()A.2a2-(a-b+3c)=2a2-a-b+3cB.a+(-3x+y-2)=a-3x+y-2C.3x-[x-(2x-4)]=3x-x-2x+4D.-(x-y)+2(a-1)=-x+y+2a-16.某文具店举行促销活动,促销的方法是将原价a元的文具盒以(0.8a-2)元出售,则下列说法中,能正确表达该文具店举行的促销活动的是()A.原价减去2元后再打4折B.原价打8折后再减去2元C.原价减去2元后再打8折D.原价打4折后再减去2元7.已知m-n=100,x+y=-1,则式子(n+x)-(m-y)的值是()A.99B.101C.-99D.-1018.一个多项式A与多项式2x2-3xy-y2的和是多项式x2+xy+y2,则A等于()A.x2-4xy-2y2B.-x2+4xy+2y2C.3x2-2xy-2y2D.3x2-2xy9.按如图所示的程序运算,能使输出的结果为12的是()A.x=-4,y=-2B.x=3,y=3C.x=2,y=4D.x=4,y=210.若A=x2-2xy+y2,B=x2+2xy+y2,则下列式子与4xy相等的是()A.A+BB.B-AC.A-BD.2A-2B二、填空题(每题3分,共18分)11.用式子表示“比a的平方的一半小1的数”是.12.如果单项式x2与x n y的和仍然是一个单项式,则(m+n)2 019=.13.若关于x,y的多项式x2y-7mxy+y3+6xy不含二次项,则m=.14.当x=-2时,ax5+bx-7=5,则当x=2时,ax5+bx-7=.15.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒……则第n个图案中有根小棒.…第1个第2个第3个16.定义:若a+b=n,则称a与b是关于数n的“平衡数”.比如3与-4是关于-1的“平衡数”,5与12是关于17的“平衡数”.若8x2-6kx+14与-2(4x2-3x+k)(k为常数)是关于数m的“平衡数”,则m的值为.三、解答题(共52分)17.(12分)计算下列各式:(1)3a2+3b2+2ab-4a2-3b2;(2)a2+(5a2-2a)-2(a2-3a);(3)3(m2n+mn)-4(mn-2m2n)+mn;(4)a2-[(ab-a2)+4ab]-ab.18.(8分)化简并求值:(1)12(a2b-ab2)+5(ab2-a2b)-4(a2b+3),其中a=,b=5;(2)(x2-5xy+y2)-[-3xy+2(x2-xy)+y2],其中|x-1|+(y+2)2=0.19.(6分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆形花坛,若花坛的半径为x m,广场长a m,宽b m.(1)用含x,a,b的式子表示广场空地的面积为;(2)若a=500,b=200,x=20,求广场空地的面积.(计算结果保留π)20.(8分)已知A,B是关于x的整式,其中A=mx2-2x+1,B=x2-nx+5.(1)化简A+2B;(2)当x=2时,A+2B的值为-5,求式子4n-4m+9的值.21.(8分)小张同学在计算A-(ab+2ac-1)时,将“A-”错看成了“A+”,得出的结果是3ab-ac.(1)请你求出这道题的正确结果;(2)试探索:当字母b,c满足什么关系时,(1)中的结果与字母a的取值无关.22.(10分)某市市民生活用电已实行阶梯电价:第一档为月用电量170度以内(含170度),执行电价标准每度电0.525元;第二档为月用电量171~260度,用电量超过第一档的部分按规定每度电0.575元;第三档为月用电量260度以上,用电量超过第二档的部分按规定每度电0.825元.(1)小明家5月份的用电量为160度,求小明家5月份应缴的电费;(2)若小明家月用电量为x度,请分别求出x在第二档、第三档时小明家应缴的电费;(用含x的式子表示)(3)小明家11月份的用电量为240度,求小明家11月份应缴的电费.第三章综合能力检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.下列方程是一元一次方程的是()A.x2-4x=3B.3x-1=C.x+2y=1D.xy-3=52.设x,y,c是有理数,则下列结论正确的是()A.若x=y,则x+c=y-cB.若x=y,则xc=ycC.若x=y,则=D.若=,则2x=3y3.