《圆锥的表面积》练习题课件.doc

合集下载

4-4-2_圆柱与圆锥.题库教师版.doc

4-4-2_圆柱与圆锥.题库教师版.doc

板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)1110.511.5【解析】 从上面看到图形是右上图,所以上下底面积和为22 3.141.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?例题精讲圆柱与圆锥【解析】 涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米).【例 3】 (第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【解析】 当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米)当圆柱的高是12厘米时体积为212360π()102ππ⨯⨯=(立方厘米).所以圆柱体的体积为300π立方厘米或360π立方厘米.【例 4】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【解析】 圆的直径为:()16.561 3.144÷+=(米),而油桶的高为2个直径长,即为:428(m)⨯=,故体积为100.48立方米.【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【解析】 做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:2π1062.8⨯⨯=(厘米),原来的长方形的面积为:10462.81022056⨯+⨯⨯=()()(平方厘米).【例 5】 把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【解析】 沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.562 6.28÷=厘米,底面半径为6.28 3.1421÷÷=厘米,所以原来的圆柱体的体积是2π188π25.12⨯⨯==(立方厘米).【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【解析】 圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.高缩短4厘米,表面积就减少50.24平方厘米.阴影部分的面积为圆柱体表面积减少部分,值是50.24平方厘米,所以底面周长是50.24412.56÷=(厘米),侧面积是:12.5612.56157.7536⨯=(平方厘米),两个底面积是:()23.1412.56 3.142225.12⨯÷÷⨯=(平方厘米).所以表面积为:157.753625.12182.8736+=(平方厘米).【例 6】 (2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm ,则这个圆柱体木棒的侧面积是________2cm .(π取3.14)第2题【解析】 根据题意可知,切开后表面积增加的就是两个长方形纵切面. 设圆柱体底面半径为r ,高为h ,那么切成的两部分比原来的圆柱题表面积大: 2222008(cm )r h ⨯⨯=,所以2502(cm )r h ⨯=,所以,圆柱体侧面积为:22π2 3.145023152.56(cm )r h ⨯⨯⨯=⨯⨯=.【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)【解析】 圆柱切开后表面积增加的是两个长方形的纵切面,长方形的长等于圆柱体的高为10厘米,宽为圆柱底面的直径,设为2r ,则210240r ⨯⨯=,1r =(厘米).圆柱体积为:2π11030⨯⨯=(立方厘米).【例 7】 一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【解析】 从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积. (法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为()250.24 3.1424÷⨯=(厘米),所以增加的表面积为24216⨯⨯=(平方厘米); (法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为50.24立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为3.142 6.28⨯=厘米,所以侧面长方形的面积为50.24 6.288÷=平方厘米,所以增加的表面积为8216⨯=平方厘米.【例 8】 右图是一个零件的直观图.下部是一个棱长为40cm 的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【解析】 这是一个半圆柱体与长方体的组合图形,通过分割平移法可求得表面积和体积分别为:11768平方厘米,89120立方厘米.【例 9】 输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【解析】 100毫升的吊瓶在正放时,液体在100毫升线下方,上方是空的,容积是多少不好算.但倒过来后,变成圆柱体,根据标示的格子就可以算出来. 由于每分钟输2.5毫升,12分钟已输液2.51230⨯=(毫升),因此开始输液时液面应与50毫升的格线平齐,上面空的部分是50毫升的容积.所以整个吊瓶的容积是10050150+=(毫升).【例 10】 (2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)(单位:厘米)【解析】 由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为6厘米的圆柱,空气部分构成高为1082-=厘米的圆柱,瓶子的容积为这两部分之和,所以瓶子的容积为:24π()(62) 3.1432100.482⨯⨯+=⨯=(立方厘米).【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【解析】由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的623÷=倍.所以酒精的体积为326.4π62.17231⨯=+立方厘米,而62.172立方厘米62.172=毫升0.062172=升.【巩固】一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少?(π取3)253015【解析】观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm,因为酒瓶深30cm,这样所剩空间为高5cm的圆柱,再加上原来15cm高的酒即为酒瓶的容积.