脉宽调制(PWM)技术
直流伺服电动机脉宽调制的工作原理

直流伺服电动机是一种广泛应用于工业控制系统中的电动机,其主要特点是控制精度高、速度范围广、响应速度快等。
而脉宽调制(PWM)技术是一种常用的电力控制技术,通过调整脉冲宽度来控制输出电压,被广泛应用于直流伺服电动机的速度和位置控制中。
本文将介绍直流伺服电动机脉宽调制的工作原理,包括脉宽调制原理、直流伺服电动机的工作原理、脉宽调制在直流伺服电动机中的应用等内容。
一、脉宽调制原理脉宽调制技术是一种通过调制脉冲信号的宽度来控制输出电压或电流的技术。
其基本原理是将输入信号与一个高频的载波信号进行调制,通过改变调制信号的脉冲宽度,来实现对输出信号的控制。
脉宽调制技术可以实现对输出信号的精确控制,并且具有简单、成本低廉、效率高等优点,因此被广泛应用于各种电力控制领域。
二、直流伺服电动机的工作原理直流伺服电动机是一种能够精确控制角度、速度和位置的电动机,其主要由电动机、编码器和控制器组成。
控制器通过不断地监测编码器反馈的位置信息,计算电机与期望位置之间的误差,并输出控制信号来调节电机的速度和位置,从而实现对电机的精确控制。
三、脉宽调制在直流伺服电动机中的应用脉宽调制技术被广泛应用于直流伺服电动机的速度和位置控制中,其工作原理如下:控制器根据输入的期望速度或位置信号,计算出电机的转速或角度误差,然后将误差信号传递给脉宽调制模块。
脉宽调制模块通过调整输出脉冲信号的宽度和周期,控制电机的转速和位置,从而实现对电机的精确控制。
四、脉宽调制在直流伺服电动机中的优势脉宽调制技术在直流伺服电动机中具有以下优势:1. 精确控制:脉宽调制技术可以实现对电机的精确控制,包括速度、角度和位置的精确控制。
2. 响应速度快:脉宽调制技术可以实现对电机的快速响应,提高了系统的动态性能。
3. 节能减排:脉宽调制技术可以实现能效优化,降低了能耗,减少了环境污染。
4. 成本低廉:脉宽调制技术成本低廉,便于大规模应用。
五、总结脉宽调制技术在直流伺服电动机中的应用,实现了对电机的精确控制和高效能运行。
6.3变压变频调速系统中的脉宽调制(PWM)技术.

6.3 变压变频调速系统中的脉宽调制(PWM)技术本节提要正弦波脉宽调制(SPWM)技术电流滞环跟踪PWM(CHBPWM)控制技术控制技术(或称磁链跟踪控制技术)电压空间矢量PWM(SVPWM)PWM技术就是利用半导体器件的开通和关断把直流电压变成一定形状的电压脉冲序列,以实现变频、变压并有效控制和消除谐波的一门技术。
我们把PWM技术分为三类1、正弦PWM技术(电压、电流、磁通为正弦目的各种PWM方案)2、优化PWM技术3、随机PWM技术一、正弦波脉宽调制(SPWM)技术1. PWM调制原理以正弦波作为逆变器输出的期望波形,以频率比期望波高得多的等腰三角波作为载波(Carrier wave),并用频率和期望波相同的正弦波作为调制波(Modulation wave),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄中间宽的一系列等幅不等宽的矩形波。
按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波与期望的正弦波等效。
这种调制方法称作正弦波脉宽调制(Sinusoidal pulse width modulation,简称SPWM),这种序列的矩形波称作SPWM波。
2. SPWM控制方式如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM 波也只处于一个极性的范围内,叫做单极性控制方式。
如果在正弦调制波半个周期内,三角载波在正负极性之间连续变化,则SPWM波也是在正负之间变化,叫做双极性控制方式。