下列方程中,解为x=-1的是()A.3x+=-2B.7(x-1)=0C.4x-7=5x+7D.x=-34.下列方程的变形中,正确的是()A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程x=,系数化为1,得x=1D.方程-=1,整理,得3x=65.若关于x的一元一次方程-=1的解是x=-1,则k的值是()A. B.1 C.- D.06.甲组人数是乙组人数的2倍,从甲组抽调8人到乙组,这时甲组的人数比乙组人数的一半多2个.设乙组原有x人,则可列方程为()A.2x=x+2B.2x=(x+8)+2C.2x-8=x+2D.2x-8=(x+8)+27.一个两位数,个位上的数字与十位上的数字的和是9,若将个位上的数字与十位上的数字对调后所得的新数比原数大9,则原来的两位数为()A.54B.27C.72D.458.元旦前夕,某商店购进某种商品100件,每件按进价加价30%作为标价,可是总卖不出去,后来每件按标价降价20%,以每件104元出售,终于在元旦前全部售出,则这批商品在销售过程中的盈亏情况是()A.亏损40元B.盈利400元C.亏损400元D.不盈不亏9.某书店推出售书优惠活动:①一次性购书不超过100元的,不享受优惠;②一次性购书超过100元但不超过200元的,一律打9折;③一次性购书超过200元的,一律打8折.如果王明同学一次性购书付款162元,那么王明所购书的原价为()A.180元B.202.5元C.180元或202.5元D.180元或200元10.有一系列方程,第1个方程是x+=3,其解为x=2;第2个方程是+=5,其解为x=6;第3个方程是+=7,其解为x=12……根据此规律,第10个方程的解是()A.x=90B.x=99C.x=110D.x=132二、填空题(每题3分,共18分)11.方程3x+1=7的解是.12.若式子的值比的值大1,则x的值为.13.对于任意有理数a,b,定义关于“⊗”的一种运算为a⊗b=2a-b,例如:5⊗2=2×5-2=8.若(x-3)⊗x=2 014,则x的值为.14.轮船沿江从A港顺流航行到B港比从B港返回A港少用3 h,若轮船在静水中的速度为26 km/h,水流的速度为2 km/h,则A港与B港相距km.15.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,若每人分7两,则剩余4两;若每人分9两,则还差8两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)16.已知关于x的方程x+3=2x+b的解为x=2,则关于y的方程-(y-1)+3=-2(y-1)+b的解为.三、解答题(共52分)17.(8分)解下列方程:(1)4y-3(20-y)=6y-7(11-y);(2)-=2-.18.(6分)已知关于y的方程=y+与=3y-2的解互为相反数,求a的值.19.(8分)(1)分析积分榜,平一场比负一场多得分;(2)若胜一场得3分,七(5)班也比赛了6场,胜场是平场的一半且共积了14分,则七(5)班胜几场?20.(8分)某玩具厂要生产500个芭比娃娃,此生产任务由甲、乙、丙三台机器承担,甲机器每小时生产12个,乙、丙两台机器每小时生产的个数之比为4∶5.若甲、乙、丙三台机器同时生产,刚好用10小时25分钟完成任务.(1)求乙、丙两台机器每小时各生产多少个?(2)由于某种原因,三台机器只能按一定次序循环交替生产,且每台机器在每个循环中只能生产1小时,即每个循环需要3小时.①若生产次序为甲、乙、丙,则最后一个芭比娃娃由机器生产完成,整个生产过程共需小时;②请直接写出完成生产任务的最少时间及此时三台机器的生产次序.21.(10分)甲、乙两人分别从A,B两地同时相向而行,于E处相遇后,甲继续向B地行走,乙休息了14分钟,再继续向A 地行走.甲、乙分别到达B地和A地后立即折返,仍在E处相遇.已知甲每分钟行走60米,乙每分钟行走80米,则A,B 两地相距多少米?22.(12分)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是甲种电视机每台1 500元,乙种电视机每台2 100元,丙种电视机每台2 500元.若商场同时购进其中两种不同型号的电视机共50台,恰好用去9万元.(1)请你设计进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同型号的电视机的方案中,为使获利最多,则应选择哪种进货方案.