酒的体积:101015π375π22⨯⨯=瓶中剩余空间的体积1010(3025)π125π22-⨯⨯=酒瓶容积:375π125π500π1500(ml)+==【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【解析】由已知条件知,第二个图上部空白部分的高为752cm-=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米.【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3=)【解析】 设圆锥的高为x 厘米.由于两次放置瓶中空气部分的体积不变,有:()22215π611π6π63x x ⨯⨯=-⨯⨯+⨯⨯⨯,解得9x =,所以容器的容积为:221π612π69540π16203V =⨯⨯+⨯⨯⨯==(立方厘米).【例 11】 (第四届希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【解析】 在水中的木块体积为55375⨯⨯=(立方厘米),拿出后水面下降的高度为7550 1.5÷=(厘米)【例 12】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米?【解析】 将圆柱体分别放入A 盒、B 盒后,两个盒子的底面被圆柱体占据的部分面积相等,所以两个盒子的底面剩余部分面积也相等,那么两个盒子的剩余空间的体积是相等的,也就是说A 盒中装的水恰好可以注满B 盒而无剩余,所以A 盒余下的水是0立方厘米.【例 13】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【解析】 最后拉出的面条直径是原先面棍的164,则截面积是原先面棍的2164,细面条的总长为:21.6646553.6⨯=(米).注意运用比例思想.【例 14】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【解析】 因为18分钟水面升高:502030-=(厘米).所以圆柱中没有铁块的情形下水面升高20厘米需要的时间是:20181230⨯=(分钟),实际上只用了3分钟,说明容器底面没被长方体底面盖住的部分只占容器底面积的13:124=,所以长方体底面面积与容器底面面积之比为3:4.【例 15】 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【解析】 根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米); (法2):设水面上升了x 厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)x x =+,解得:2x =,8210+=(厘米). (提问”圆柱高是15厘米”,和”高为12厘米的长方体铁块”这两个条件给的是否多余?)【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【解析】 8010(8016)12.5⨯÷-=,因为12.512>,所以此时水已淹没过铁块,8010(8016)1232⨯--⨯=,32800.4÷=,所以现在水深为120.412.4+=厘米【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【解析】 玻璃杯剩余部分的体积为80(1513)160⨯-=立方厘米,铁块体积为1612192⨯=立方厘米,因为160192<,所以水会溢出玻璃杯,所以现在水深就为玻璃杯的高度15厘米【总结】铁块放入玻璃杯会出现三种情况:①放入铁块后,水深不及铁块高;②放入铁块后,水深比铁块高但未溢出玻璃杯;③水有溢出玻璃杯.【说明】教师可以在此穿插一个关于阿基米德测量黄金头冠的体积的故事.一天国王让工匠做了一顶黄金的头冠,不知道工匠有没有掺假,必须知道黄金头冠的体积是多少,可是又没有办法来测量.(如果知道体积,就可以称一下纯黄金相应体积的重量,再称一下黄金头冠的重量,就能知道是否掺假的结果了)于是,国王就把测量头冠体积的任务交给他的大臣阿基米德.(小朋友们,你们能帮阿基米德解决难题吗?)阿基米德苦思冥想不得其解,就连晚上沐浴时还在思考这个问题. 当他坐进水桶里,看到水在往外满溢时,突然灵感迸发,大叫一声:”我找到方法了……”,就急忙跑出去告诉别人,大家看到了一个还光着身子的阿基米德.他的方法是:把水桶装满水,当把黄金头冠放进水桶,浸没在水中时,所收集的溢出来的水的体积正是头冠的体积.【例 16】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【解析】 把放入铁块后的玻璃杯看作一个底面如右图的新容器,底面积是72—6×6=36(平方厘米).水的体积是72 2.5180⨯=(立方厘米). 后来水面的高为180÷36=5(厘米).【例 17】 一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【解析】 若圆柱体能完全浸入水中,则水深与容器底面面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:222515217517.72πππ⨯⨯+⨯⨯⨯=(厘米).它比圆柱体的高度要大,可见圆柱体可以完全浸入水中. 于是所求的水深便是17.72厘米.【例 18】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【解析】两个圆柱直径的比是1:2,所以底面面积的比是1:4.铁块在两个杯中排开的水的体积相同,所以乙杯中水升高的高度应当是甲杯中下降的高度的14,即120.54⨯=(厘米).【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【解析】根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶底面半径的520,即41,钢材底面积就是水桶底面积的161.根据体积一定,圆柱体的底面积与高成反比例可知,钢材的长是水面下降高度的16倍.6÷(520)2=96(厘米),(法2):3.14×202×6÷(3.14×52)=96(厘米).【例19】一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米?【解析】设圆锥形容器底面积为S,圆柱体内水面的高为h,根据题意有:1243S Sh⨯⨯=,可得8h=厘米.【例20】(2009年”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升.【解析】圆锥容器的底面积是现在装水时底面积的4倍,圆锥容器的高是现在装水时圆锥高的2倍,所以容器容积是水的体积的8倍,即508400⨯=升.