规则采样法原理三角波两个正峰值之间为一个采样周期Tc自然采样法中,脉冲中点不和三角波一周期的中点(即负峰点)重合规则采样法使两者重合,每个脉冲的中点都以相应的三角波中点为对称,使计算大为简化在三角波的负峰时刻tD对正弦信号波采样得D点,过 D作水平直线和三角波分别交于A、B 点,在A点时刻 tA和B点时刻 tB控制开关器件的通断脉冲宽度 d 和用自然采样法得到的脉冲宽度非常接近根据上述采样原理和计算公式,可以用计算机实时控制产生SPWM波形。
脉冲宽度调制(PWM)技术

脉冲宽度调制(PWM)技术在电力电子变流器控制系统中,对于控制电路的要求往往是除能够控制负载的加电与断电外,还应该能够控制加载到负载上的电压高低及功率大小。
在大功率电力电子电路中,控制加载至负载上电压及功率的实用方法就是脉冲宽度调制(pulse width modulation, PWM)。
1. 面积等效原理在控制理论中,有一个重要的原理,即冲量等效原理:大小、波形不相同的窄脉冲变量(冲量)作用在具有惯性的环节上时,只要这些变量对时间的积分相等,其作用的效果将基本相同。
这里所说的效果基本相同是指惯性环节的输出响应波形基本相同。
例如,下图1示出的三个窄脉冲电压波形分别为矩形波、三角波和正弦波,但这二个窄脉冲电压对时间的积分相等,或者说它们的面积相等。
当这三个窄脉冲分别作用在只有惯性的同一环节上时,其输出响应基本相同。
因此,冲量等效原理也可以称为面积等效原理。
从数学角度进行分析,对上图1所示的三个窄脉冲电压波形进行傅里叶变换,则其低频段的特性非常相近,仅在高频段有所不同,而高频段对于具有惯性负载的电路影响非常小。
由此进一步证明了面积等效原理的正确性。
2. 脉冲宽度调制技术依据面积等效原理,在电路中可以利用低端电源开关或高端电源开关,以一定频率的导通和截止连续切换,使电源电压U i以一系列等幅脉冲(或称为矩形波)的形式加载到负载上,加载在负载上的电源电压Uo波形如图2所示。
图2所示的矩形波的电压平均值:此式表明在一个脉冲周期内,电压的平均值与脉冲的占空比是成正比的,于是,可以通过改变脉冲的占空比来调整加载到负载上的电压大小。
当占空比小时,加载到负载上的平均电压就低,即加载到负载上的功率小;而占空比大时,加载到负载上的平均电压就高,加载到负载上的功率大。
这种通过等幅脉冲调节负载平均电压及功率的方法称为脉冲宽度调制,也称为斩波控制。
采用脉冲宽度调制方式为负载供电,由于供电电压是脉动的,势必会产生出各种谐波。
PWM的名词解释

PWM的名词解释PWM,即脉宽调制(Pulse Width Modulation),是一种在电子工程领域中常见的技术。
它在控制电子设备中功率输出以及速度调节等方面有着广泛应用。
一、什么是PWM?脉宽调制是一种控制技术,通过改变信号的脉冲宽度来控制电路输出的电平。
在PWM中,理论上电路输出总是以高低电平交替出现,但通过改变高电平和低电平之间的脉冲宽度,可以控制电路输出的平均电压或平均功率。
脉宽调制最常见的一种形式是矩形脉冲波,它由固定的周期和可调节的脉冲宽度组成。
脉冲宽度的调节可以在一定的周期内不断变化,从而实现对输出信号的控制。
二、PWM的原理PWM技术的核心原理是基于周期性的脉冲信号。
当脉冲的宽度增加时,电路输出的平均值也会相应增加。
换句话说,脉冲宽度越宽,输出的功率或电压就越高,而脉冲宽度越窄,输出的功率或电压就越低。
具体来说,PWM技术通过不断改变脉冲信号的高电平时间和低电平时间的比例来控制输出信号。
这样做的好处是可以在保证信号稳定性的前提下,精确地调节输出的平均电压或平均功率。
三、PWM的应用领域1. 电机控制:PWM技术广泛应用于电机控制领域。
通过改变PWM脉冲的宽度,可以调节电机的转速。
例如,调速风扇、电动车等就是利用PWM技术来控制电机转速的典型应用。