第四章综合能力检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.下列图形中,与其他三个不同类的是()A B C D2.如图,下列说法正确的是()A.图中共有5条线段B.直线AB与直线AC是同一条直线C.射线AB与射线BA是同一条射线D.点O在直线AC上3.如图,四个图形是由四个立体图形展开得到的,相应的立体图形依次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.根据下列线段的长度,能判断A,B,C三点不在同一条直线上的是()A.AB=8,BC=19,AC=27B.AB=10,BC=9,AC=18.9C.AB=21,BC=11,AC=10D.AB=7.5,BC=14,AC=6.55.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长2 cm,那么AC比BC长()A.1 cmB.2 cmC.4 cmD.6 cm6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.从正面看得到的平面图形的面积为5B.从左面看得到的平面图形的面积为3C.从上面看得到的平面图形的面积为3D.从三个方向看得到的平面图形的面积都是47.黑板上有四个不同的点A,B,C,D,过其中任意两个点画直线,可以画出直线的条数为()A.1或2B.1,4或6C.1,3,4或6D.1,2,4或68.已知∠α的余角是23°17'38″,∠β的补角是113°17'38″,那么∠α和∠β的大小关系是()A.∠α>∠βB.∠α=∠βC.∠α<∠βD.不能确定9.下列时刻,时针与分针的夹角为直角的是()A.3时30分B.9时30分C.8时55分D.3时分10.如图,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点AB.点BC.A,B之间D.B,C之间二、填空题(每题3分,共18分)11.如图,在我国“西气东输”的工程中,从A城市往B城市架设管道,有三条路线可供选择,在不考虑其他因素的情况下,架设管道的最短路线是,依据是.第11题图第12题图第13题图12.如图,O为直线AB上一点,已知∠1=40°,OD平分∠BOC,则∠AOD=.13.如图,点A,O,B在同一条直线上,射线OD平分∠BOC,射线OE在∠AOC的内部,且∠DOE=90°,写出图中所有互为余角的角:.14.一个角的余角的3倍比它的补角小10°,则这个角的度数为.15.如图,线段AB表示一根对折以后的绳子,现从P处把绳子剪断,剪断后的各段绳子中最长的一段为10 cm,若AP=PB,则这条绳子的原长为cm.第15题图第16题图16.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,给出以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB-∠AOD=90°;④∠COE+∠BOF=180°.其中正确的是.(填序号)三、解答题(共52分)17.(6分)计算:(1)19°24'+76°26″-24°2'16″;(2)29°11'×3-106°32'÷4.18.(8分)如图,已知C为线段AB上一点,AC=12,CB=AC,D,E分别为AC,AB的中点,求DE的长.19.(8分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)试确定射线OC的方向;(2)求∠COD的度数;(3)若射线OE平分∠COD,求∠AOE的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册第一章 《有理数》、第二章《整式的加减》单元测试题汇总人教版七年级数学上册第一章 《有理数》单元检测卷一、选择题(每小题只有一个正确答案)1.-2的3倍是( )A . -6B . 1C . 6D . -5 2.下列各式中,与x -y +z 的值相等的是( )A .x +(-y )+(-z )B .x -(+y )-(+z )C .x -(+y )-(-z )D .x -(-y )-(-z ) 3.