【例21】如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【解析】设圆锥容器的底面半径为r,高为h,则甲、乙容器中水面半径均为23r,则有21π3V r h=容器,221228ππ33381V r h r h =⨯=乙水(),222112219πππ333381V r h r h r h =-⨯=甲水(),2219π198188π81r h V V r h ==甲水乙水,即甲容器中的水多,甲容器中的水是乙容器中水的198倍.【例 22】 (2008年仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是 平方米.【解析】 缠绕在一起时塑料薄膜的体积为:22208ππ1008400π22⎡⎤⎛⎫⎛⎫⨯-⨯⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(立方厘米),薄膜展开后为一个长方体,体积保持不变,而厚度为0.04厘米,所以薄膜展开后的面积为8400π0.04659400÷=平方厘米65.94=平方米.另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为22208ππ84π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π0.046594÷=厘米,所以展开后薄膜的面积为6594100659400⨯=平方厘米65.94=平方米.【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?【解析】 将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积. 因此,纸的长度 :()22 3.1410093.1410 3.1437143.50.040.04⨯-⨯-⨯≈≈==纸卷侧面积纸的厚度(厘米) 所以,这卷纸展开后大约71.4米.【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【解析】 卷在一起时铜版纸的横截面的面积为2218050ππ7475π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),如果将其展开,展开后横截面的面积不变,形状为一个长方形,宽为0.25毫米(即0.025厘米),所以长为7475π0.025938860÷=厘米9388.6=米.所以这卷铜版纸的总长是9388.6米. 本题也可设空心圆柱的高为h ,根据展开前后铜版纸的总体积不变进行求解,其中h 在计算过程将会消掉.【例 23】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.【解析】 ⑴先求表面积.表面积可分为外侧表面积和内侧表面积.外侧为6个边长10厘米的正方形挖去4个边长4厘米的正方形及2个直径4厘米的圆,所以,外侧表面积为:210106444π225368π⨯⨯-⨯⨯-⨯⨯=-(平方厘米);内侧表面积则为右上图所示的立体图形的表面积,需要注意的是这个图形的上下两个圆形底面和前后左右4个正方形面不能计算在内,所以内侧表面积为:()24316244π22π232192328π24π22416π⨯⨯+⨯⨯-⨯+⨯⨯⨯=+-+=+(平方厘米),所以,总表面积为:22416π5368π7608π785.12++-=+=(平方厘米).⑵再求体积.计算体积时将挖空部分的立体图形取出,如右上图,只要求出这个几何体的体积,用原立方体的体积减去这个体积即可.挖出的几何体体积为:24434444π2321926424π25624π⨯⨯⨯+⨯⨯+⨯⨯⨯=++=+(立方厘米); 所求几何体体积为:()10101025624π668.64⨯⨯-+=(立方厘米).板块二 旋转问题【例 24】 如图,ABC 是直角三角形,AB 、AC 的长分别是3和4.将ABC ∆绕AC 旋转一周,求ABC∆扫出的立体图形的体积.(π 3.14=)CBA43【解析】 如右上图所示,ABC ∆扫出的立体图形是一个圆锥,这个圆锥的底面半径为3,高为4,体积为:21π3412π37.683⨯⨯⨯==.【例 25】 已知直角三角形的三条边长分别为3cm ,4cm ,5cm ,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14)【解析】 以3cm 的边为轴旋转一周所得到的是底面半径是4cm ,高是3c m 的圆锥体,体积为231 3.144350.24(cm )3⨯⨯⨯= 以4cm 的边为轴旋转一周所得到的是底面半径是3cm ,高是4c m 的圆锥体,体积为231 3.143437.68(cm )3⨯⨯⨯= 以5cm 的边为轴旋转一周所得到的是底面半径是斜边上的高345 2.4⨯÷=cm 的两个圆锥,高之和是5cm 的两个圆的组合体,体积为231 3.14 2.4530.144(cm )3⨯⨯⨯=【巩固】如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?ABC 【解析】 设BC a =,AC b =,那么以BC 边为轴旋转一周,所形成的圆锥的体积为2π3ab ,以AC 边为轴旋转一周,那么所形成的圆锥的体积为2π3a b ,由此可得到两条等式: 224836ab a b ⎧=⎪⎨=⎪⎩,两条等式相除得到43b a =,将这条比例式再代入原来的方程中就能得到34a b =⎧⎨=⎩,根据勾股定理,直角三角形的斜边AB 的长度为5,那么斜边上的高为2.4.如果以AB 为轴旋转一周,那么所形成的几何体相当于两个底面相等的圆锥叠在一起,底面半径为2.4,高的和为5,所以体积是22.4π59.6π3⨯=.【例 26】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)A BA B【解析】 扫出的图形如右上图所示,白色部分实际上是一个圆柱减去两个圆锥后所形成的图形.两个圆锥的体积之和为212π3530π903⨯⨯⨯⨯==(立方厘米); 圆柱的体积为2π310270⨯⨯=(立方厘米),所以白色部分扫出的体积为27090180-=(立方厘米).【巩固】(2006年第十一届华杯赛决赛试题)如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD相交O .图中的阴影部分以CD 为轴旋转一周,则阴影部分扫出的立体的体积是多少立方厘米? B A【解析】 设三角形BCO 以CD 为轴旋转一周所得到的立体图形的体积是V ,则V 等于高为10厘米,底面半径是6厘米的圆锥,减去2个高为5厘米,底面半径是3厘米的圆锥的体积后得到.所以,2211π6102π3590π33V =⨯⨯⨯-⨯⨯⨯⨯=(立方厘米), 那么阴影部分扫出的立体的体积是2180π540V ==(立方厘米).。