2. LED调光:PWM技术在LED照明领域也有重要应用,可以通过改变PWM 信号的脉冲宽度来控制LED灯的亮度。
这种方式相对于传统的电阻调光,具有更高的效率和更精确的调节范围。
3. 电源管理:PWM技术在电源管理中也扮演着重要角色。
通过PWM控制器可以实现高效、稳定的电源输出,弥补传统的线性稳压电路的不足。
4. 音频放大:PWM技术也常被应用于音频系统中。
通过控制PWM脉冲的宽度和频率,可以达到高保真度的音频放大效果。
四、PWM的优点与局限性1. 优点:- 精确控制:通过改变脉冲宽度和周期,可以实现对输出信号的精确控制,使其满足特定要求。
pw脉宽调制

任务名称:PW脉宽调制一、引言PW脉宽调制(Pulse Width Modulation,简称PWM)是一种常用的数字控制技术,广泛应用于电子设备、电机驱动、通信系统等领域。
本文将全面探讨PW脉宽调制的原理、应用以及优缺点,帮助读者深入理解该技术。
二、PWM原理2.1 基本概念PW脉宽调制是通过调整信号的脉冲宽度来改变电压或功率等物理量的控制技术。
它采用数字信号来驱动模拟信号,通过周期性的脉冲信号,控制目标物理量的平均值。
2.2 PWM信号生成1.基于定时器的PWM生成: 定时器可以定期产生脉冲信号,PWM信号的占空比通过调整定时器的计数器值来实现。
–步骤1: 初始化定时器的计数器和预设值。
–步骤2: 开始计数,并与预设值进行比较。
–步骤3: 当计数器值小于预设值时,输出高电平;当计数器值大于预设值时,输出低电平。
–步骤4: 重复步骤2和步骤3,实现周期性的PWM信号输出。
2.基于比较器的PWM生成: 通过比较器将模拟信号与参考电压进行比较,产生PWM信号。
–步骤1: 将模拟信号与参考电压输入到比较器。
–步骤2: 比较器将模拟信号与参考电压进行比较,并输出PWM信号。
三、PWM的应用3.1 电子设备1.直流电源: PWM可以用于直流电源的电压调节,控制输出电压的稳定性和效率。
2.LED灯光控制: 通过PWM调节LED的亮度,实现灯光的亮度调节和颜色混合。
3.伺服电机控制: PWM信号可以用于控制电机的转速和运动方向。
3.2 电机驱动1.直流电机控制: PWM可以用于直流电机的速度调节和逆变器的控制。
2.步进电机控制: 通过PWM信号控制步进电机的步进角度,实现精确的位置控制。
3.3 通信系统1.无线通信: PWM技术可以用于无线通信系统的调制与解调,提高通信信号的质量。
2.数字音频: PWM可以用于数字音频信号的解码和重构,实现高保真音频输出。
四、PWM技术的优缺点4.1 优点1.高效能: PWM技术通过调整信号的占空比,减少了能量的损耗,提高了系统的能效。
脉宽调制

脉宽调制[浏览次数:158次]
脉宽调制(Pulse Width Modulation简称PWM)是靠改变脉冲宽度来控制输出电压,通过改变周期来控制其输出频率。
而输出频率的变化可通过改变此脉冲的调制周期来实现。
这样,使调压和调频两个作用配合一致,且于中间直流环节无关,因而加快了调节速度,改善了动态性能。
由于输出等幅脉冲只需恒定直流电源供电,可用不可控整流器取代相控整流器,使电网侧的功率因数大大改善。
利用PWM逆变器能够抑制或消除低次谐波。
加上使用自关断器件,开关频率大幅度提高,输出波形可以非常接近正弦波。
目录
∙脉宽调制变频电路的特点
∙脉宽调制的原理
∙脉宽调制的典型电路图
∙脉宽调制技术的分类
∙脉宽调制的典型应用
脉宽调制变频电路的特点
∙ 1. 可以得到相当接近正弦波的输出电压
2. 整流电路采用二极管,可获得接近1的功率因数
3. 电路结构简单
4. 通过对输出脉冲宽度的控制可改变输出电压,加快了变频过程的动态响应。
脉宽调制方波

脉宽调制方波
标题:脉宽调制方波的原理与应用
一、引言