下列运算正确的是( )A . (-2)3=-6B . (-1)10=-10C . (−13)3=−19D . -22=-44.-|-23|的相反数是( )A .32 B . -32 C .23 D . -23 5.计算(−2)2+|−3|×13的结果为( )A . -5B . 5C .15D . -156.若a ,b ,c ,d 为有理数,且abcd <0,则a ,b ,c ,d 中负数的个数是( ) A . 1或3 B . 2或4 C . 1 D . 37.若a 、b 为整数,规定:a ☆b =a ×(-b )×(b -1),如2☆3=2×(-3)×(3-1)=-12,则(-5)☆7的值为( )A . -35B . 25C . 280D . 2108.若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( ) A . 大于零 B . 小于零 C . 等于零 D . 无法确定9.一个数用科学记数法表示为-2.86×107,则这个数是( )A . -28600000B . -2860000C . 286000000D . 2860000010.下列结论中正确是( )A . 两个有理数的和一定大于其中任何一个加数B . 零减去一个数仍得这个数C . 两个有理数的差一定小于被减数D . 零加上一个数仍得这个数11.如图,数轴上点A 表示的数减去点B 表示的数,结果是( )A . 8B . -8C . 3D . -212.从-8,-6,-4,0,3,5,7中任取三个不同数做乘积,则最小的乘积是( ) A . -336 B . -280 C . -210 D . -192二、填空题 13.一个数用科学记数法表示为3.3×103,则这个数是___________万.14.某超市二月份的收入为-1万元,三月份的收入为2万元,该超市这两个月的总收入为___________万元15.若数a ,b 互为相反数,数c ,d 互为倒数,则代数式(a+b )3100−1(cd )2=___________.16.4÷(-0.2)=4×(________). 17.已知|a +1|=0,b 2=9,则a +b =___________.三、解答题 18.计算:(1)(-4)2×[(-34)+(-58)](2)(-2)3-(1-0.5)×13×[2-(-4)2]. 19.计算:(1)(-3)2-(112)3×29-6÷|-23|3; (2) 4×(-12−34+2.5)×3-|-6|; (3)(-1)3×(-12)÷[(-4)2+2×(-5)].; (4) −4÷0.5−[−15+(1−13×0.6)÷(−2)2]。

20.将下列各数在数轴上表示,并填入相应的集合中:-2,0,-312,3,32,-1.5 解:如图所示:(1)整数集合{};(2)分数集合{}.21.已知|a|=5,b=3,且a<0,求a+b的值.b22.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.(1)收工时距A地多远?(2)若每千米耗油0.2升,问从A地出发到收工时共耗油多少升?23.已知a,b互为相反数,c,d互为倒数,x的绝对值是2,试求:x2-(a+b+cd)x+(a+b)2007+(-cd)2008.答案解析1.【答案】A 【解析】依题意,得 3×(-2)=-6.2.【答案】C【解析】x -y +z =x -(+y )-(-z ). 3.【答案】D【解析】A 、(-2)3=-8,故选项错误; B 、(-1)10=1,故选项错误; C 、(-13)3=-127,故选项错误; D 、正确. 4.【答案】C【解析】-|-23|=-23,-23的相反数为23.5.【答案】B【解析】(−2)2+|−3|×13=4+3×13=4+1 =5. 6.【答案】A【解析】因为a ,b ,c ,d 为有理数,且abcd <0, 所以a ,b ,c ,d 中负数的个数是1或3. 7.【答案】D【解析】(-5)☆7=(-5)×(-7)×(7-1)=210. 8.【答案】B【解析】由题意得:b >a , 故a -b 一定小于0. 9.【答案】A【解析】-2.86×107=-28600000. 10.【答案】D【解析】A 、两个有理数的和一定大于其中任何一个加数,错误,例如0+(-3)=-3; B 、零减去一个数仍得这个数,错误,例如0-3=-3;C 、两个有理数的差一定小于被减数,错误,例如3-(-3)=6,6>3;D 、零加上一个数仍得这个数,正确; 11.