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2
解:当球内切于正方体时用料最省 此时棱长=直径=5cm
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).

(完整版)圆锥的表面积经典练习题

(完整版)圆锥的表面积经典练习题

(完整版)圆锥的表面积经典练习题圆锥的表面积经典练题题目一一个圆锥的底面半径为6cm,斜高为10cm。

求这个圆锥的表面积。

解答一根据圆锥的表面积公式:$S = \pi r \sqrt{r^2 + h^2}$其中,$S$表示圆锥的表面积,$r$表示底面半径,$h$表示斜高。

代入题目给出的数值,计算得到:$S = \pi \times 6 \times \sqrt{6^2 + 10^2} \approx 265.61$(保留两位小数)所以,这个圆锥的表面积约为265.61平方厘米。

题目二一个圆锥的底面半径为8cm,母线长度为15cm。

求这个圆锥的表面积。

解答二根据圆锥的表面积公式:$S = \pi r \sqrt{r^2 + h^2}$其中,$S$表示圆锥的表面积,$r$表示底面半径,$h$表示斜高。

由母线的定义可知,母线就是圆锥的斜高。

所以,题目中给出的母线长度15cm即为斜高$h$。

代入题目给出的数值,计算得到:$S = \pi \times 8 \times \sqrt{8^2 + 15^2} \approx 439.82$(保留两位小数)所以,这个圆锥的表面积约为439.82平方厘米。

题目三一个圆锥的底面半径为12cm,侧面积为100平方厘米。

求这个圆锥的母线长度。

解答三根据圆锥的表面积公式:$S = \pi r \sqrt{r^2 + h^2}$其中,$S$表示圆锥的表面积,$r$表示底面半径,$h$表示斜高。

题目中给出了圆锥的侧面积为100平方厘米,而侧面积等于圆锥的底面周长乘以母线的长度,即$S = 2\pi r \times l$。

由此可知:$2\pi r \times l = 100$将底面半径$r$代入,得到:$2\pi \times 12 \times l = 100$解方程得到:$l = \frac{100}{2\pi \times 12} \approx 2.64$(保留两位小数)所以,这个圆锥的母线长度约为2.64厘米。

