环形跑道中的相遇追及问题
环形跑道中的相遇追及问题教学内容

第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题 ,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容: ,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。
例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。
400-375=25(米) 800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈) 乙:16-1=15(圈)例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
环形跑道中的相遇追及问题

第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题 ,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容: ,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。
例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇甲、乙两名运动员各跑了多少米甲、乙两名运动员各跑了多少圈思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。
400-375=25(米) 800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈) 乙:16-1=15(圈)例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
环形跑道中的相遇追及问题教学内容

环形跑道中的相遇追及问题教学内容第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容: ,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。
例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。
400-375=25(米)800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈) 乙:16-1=15(圈)例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
追及、相遇、环形跑道问题

追及、相遇、环形跑道问题1.姐姐的步行速度为75米/分,妹妹的步行速度为45米/分。
如果姐姐在妹妹出发20分钟后开始追赶,那么多少分钟后能够追上妹妹?2.家与图书馆之间的距离为4.8千米。
弟弟以60米/分的速度步行去图书馆,15分钟后,哥哥以240米/分的速度骑自行车出发去追赶弟弟。
问:1)哥哥在离家多远处追上弟弟?2)哥哥追上弟弟后不久到达图书馆,然后又马上折回,过不久与弟弟相遇。
那么相遇处离图书馆多少千米?3.甲乙两车从同一地点出发,沿着同一公路追赶前面的一个骑车人。
甲乙两车分别用10分钟、6分钟追上骑车人。
已知甲车速度是24千米/小时,乙车速度是30千米/小时。
问两车出发时相距多少千米?4.一支部队排成1.2千米队伍进行行军。
在队尾的___要与在最前面的营长联系,他用6分钟时间追上了营长。
为了回到队尾,在追上营长的地方等待了18分钟。
如果他从最前头跑步回到队尾,那么用多少时间?5.甲乙两车分别从两地同时相向开出。
快车经过8小时到达乙地,慢车经过10小时到达甲地。
问:1)相遇时,乙车行了360千米。
求两地距离。
2)相遇时,乙离目的地还有___。
求两地距离。
3)相遇时,乙比甲多行360千米。
求两地距离。
4)两车在离中点处___相遇。
求两地距离。
5)5分钟后两车又相距___。
求两地距离。
6.___和___分别从甲乙两地出发步行。
1小时30分后,___走了甲乙两地距离的一半多1.5千米,此时与___相遇。
小王的速度是3.7千米/小时。
那么___的速度是多少?环形跑道问题:1.___和___各自在周长为500米的跑道上跑步,___每分钟跑180米。
如果___和___同时从一个地点出发,反向而行,75秒钟后两人相遇。
那么___的速度是多少?如果___和___同时从一个地点出发,沿同一方向跑步,那么经过多少分钟两人第一次相遇?2.在600米环形跑道上,兄妹两人同时从同一起点按逆时针方向跑步。
如果两人每隔12分相遇一次,那么两人跑一圈各要几分钟?如果两人反向跑,那么每隔4分两人相遇一次。
行程问题九大题型初中公式

行程问题九大题型初中公式
在解决行程问题时,初中阶段主要涉及到的公式主要包括以下九大题型:
1. 相遇问题:
公式:总路程 = (甲速度 + 乙速度) × 相遇时间
2. 追及问题:
公式:追及时间 = 追及路程 / (快速 - 慢速)
公式:追及路程 = (快速 - 慢速) × 追及时间
3. 环形跑道上的相遇与追及:
公式:外圈路程 - 内圈路程 = 快者速度× 时间 - 慢者速度× 时间
4. 行程问题中的正反比例关系:
公式:路程一定,速度与时间成反比
5. 航行问题:
公式:顺水速度 = 静水速度 + 水流速度
公式:逆水速度 = 静水速度 - 水流速度
6. 火车过桥问题:
公式:车长 + 桥长 = 火车速度× 火车过桥时间
7. 流水问题:
公式:船速的(1 - 水速/船速)× 时间 = (顺水路程 / 顺水时间)× 时间
8. 行程问题中的比例关系:
公式:路程一定时,时间和速度成反比
9. 行程问题中的线性关系:
公式:速度一定时,路程和时间成正比
在解决具体问题时,需要根据问题的具体情况选择合适的公式进行计算。
同时,理解和掌握这些公式的含义和应用方法,对于提高解决实际问题的能力非常重要。
环形跑道问题