【答案】B【解析】由数轴可知点A 表示的数是-3,点B 表示的数是5, 所以-3-5=-8. 12.【答案】B 【解析】-8×5×7=-280. 13.【答案】0.33【解析】3.3×103=3300=0.33万. 14.【答案】1【解析】由题意可得:-1+2=1, 所以该超市这两个月的总收入为1万元. 15.【答案】-1【解析】因为a 、b 互为相反数, 所以a +b =0; 因为c 、d 互为倒数, 所以cd =1,(a+b )3100−1(cd)2=03100−112=0-1=-1. 16.【答案】-5【解析】4÷(-0.2)=4×(-5). 17.【答案】2或-4【解析】因为|a +1|=0,所以a +1=0,a =-1, 因为b 2=9,所以b =±3,所以当a =-1,b =3时,a +b =-1+3=2, 当a =-1,b =-3时,a +b =-1-3=-418.【答案】解:(1)原式=16×(-34-58)=-12-10=-22;(2)原式=-8-12×13×(-14)=-8+73=-523.【解析】(1)原式先计算乘方运算,再利用乘法分配律计算即可得到结果; (2)原式先计算乘方运算,再计算乘法运算,最后进行加减运算即可得到结果 19.【答案】解:(1)原式=9-278×29-6÷827=9-34-814=9-21=-12; (2)原式=-6-9+30-6=9;(3)原式=12÷(16-10)=12÷6=2; (4)原式=-8+15-15=-8.【解析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果; (2)原式先计算乘法及绝对值运算,再计算加减运算即可得到结果;(3)、(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果; 20.【答案】如图,(1)整数集合{-2、0、3}; (2)分数集合{-312、32、-1.5}.【解析】首先依据数轴的三要素,把数轴补充完整,再根据数轴上点的位置特点,完成用数轴上点表示有理数据;根据有理数的分类填写即可,整数包括:正整数、0、负整数;分数包括正分数和负分数. 21.【答案】解:因为|a |=5, 所以a =±5, 因为b =3,ab <0, 所以a =-5, 所以a +b =-5+3=-2.【解析】根据绝对值的性质求出a ,再根据同号得正,异号得负确定出a 的值,然后再利用有理数加法法则求解.22.【答案】解:(1)10+(-3)+4+2+(-8)+13+(-2)+12+8+5=41(千米); (2)|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-2|+|+12|+|+8|+|+5|=67, 67×0.2=13.4(升). 答:收工时在A 地前面41千米,从A 地出发到收工时共耗油13.4升. 【解析】(1)约定前进为正,后退为负,依题意列式求出和即可; (2)要求耗油量,需求他共走了多少路程,这与方向无关. 23.【答案】解:由已知可得a +b =0,cd =1,x =±2. 当x =2时,原式=22-(0+1)×2+02007+(-1)2008=4-2+1 =3; 当x =-2时,原式=(-2)2-(0+1)×(-2)+02007+(-1)2008 =4+2+1 =7.【解析】根据互为相反数的两数和为0,得出a +b =0, 互为倒数的两数积为1,得出cd =1,又绝对值是2的数是±2,得x =±2.将它们代入求解即可.人教版七年级数学上册第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案) 1.下列代数式中,整式为( ) A . x+1 B . 1x+1 C .211xD . x+1x 2.下列判断中,错误的是( )A . 1-a -ab 是二次三项式B . -a 2b 2c 是单项式C .a+b 2是多项式 D . 34πR 2中,系数是343.代数式3x 2y-4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( ) A . -4x 3y 2+3x 2y-5xy 3-1 B . -5xy 3+3x 2y-4x 3y 2-1 C . -1+3x 2y-4x 3y 2-5xy 3 D . -1-5xy 3+3x 2y-4x 3y 2 4.