《圆柱、圆锥、圆台的表面积》课件

《圆柱、圆锥、圆台的表面积》课件
1.看图回答问题
h2
l2
r' 1
l2
r 1
r 1
r2
S圆柱侧 __ S圆锥侧 __S圆台侧 __
S圆柱表 __S圆 锥表 __ S圆台表 __
20
2.一个圆柱形锅炉的底面半径为 1m ,侧面展开
图为正方形,则它的表面积
为_________ .
3.以直角边长为1的等腰直角 三角形的一直角边为轴旋转, 所得旋转体的表面积为
S柱侧 2 rl
S锥侧 rl S台侧 (rl rl)
三者之间关系
圆柱、圆锥、圆台三者的表面积公式之间有 什么关系?
r O
r’=r
l 上底扩大
O
r 'O ’ l r’=0
rO
上底缩小
l rO
S柱 2r(r l) S台 (r2 r 2 rl rl ) S锥 r(r l)
做一做
圆台侧面积公式
S侧 (r ' r) l
小结:柱体、锥体、台体的表面积
圆柱S 2r(r l)
圆柱、圆锥、 圆台
r r 圆台S (r2 r2 rl rl)
r 0
圆锥 S r(r l)
棱柱、棱锥、 棱台
展开图
各面面积之和
所用的数学思想: 空间问题“平面”化
1 .课本习题1.3 A组1,2;
2 .探究性作业:斜四棱柱的侧面展 开图及表面积
北京奥运会场馆图
相信自己:一定行!!
复习回顾
矩形面积公式:S ab
三角形面积公式:S 1 ah
圆面积公式: S r2 2
圆周长公式: C 2 r
扇形面积公式:S 1 rl 2
梯形面积公式:S 1 (a b)h 2

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

8.3。

2圆柱、圆锥、圆台、球的表面积和体积课后篇巩固提升基础达标练1。

(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A。

圆柱的侧面积为2πR2B.圆锥的侧面积为2πR2C。

圆柱的侧面积与球的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶2R,则圆柱的侧面积为2πR×2R=4πR2,∴A错误;圆锥的侧面积为πR×R=πR2,∴B错误;球的表面积为4πR2,∵圆柱的侧面积为4πR2,∴C正确;∵V圆柱=πR2·2R=2πR3,V圆锥=πR2·2R=πR3,V球=πR3,∴V圆柱∶V圆锥∶V球=2πR3∶πR3∶πR3=3∶1∶2,∴D正确.2.若一个正方体内接于表面积为4π的球,则正方体的表面积等于()A.4 B。

8 C。

8 D.8x,球半径为R,则S球=4πR2=4π,∴R=1。

∵正方体内接于球,∴x=2R=2,∴x=,∴S正=6x2=6×=8。

3。

(2019广东高二期末)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D—ABC体积的最大值为()A。

12 B.18C.24D.54点M为三角形ABC的中心,E为AC的中点,当DM⊥平面ABC时,三棱锥D—ABC的体积最大,此时,OD=OB=R=4.∵S△ABC=AB2=9,∴AB=6.∵点M为△ABC的中心,∴BM=BE=2。

∴Rt△OMB中,有OM==2。

∴DM=OD+OM=4+2=6。

∴(V D—ABC)max=×9×6=18。

故选B。

4。

《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A。

西师版数学六下《圆锥的表面积》PPT课件

西师版数学六下《圆锥的表面积》PPT课件
2 r ,r为圆锥底面半径,l为圆锥 l
的母线长,根据扇形面积公式可得: 1 S圆锥侧= ·2πr· l=πrl,其中l为圆锥母线长, 2 r为底面圆半径。
S

c=2 r锥圆锥的表面积
基础教育系
一. 圆柱、圆锥侧面积 (1)将圆柱沿一条母线剪开后,展开图 是一个矩形,这个矩形的一边为母线, 另一边为圆柱底面圆的圆周长,设圆柱 底面半径为r,母线长为l,则侧面积 S圆柱侧=2πrl.
O`
O
(2)将圆锥沿一条母线剪开,展开在一 个平面上,其展开图是一个扇形,扇形的 半径为圆锥的母线,扇形的弧是圆锥底面 圆的圆周,因此该扇形的圆心角 θ=

8.3.2 圆柱、圆锥、圆台、球的表面积和体积(课件)【大单元教学】2022-2023学年高一数学同

8.3.2 圆柱、圆锥、圆台、球的表面积和体积(课件)【大单元教学】2022-2023学年高一数学同

1
2
所以( )2 +3 = 2 ,解得 = 2,
4
3
因此球的体积 = ⋅ 3 =
故选:.
32

3
解题技巧
与球有关问题的注意事项
1.正方体的内切球
球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径


为r1= ,过在一个平面上的四个切点作截面如图(1).
2.球与正方体的各条棱相切
水.现在容器上口放置一个铁球,若球体没入水中部分的深
度恰为四分之一直径,则球的体积为(
A.