第七讲环形跑道问题一.知识点总结基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。
相遇问题(相向):相遇时间=路程和÷速度和追及问题(同向):追及时间=路程差÷速度差注:不只是追及问题中我们用路程差÷速度差=追及时间,实际在很多两人同时行进一段时间,不同的速度必然会造成路程不同,我们都可以用这个公式:路程差÷速度差=所行时间。
环形跑道问题,从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈。
这个等量关系往往成为我们解决问题的关键。
二.做题方法:(1)审题:看题目有几个人或物参与;看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后”就是从开始计时看地点是指是同地还是两地甚至更多。
看方向是同向、背向还是相向看事件指的是结果是相遇还是追及相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助,一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断。
追击问题中一个重要环节就是确定追上地点,从而找到路程差。
比如“用10秒钟快比慢多跑100米”我们立刻知道快慢的速度差。
这个是追击问题经常用到的,同过路程差求速度差(2)简单题利用公式(3)复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来。
相遇问题就找路程和,追击问题就找路程差三.例题解析1. 直接利用公式型竞赛班例题1(尖子班例题1):在300米的环形跑道上,如果同向而跑快者2分30秒追上慢者,如果背向而跑两者半分钟相遇,求两人的速度。
高新杰解析:注意如果题目没有第几次追上或相遇,都默认为是第一次追上或相遇。
“第几次追上就多跑几圈”,快者第一次追上慢者,就是比慢者多跑一圈,即用2分30秒比慢者多跑300米,那么快比慢1秒钟多跑(速度差):300÷150=2米“第几次相遇就合跑几圈”,第一次相遇就合跑一圈,即用半分钟合跑300米,1秒钟两人合跑(速度和):300÷30=10米慢者:(10-2)÷2=4米/秒快者:4+2=6米/秒“和差算法”:小的数=(和-差)÷2 大的数=(和+差)÷2竞赛班学案1:在环形跑道上,两人背靠背跑,每隔4分钟相遇一次:同向跑每隔20分钟相遇一次,已知环形跑道周长1600米,求两人的速度?解析:两人速度差1600÷20=80米/分两人速度和1600÷4=400米/分慢者:(400-80)÷2=160米/分快者:160+80=240米/分竞赛班例题3:幸福村小学有一条长200米的环形跑道,铮铮和包包同时从起跑线起跑,铮铮每秒钟跑6米,包包每秒钟跑4米,问铮铮第一次追上包包时两人各跑多少米,第2次追上包包时两人各跑多少圈?解析:(1)铮铮第一次追上包包,总共比包包多跑一圈,而1秒钟铮铮比包包多跑6-4=2米,那么得有多少秒能多跑一圈200你呢?200÷(6-4)=100秒注:熟了之后直接用公式路程差÷速度差=所行时间铮铮:6×100=600米包包:4×100=400米或600-200=400米(2)笨方法:铮铮第二次追上包包,总共比包包多跑二圈,而1秒钟铮铮比包包多跑6-4=2米,那么得有多少秒能多跑二圈400你呢?400÷(6-4)=200秒。
环形跑道问题

路程和=环形跑道周长 即:每相遇一次,合走一圈
课堂复习导入:
追及 追及时间=路程差÷速度差
联旧知学新知: 直线上的追及&环形跑道的追及
乙 甲
同向出发 追及问题
路程差=环形跑道周长 即:每追上一次,多走一圈
大问题二:怎么画示意图分析数量关系?
爸爸和修远同时从同一地点出发,沿相同方向在环形跑道上跑步,
环形追及问题
同向为路程差 路程差=环形跑道周长 即:每追上一次,多走一圈
解题思路: 1.审题,判断是相遇或追及? 2.画示意图(如左图) 3.根据关系式解答
同时同地出发的多次相遇问题 n次相遇,路程和为跑道n圈, 时间为一次相遇时间×n
大问题二:怎么画示意图来分析数量关系?
环形相遇问题: 1.审题,判断是否为相遇(关键词背向出发) 2.画圆形示意跑道,选定出发点,标出方向箭头、两车(人)的速度等 3.分析相遇路程,几次相遇几圈周长? 4.根据关系式解答:相遇路程=速度和×相遇时间
环形追及问题: 1.审题,判断是否为追及(关键词同向出发) 2.画圆形示意跑道,选定出发点,标出方向箭头、两车(人)的速度等 3.分析追及路程,同地出发,追上几次多跑几圈? 4.根据关系式解答:追及路程=速度差×追及时间
环形跑道问题
1 知识结构
条件:同时同地出发(反向)
相遇问题
路程和:每相遇一次,合走一圈 同时同地出发,第n次相遇:
周期性
每次相遇路程相等,每次相
环
相遇时间=一圈长度÷速度和
遇时间相等。
形
条件:同时同地出发(同向)
跑
追及问题
道
路程差:每追上一次,多走一圈 周期性
问
追及时间=一圈长度÷速度差
环形跑道上的追及问题