下列说法中,正确的是( ) A . 单项式−2x 2y 3的系数是﹣2,次数是3 B . 单项式a 的系数是0,次数是0C . ﹣3x 2y+4x ﹣1是三次三项式,常数项是1D . 单项式−32ab 2的次数是2,系数为−925.当x=﹣1时,代数式3x+1的值是( ) A . ﹣1 B . ﹣2 C . 4 D . ﹣4 6.某商品打七折后价格为a 元,则原价为( ) A . a 元 B .107a 元 C . 30%a 元 D . 710a 元7.下列运算正确的是()A.a3+a2=a5B.a3−a2=a C.a3⋅a2=a5D.(a3)2=a5 8.已知m−n=100,x+y=−1,则代数式(n+x)−(m−y)的值是()A.99 B.101 C.−99D.−1019.若2x a-1y2与-3x6y2b是同类项,则a、b的值分别为( )A.a=7,b=1 B.a=7,b=3 C.a=3,b=1 D.a=1,b=3 10.已知代数式(a2+a+2b)-(a2+3a+mb)的值与b的值无关,则m的值为()A.1 B.-1 C.2 D.-211.若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式12.观察如图图形,它们是按一定规律排列的,依照此规律,第9个图形中的小点一共有()A.162个B.135个C.30个D.27个二、填空题13.请写出一个系数含π,次数为3的单项式,它可以是________.14.化简:2(a−b)−(2a+3b)=____________.15.若单项式5x4y和5x n y m是同类项,则m+n的值是_______.16.如下图,已知a、b、c在数轴上的位置,则|b+c|-|a-b|-|c-b|=________________;17.若m2+mn=−3,n2−3mn=18,则m2+4mn−n2的值为______.三、解答题18.先去括号,再合并同类项(1)(4x2y﹣3xy2)﹣(1+4x2y﹣3xy2)(2)4y2﹣[3y﹣(3﹣2y)+2y2].19.化简求值:3x2y-[2x2y-(2xyz-x2y)-4x2z]-(xyz+4x2z),其中x=-2,y=-3,z=1 20.已知A=x-2y,B=-x-4y+1.(1)求2(A+B)-(2A-B)的值(结果用含x,y的代数式表示);(2)当|x+1|与y2互为相反数时,求(1)中代数式的值.221.已知x2﹣x﹣3=0,求代数式(x﹣1)2+(x+2)(x﹣2)的值.22.一辆公交车上原来有(6a﹣6b)人,中途下去一半,又上来若干人,使车上共有乘客(10a﹣6b)人,问上车的乘客是多少人?当a=3,b=2时,上车的乘客是多少人?23.已知x,y为有理数,现规定一种新运算*,满足x*y=xy–5.(1)求(4*2)*(–3)的值;(2)任意选择两个有理数,分别填入下列□和○中,并比较它们的运算结果:多次重复以上过程,你发现:□*○__________○*□(用“>”“<”或“=”填空);(3)记M=a*(b–c),N=a*b–a*c,请探究M与N的关系,用等式表达出来.参考答案1.A2.D【解析】【分析】根据多项式的次数和项数,单项式及单项式的系数的定义作答.【详解】3 4πR2的系数是34π,故D错误.故选:D.【点睛】单项式的系数应包含完整的数字因数,多项式里次数最高项的次数叫做这个多项式的次数,单项式中,所有字母的指数和叫做这个单项式的次数.3.D【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【详解】解:3x2y-4x3y2-5xy3-1的项是3x2y、-4x3y2、-5xy3、-1,按x的升幂排列为-1-5xy3+3x2y-4x3y2,故D正确;故选:D.【点睛】考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.4.D【解析】【分析】根据单项式的系数和次数的定义、多项式的次数和项数的定义进行分析判断即可.【详解】A选项中,因为单项式−2x2y3的系数是−23,次数是3,所以A中说法错误;B选项中,因为单项式a的系数是1,次数是1,所以B中说法错误;C选项中,因为多项式−3x2y+4x−1是三次三项式,常数项是-1,所以C中说法错误;D选项中,因为单项式−32ab2的次数是2,系数是−92,所以D中说法正确.