B.


C.


D.
)


【解答】根据题意可得该正三棱柱的底面正三角形的内切
圆的半径为 3,
设该球体的半径为,因为球体没入水中部分的深度恰为
四分之一直径,
1
2
所以球心到水平面的距离ℎ = ,
22 + 22 + (4 2)2 = 2 10,即为球的直径,
∴球的半径为 10,∴球的表面积为4 × ( 10)2 = 40,故选.
变式训练
2
3

3
1.某圆锥的侧面展开图是一个圆心角为 ,面积为 的扇形,
则该圆锥的外接球的表面积为(
A.
27 2
64
B.
27
16
C.
9
8
)
D.
3
2
【解答】设圆锥的母线长为,底面半径为,
2.球的表面积公式S= .
典例分析
题型一 圆柱、圆锥、圆台的表面积
例1.面积为的正方形,绕其一边旋转一周,则所得旋转体的表面积为(
A.

人教版数学必修第二册8.3.2圆柱、圆锥、圆台、球的表面积和体积课件

人教版数学必修第二册8.3.2圆柱、圆锥、圆台、球的表面积和体积课件

(2)半径和球心是球的关键要素,把握住这两点,计算球的表
面积或体积的相关题目也就易如反掌了.
跟踪训练
1. (1)两个球的半径相差1,表面积之差为28π,则它们的
364
体积和为________;
3
设大、小两球半径分别为R,r,则由题意可得
− =1
R=4
42 − 4 2 = 28
r=3
∵棱长为a,∴BE=
3
2
3
a× = a.
2
3
3
∴在Rt△ABE中,AE=
2

2
3

6
a.
3
设球心为O,半径为R,则(AE-R)2+BE2=R2,
∴R=
6
6 2
3
a,∴S球=4π×( a) = πa2.
4
4
2
2. 设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个
球面上,则该球的表面积为( B )
∴R=2.
4
3
∴V= πR3=
32
.
3
5.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个
半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这
时容器中水的深度.
由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.
根据切线的性质知,当球在容器内时,水深CP为3r,水面的半径AC
3
2
12
总结提升
1.正方体的内切球
球与正方体的六个面都相切,称球为正方体的内切球,此时球的