脉宽调制(PWM)是一种功率控制方式,通过改变信号占空比来调节平均输出功率。
这种技术广泛应用于电力电子设备中,如开关电源、电机驱动器等。
二、脉宽调制方波的原理
脉宽调制方波是由一系列宽度可变的矩形脉冲组成。
这些脉冲的周期是固定的,但其宽度(即脉冲持续时间,或称“占空比”)可以变化。
占空比的变化使得方波的平均电压发生变化,从而实现了对输出功率的控制。
在 PWM 方波中,如果在一个周期内高电平的时间较长,那么方波的平均电压就较高;反之,如果低电平的时间较长,那么方波的平均电压就较低。
因此,通过调整占空比,我们可以改变方波的平均电压,从而实现对输出功率的控制。
三、脉宽调制方波的应用
1. 电机控制:PWM 方波常用于电机的转速和方向控制。
通过改变 PWM 方波的占空比,可以改变电机的平均电压,从而改变电机的速度。
同时,通过改变PWM 方波的相位,可以改变电机的旋转方向。
2. 开关电源:PWM 方波也常用于开关电源的设计。
通过改变 PWM 方波的占空比,可以改变电源的输出电压,从而满足不同的供电需求。
3. LED 照明:在 LED 照明系统中,PWM 方波被用来调整 LED 的亮度。
通过改变 PWM 方波的占空比,可以改变 LED 的平均电流,从而改变其亮度。
四、总结
脉宽调制方波是一种非常实用的功率控制方式,它能够有效地调节输出功率,且具有体积小、效率高等优点。
随着电力电子技术的发展,PWM 方波的应用将越来越广泛。
电力电子第6章 脉宽调(PWM)技术

O
u UN'
Ud
2
O
?
Ud 2
u VN'
Ud
2O
?
Ud 2
u WN'
Ud
2
O
u UV Ud
O -Ud u UN
O
?t ?t ?t ?t
?t
2Ud
Ud
3
3
?t
图6-8 三相桥式PWM逆变电路波形
死区时间的长短主要由开关器 件的关断时间决定。
工作时V1和V2通断互补, V3和V4通断也互补。
以uo正半周为例,V1通, V2断,V3和V4交替通断。
负载电流比电压滞后,在 电压正半周,电流有一段 区间为正,一段区间为负。
负载电流为正的区间,V1 和V4导通时,uo等于Ud 。
图6-4 单相桥式PWM逆变电路
6-14
6.2.1 计算法和调制法
图6-4 单相桥式PWM逆变电路
6-15
6.2.1 计算法和调制法
3)单极性PWM控制方式(单相桥逆变)
在ur和uc的交点时刻控制IGBT的通断。
ur正半周,V1保持通,
V2保持断。
u
uc ur
当 ur>uc 时 使 V4 通 ,
V3断,uo=Ud 。
O
wt
当 ur<uc 时 使 V4 断 ,
V3通,uo=0 。
uo
uof uo
Ud
O
wt
-Ud
图6-6 双极性PWM控制方式波形
6-17
u
uc
ur6.2.1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代电力电子及变流技术
第四章脉宽调制(PWM)技术
脉宽调制技术:
按同一比例改变
在u
r 和u
c
交点时刻控制IGBT 的通断
u r 和u
c
的
点时刻
制IGBT 的通断
控制公用三角波载波u
c 三相的调制信号
依次
u c u rW
单相逆变器结构特点
电路结构特征:2个桥臂输出电压:ab ag bg V V V =−结构分析:
�
每个桥臂存在2个开关状态—桥臂上开关通(用S a =1描述);—桥臂下开关通(用S a =0描述)。
�逆变器共有4种开关状态—S a S b :00,01,10,11。
开关状态与电压的关系
4.5 4.5 SVPWM
SVPWM 的原理及实现结构特点
�
两个桥臂电压V ag 和V bg 分别独立可控——控制存在两个自由度;�由于连接了负载,输出电压V ab 具有唯一性——只有一个自由度。
如何分析两维的桥臂电压和一维
的输出电压之间的联系?