故选D.【点睛】熟知“单项式的系数和次数的定义,多项式的项数、次数和常数项的定义”是解答本题的关键.5.B【解析】【分析】把x的值代入进行计算即可.【详解】把x=﹣1代入3x+1,3x+1=﹣3+1=﹣2,故选B.【点睛】本题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 7.C【解析】【分析】根据合并同类项,可判断A,B;根据同底数幂的乘法底数不变指数相加,可判断C;根据幂的乘方,可判断D.【详解】A.a3+a2≠a5,故选项A错误;B.a3−a2≠a,故选项B错误;C.a3⋅a2=a5,正确;D.(a3)2=a6,故选项D错误.故选项C.【点睛】本题考查了幂的运算,根据法则计算是解题关键.8.D【解析】【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵m−n=100,x+y=−1,∴原式=n+x−m+y=−(m−n)+(x+y)=−100−1=−101.故选:D.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.9.A【解析】【分析】根据同类项的定义可得a-1=6,2b=2,解方程即可.【详解】由题意得:a-1=6,2b=2,解得a=7,b=1,故选A【点睛】此题考查了同类项,同类项是指字母相同,相同字母的指数也相同的项.10.C【解析】【分析】代数式(a2+a+2b)-(a2+3a+mb)的值与b的值无关,说明整个整式合并后不含带有字母b的项,也就是说凡是含有字母b的同类项合并后系数为0.【详解】解:∵(a2+a+2b)-(a2+3a+mb)=a2+a+2b-a2-3a-mb=-2a+(2-m)b∴2-m=0解得m=2. 故选:C . 【点睛】该题关键弄懂“代数式(a 2+a+2b )-(a 2+3a+mb )的值与b 的值无关”这句话的意义,与b 的值无关是说凡是含有字母b 的同类项合并后系数为0. 11.B 【解析】 【分析】根据合并同类项法则和多项式的加减法法则进行分析判断即可. 【详解】多项式相加,就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,结合多项式的次数是“多项式中次数最高的项的次数”,而A 是一个三次多项式,B 是一个四次多项式,可知:A+B 一定是四次多项式或单项式. 故选B . 【点睛】熟知:“(1)合并同类项的法则:把同类项的系数相加减,字母和字母的指数不变;,(2)多项式的次数是:多项式中次数最高的项的次数.”是解答本题的关键. 12.B 【解析】 【分析】仔细观察图形,找到图形变化的规律的通项公式,然后代入9求解即可. 【详解】解:第1个图形有3=3×1=3个点, 第2个图形有3+6=3×(1+2)=9个点 第3个图形有3+6+9=3×(1+2+3)=18个点; ……第n 个图形有3+6+9+…+3n=3×(1+2+3+…+n )=3n (n+1)2个点;当n=9时,3n (n+1)2=3×9×102=135,故选:B . 【点睛】本题考查了图形的变化类问题,解题的关键是能够找到图形的变化规律,然后求解.13.πx3或πr2h或13πr2h(答案不唯一)【解析】【分析】根据单项式的概念求解.【详解】解:这个单项式为:πx3或πr2h或13πr2h(答案不唯一).故答案为:πx3或πr2h或13πr2h(答案不唯一).【点睛】本题考查了单项式的知识,数或字母的积组成的式子叫做单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.14.−5b【解析】【分析】先去括号,然后合并同类项求解.【详解】原式=2a-2b-2a-3b=-5b.【点睛】考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项的法则.15.5;【解析】分析:同类项是指所含的字母相同,且相同字母的指数也相同的单项式.根据定义可以得出m和n的值,从而得出答案.详解:根据定义可得:m=1,n=4,则m+n=5.点睛:本题主要考查的是同类项的定义,属于基础题型.