2
半径为r1= ,过在一个平面上的四个切点作截面如图.
总结提升
2.长方体的外接球
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.4cmB.3cmC.2cmD.1cm
4.已知圆锥侧面展开图的扇形半径为2cm,面积是 ,则扇形的弧长和圆心角的度数分别为( )
A. B.
C. D.
5.一个圆锥的展开图的是扇形,圆心角为90°,圆锥的全面积为20π,圆锥的高为( )
A.15B.2 C.4 D.
6.若圆锥的底面积为16πcm2,母线长为12cm,则它的侧面展开图的圆心角为( )
12.已知圆锥的母线是3cm,底面半径是1cm,则圆锥的表面积是cm2.
13.如图,同底等高的圆锥和圆柱,它们的底面直径与高相等(2R=h),那么圆锥和圆柱的侧面积比为.
三.解答题(共7小题)
14.已知扇形纸片的圆心角为120°,半径为6cm.
(1)求扇形的弧长.
(2)若将此扇形卷成一个圆锥形无底纸帽,则这个纸帽的高是多少?
18.如图,已知扇形OAB的圆心角为90°,半径为4厘米,求用这个扇形卷成的圆锥的高及圆锥的全面积.
19.如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm,高BC=8cm,求这个零件的表面积.(结果保留π)
∵圆锥的全面积为20π,
∴πr2+πrR=20π,
∴r2=4,
解得:r=±2(负数舍去),
∴R=8,
∴圆锥的高为: =2 .
故选:B.
6.若圆锥的底面积为16πcm2,母线长为12cm,则它的侧面展开图的圆心角为( )
A.240°B.120°C.180°D.90°
【解答】解:由题意得,圆锥的底面积为16πcm2,
设圆锥的底面圆半径为r,则r=4π÷2π=2cm.
故选C.
4.(2014•恩施州模拟)已知圆锥侧面展开图的扇形半径为2cm,面积是 ,则扇形的弧长和圆心角的度数分别为( )
A. B. C. D.
【解答】解:∵圆锥侧面展开图的扇形半径为2cm,面积为 ,
∴圆锥的底面半径为: π÷π÷2= cm,
扇形的弧长为:2π× = πcm
A.8πB.16πC. D.4π
【解答】解:底面半径为2,底面周长=64,侧面积= ×4π×4=8π,故选A.
3.(2014秋•台州校级期中)用一个圆心角90°,半径为8cm的扇形纸围成一个圆锥,则该圆锥底面圆的半径为( )
A.4cmB.3cmC.2cmD.1cm
【解答】解:扇形弧长为 =4πcm;
《圆锥的表面积》练习题
一.选择题(共8小题)
1.已知圆锥的母线长是5cm,侧面积是15πcm2,则这个圆锥底面圆的半径是( )
A.1.5cmB.3cmC.4cmD.6cm
2.圆锥的底面半径为2,母线长为4,则它的侧面积为( )
A.8πB.16πC. D.4π
3.用一个圆心角90°,半径为8cm的扇形纸围成一个圆锥,则该圆锥底面圆的半径为( )
侧面展开图的圆心角是: π×360÷(π×22)=120°
故选A.
5.一个圆锥的展开图的是扇形,圆心角为90°,圆锥的全面积为20π,圆锥的高为( )
A.15B.2 C.4 D.
【解答】解:∵一个圆锥的展开图的是扇形,圆心角为90°,设底面圆的半径为r,扇形半径为R,
∴2πr= ,
整理得出:4r=R,
20.锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是一个圆柱(如图,单位:mm).电镀时,如果每平方米用锌0.11kg,要电镀100个这样的锚标浮筒,需要用多少锌(精确到0.01kg)?
(友情提示:图形可以看做一个圆柱和两个圆锥组成)
2016年11月28日卞相岳的初中数学组卷
【解答】解:底面直径为12cm,则底面周长=12πcm,由勾股定理得,母线长=10cm,侧面面积= ×12π×10=60πcm2.
故选A.
8.(2013秋•鼓楼区校级期中)如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为1,扇形的圆心角等于90°,则扇形的半径是( )
A.2B.4C.6D.8
【解答】解:扇形的弧长等于底面圆的周长得出2π.
设扇形的半径是r,则 =2π,
解得:r=4.
A.240°B.120°C.180°D.90°
7.如图,一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是( )
A.60πcm2B.48πcm2C.96πcm2D.30πcm2
8.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为1,扇形的圆心角等于90°,则扇形的半径是( )
A.2B.4C.6D.8
第7题图第8题图
二.填空题(共5小题)
9.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,若不计接缝和损耗,则圆锥底面半径为.
10.在Rt△ABC中,直角边AC=5,BC=12,以BC为轴旋转一周所得的圆锥的侧面积为.
11.圆锥的底面的圆的半径为5,侧面面积为30π,则圆锥的母线长为.
故可得圆锥的底面圆半径为: =4,底面圆周长为2π×4=8π,
设侧面展开图的圆心角是n°,根据题意得: =8π,
解得:n=120.
故选B.
7.(2013•梧州模拟)如图,一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是( )
A.60πcm2B.48πcm2C.96πcm2D.30πcm2
15.已知圆锥的高为 ,底面半径为2,求:
(1)圆锥的全面积;
(2)圆锥侧面展开图的圆心角.
16.在图1的扇形中,半径R=10,圆心角θ=144°,用这个扇形围成一个如图2的圆锥的侧面.
(1)求这个圆锥的底面半径r;
(2)求这个圆锥的侧面积.
17.蒙古包可以近似地看作圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围(圆柱)高1.5m的蒙古包,至少要多少平方米的毛毡?
参考答案与试题解析
一.选择题(共8小题)
1.(2008•三明)已知圆锥的母线长是5cm,侧面积是15πcm2,则这个圆锥底面圆的半径是( )
A.1.5cmB.3cmC.4cmD.6cm
【解答】解:设底面半径为R,则底面周长=2πR,侧面积= ×2πR×5=5πR=15π,
∴R=3cm.
故选B.
2.(2007•无锡)圆锥的底面半径为2,母线长为4,则它的侧面积为( )
相关文档
最新文档