几何分析方法
矢量空间
�
桥臂电压构成两维空间,两个自由度分别
代表两个垂直方向——桥臂电压空间;�输出电压只有一个自由度,构成一维空间 ——输出电压空间。
4.5 4.5 SVPWM
SVPWM 的原理及实现桥臂电压和输出电压的联系
�
采用投影方式建立联系;
�开关状态(00),(11)形成的两个桥臂电压——对应一个输出电压(0V)。
这一投影具有唯一性
投影关系
ag ab bg 01111V V V V −⎡⎤
⎡⎤⎡⎤=⎢⎥
⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦V 0是零序电压
*11ag 2
2ab 1
1bg 2
2
0*V V V V ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦
逆变器控制方法
V 0*为一定范围的任意数
注:
V 0*取常数(如V i )时,Vag 和Vbg 的驱动波形
可以设计。
例:
V ab *取0.5V i , V 0*取V i
V ag 取0.75V i , V bg 取0.25V i
a 桥臂上管
b 桥臂下管
b 桥臂上管a 桥臂下管4.5 4.5 SVPWM
SVPWM 的原理及实现V 0*取其他值会怎样? V 0*有没有一个取值原
则?
4.5 4.5 SVPWM
SVPWM 的原理及实现三相逆变器结构特点
结构特征:3个桥臂
电路特征:()ng ag bg cg 3V V V V =++结构分析:
�
每个桥臂存在2个开关状态—桥臂上开关通(用S a =1描述);—桥臂下开关通(用S a =0描述)。
�逆变器共有8种开关状态,—S a S b :000,001,010,
011, 100,101,110,111。
结构特点
�
三个桥臂电压V ag 、 V bg 和V cg 分别独立可控——控制存在三个自由度;�由于连接了负载,输出电压V an 、 V bn 和V cn 存在耦合关系——只有两个自由度。
开关状态与桥臂电压的关系
如何分析三维桥臂电压和两维输出电压之间的联系?
几何分析方法
矢量空间
�
桥臂电压构成三维空间,三个自由度分别代表三个垂直方向——桥臂电压空间;
�
输出电压只有两个自由度,构成两维空间——输出电压空间。
4.5 4.5 SVPWM
SVPWM 的原理及实现桥臂电压和输出电压的联系
�采用投影方式建立联系;
�
开关状态(000),(111)形成的两个桥臂电压——对应一个输出电压矢量点(V an , V bn , V cn )= (0,0,0)。
这一投影具有唯一性
投影关系
4.5 4.5 SVPWM
SVPWM 的原理及实现an ag bn bg cn cg 21111213112V V V V V V ⎡⎤
−−⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−⎢⎥
⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−⎣⎦⎣⎦⎣⎦
()ng ag bg cg 3
V V V V =++根据实际
情况自动调整投影比例
开关状态与输出电压的关系
解耦投影关系
4.5 4.5 SVPWM
SVPWM 的原理及实现112
2d an 3
3q bn 221110cn 2
2
21203V V V V V V −−⎡⎤⎡⎤
⎡⎤⎢⎥⎢⎥⎢⎥=−⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
V 0是零序电压
⎤ag
开关状态与电压矢量的关系电压矢量的空间位置
电压
轨迹
三相SVPWM 思想—3号扇区为例4466460
sref TV T V T V T T T T ⎧=+⎪⎨
=++⎪⎩06
64
40
cos30tg60s s s T V V T T V V x T V x βαβ⎧=⎪⎪⎪=+⎨⎪⎪=⎪⎩
4DC DC 6DC 33
223s s s T T
T V V V V T T V
V αββ⎧⎛⎞=−⎪⎜⎟⎪⎝⎠⎨
⎪=⎪⎩
sref V 的合成:
由 、 、 、 合成。
0V 6V 4V 7
V 相邻矢量
零矢量
合成构思:T 0为0或7矢量 工作时间
4.5 4.5 SVPWM
SVPWM 的原理及实现
30
u u αβ−=。