理解同类项的定义是解决这个问题的关键.16.a+b【解析】【分析】因为|a|={a(a>0) 0(a=0)−a(a<0),因此在化简绝对值时,先判断绝对值符号内整式的正负性,然后再进行绝对值化简,再根据整式的去括号,合并同类项法则进行计算即可求解.【详解】根据数轴和有理数加减法法则可得:b+c>0, a-b<0, c-b>0,所以|b+c|-|a-b|-|c-b|=(b+c)−[−(a−b)]−(c−b),=b+c+a−b−c+b,=a+b.故答案为:a+b.【点睛】本题主要考查绝对值的化简和整式加减计算,解决本题的关键是要熟练掌握绝对值的意义和整式加减法法则.17.−21【解析】分析:把题目中m2+mn=−3,n2−3mn=18,两式相减,合并同类项即可.详解:∵m2+mn=−3,n2−3mn=18,∴m2+mn-(n2−3mn)=−3−18,即m2–n2+4mn=−21,故答案为:-21.点睛:本题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.(1)﹣1;(2) 2y2﹣5y+3.【解析】试题分析:去括号,合并同类项即可.试题解析:(1)原式=4x2y−3xy2−1−4x2y+3xy2=1.(2)原式=4y2−(3y−3+2y+2y2),=4y2−5y+3−2y2,=2y2−5y+3.19.xyz;6【解析】【分析】先将整式去小括号,再去中括号,去括号要注意括号前是减号,去括号要变号,正变负,负变正;再合并同类项,最后代入数值计算即可.【详解】3x2y-[2x2y-(2xyz-x2y)-4x2z]-(xyz+4x2z),=3x2y-2x2y+2xyz-x2y+4x2z-xyz-4x2z,= xyz,把x=-2,y=-3,z=1代入xyz可得:xyz=-2×(-3) ×1=6. 【点睛】本题主要考查整式去括号,合并同类项,解决本题的关键是要熟练掌握去括号,合并同类项法则. 20.(1)-3x -12y +3;(2)412【解析】 【分析】(1)先化简,把B 的值代入,即可求出答案; (2)根据相反数求出x 、y 的值,再代入求出即可. 【详解】(1)∵A =x ﹣2y ,B =﹣x ﹣4y +1,∴2(A +B )﹣(2A ﹣B ) =2A +2B ﹣2A +B =3B=3(﹣x ﹣4y +1) =﹣3x ﹣12y +3;(2)∵|x +12|与y 2互为相反数,∴|x +12|+y 2=0,∴x +12=0,y 2=0,∴x =﹣12,y =0,∴2(A +B )﹣(2A ﹣B )=﹣3×(﹣12)﹣12×0+3=412.【点睛】本题考查了整式的加减,求代数式的值,相反数,绝对值和偶次方的非负性的应用,能正确进行化简和计算是解答此题的关键,难度适中. 21.3【解析】分析:利用完全平方公式和平方差公式计算得到最简结果,把已知等式变形后代入求值即可.详解:原式=x 2−2x +1+x 2−4, =2x 2−2x −3, ∵x 2−x −3=0, ∴x 2−x =3,∴原式=2(x 2−x )−3=6−3=3.点睛:考查的整式的运算,熟练的掌握完全平方公式和平方差公式是解题的关键. 22.7a ﹣3b ,15【解析】上车的乘客人数=现在车上共有人数-原有的一半的人数;再把a =200,b =100代入求值即可.解:由题意可得,(10a﹣6b)﹣[(6a﹣6b)﹣12(6a﹣6b)] ,=10a﹣6b﹣3a+3b,=7a﹣3b,即上车的乘客是(7a﹣3b)人,当a=3,b=2时,7a﹣3b=7×3﹣3×2=15(人),即当a=3,b=2时,上车的乘客是15人.23.(1)-14;(2)=;(3)见解析.【解析】【分析】(1)根据规定的运算法则进行计算即可得;(2)按规定的运算进行运算后进行比较即可得;(3)按规定的运算分别求出M、N,然后进行比较即可得.【详解】(1)∵4*2=4×2–5=3,∴(4*2)*(–3)=3*(–3)=3×(–3)–5=–9–5=–14;(2)1*2=1×2–5=–3,2*1=2×1–5=–3;(–3)*4=–3×4–5=–17,4*(–3)=4×(–3)–5=–17;∴□*○=○*□,故答案为:=;(3)因为M=a*(b–c)=a×(b–c)–5=ab–ac–5,N=a*b–a*c=ab–5–ac+5=ab–ac,所以M=N–5.【点睛】本题考查了新定义运算,解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.。

相关文档
最新文档