环形跑道上的追及问题1、在300米长的环形跑道上,甲乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米,两人起跑后的第一次相遇点在起跑线的前多少米?2、甲、乙两人在环形跑道上赛跑,跑道全长400米。
如果甲的速度为16米/秒,乙的速度为12米/秒。
两人同时同地同向而行,那么多少秒后第一次相遇?3、甲乙两人在一条400米的环形跑道上跑步,已知甲的速度是360m/min,乙的速度是240m/min①两人同时同地同向跑,多久时间两人第一次相遇,此时两人一共跑了几圈?②两人同时同地反向跑,几秒后两人第一次相遇?③若两人同地同向跑,乙先跑30秒,还要多长时间两人第一次相遇?④若两人同地同向跑,甲先跑30秒,还要多长时间两人第一次相遇?顺水流与逆水流问题1、一艘轮船航行于甲、乙两地之间,顺水时用了3小时,逆水时比顺水时多用30分钟,已知轮船在静水中每小时行26千米,求水流的速度?2、A、B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B 出发逆水行驶5小时才能到达A,求船在静水中的航行速度和水流速度。
3、一艘船在两个码头之间航行,水流速度是每小时3千米,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?储蓄问题1、李明五年前存了一份3000元的教育储蓄,今年到期时的本利和为3600元,请你帮李明算一算这种储蓄的年利率。
比赛积分问题1、七年级数学竞赛共出了15道选择题,选对一题得4分,选错一题扣2分,若某学生做了全部15道题得了36分,他选对了多少道题?2、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未做,得了103分,则这个人选错了几道题?绝对值练习题1、若|m-1|=m-1,则m____1;若|m-1|>m-1,则m____1.2、| a|=-a,则a一定是()A.负数B.正数C.非正数D.非负数3、若|x-2|+|y+3|+|z-5|=0计算:(1)x,y,z的值.(2)求|x|+|y|+|z|的值.4、若2<a<4,化简|2-a|+|a-4|.5、若b<0且a=|b|,则a与b的关系是___6、若a>0,b<0,c>0,化简│2a│+│3b│-│a+c│7、绝对值不大于3的非负整数有____.判断题;1.若两个数的绝对值相等,则这两个数也相等.()2.若两个数相等,则这两个数的绝对值也相等.()3.若x<y<0,则|x|<|y|.()4.一个有理数的绝对值不小于它自身()5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九讲:环形跑道问题
教学目标:理解环形跑道问题即是一个封闭线路上的追及问题 ,通过对环形跑道问题分析,培养学生的逻辑思维能力
教学重点:环形跑道问题中的数量关系及解题思路的分析
教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈
需要课时:2课时
教学内容: ,正确将环形跑道问题转化成追及问题
解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。
例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?
思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。
400-375=25(米) 800÷25=32(分钟)
甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈) 乙:16-1=15(圈)
例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒
钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?
解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)
④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)
⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)
练习:
1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇
2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇
3、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?
作业:
1、两名运动员在湖周围环形跑道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?
2、甲乙两人在周长400米的环形跑道上竞走,已知乙的速度是平均每分钟80米,甲的速
度是乙的1.25倍,乙在甲前100米,问多少分钟后,甲可以追上乙?
3、一条环形跑道长为400米,小明每分钟跑300米,小红每分钟跑250米,两人同时同地同向出发,,经过多长时间,小明第一次追上小红?
4、甲乙两人绕周长为1000米的环形跑道广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?
5、光明小学有一条长为200米的环形跑道,小明和小红同时从起跑线起跑,小明每秒跑6米,小红每秒跑4米,小明第一次追上小红时两人各跑了多少米?
6、甲乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米,如果两人同时从起跑线上同方向跑。
那么,经过甲经过多长时间才能第一次追上乙?
环形跑道中的相遇问题:环形跑道一周的长=速度和×相遇时间
例:一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时同向出发,经过多长时间两人相遇?
环形跑道中的追击问题:环形跑道一周的长= 速度差×追及时间
例:小明和小强两人在周长1200米的环形跑道上同时同地同向而行,小强每分钟跑100米,小明的速度是小强的2倍,经过多少分钟小明能追上小强?
变式训练:
1.甲和乙在300米环形跑道上跑步,两人从同一地点出发,反向而行,15秒后两人相遇。
如果同向而行,30秒后两人相遇,求甲和乙的速度?
2.(小升初)甲乙两人骑自行车从一环形公路的同一地点同时出发,背向而行。
甲行一圈要60分,在出发45分钟后两人相遇。
如果在相遇后甲立即调转方向骑行,那么两人再次相
遇(追上)要()分。
3.甲和乙在周长为500米的环形跑道上跑步.甲的速度是200米/分。
(1)甲和乙同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,乙的速度是多少米/分?(2)甲和乙同时从同一点出发,同一方向跑步,乙跑多少圈后才能第一次追上甲?
4.甲与乙绕一周长400米的环形跑道练习跑步。
在同一地点若逆向跑,40秒后相遇;若同向跑,200秒后甲首次追上乙。
现在甲距乙150米,若甲追乙,几分钟后两人第三次相遇?。