在汽车参数化中ESP系统的发展

合集下载

ESP(汽车电子稳定程序)简介

ESP(汽车电子稳定程序)简介
ASR
由ABS到ESP
ESP
ASR
EDS EBV ABS
ESP是 Electronic Stability Program的缩写。意为电子稳定程序, 有
些车型有相同或相近的系统: Dynamic Stability Control(DSC 动态稳定控制) Vehicle Stability Control(VSC 车辆稳定控制) Vehicle Stability Assist (VSA 车辆稳定支持) Automatic Stability Management System(ASMS自动稳定驾驶系统) Driving Dynamic Control(DDC 驾驶动态控制)
MSR
节气门 控制单元
制动助力器
发动机 控制单元
ASR开关 及报警灯
电子控制单元 液压调节器
轮速 传感器
E-GAS 电子油门 CAN联网ASR/ 发动机控制单元
ASR
ASR的作用是当汽车加速时将滑动率控制在一定的范围内, 从而防止驱动轮快速滑动。它的功能一是提高牵引力;二是 保持汽车的行驶稳定。行驶在易滑的路面上,没有ASR的汽 车加速时驱动轮容易打滑;如是后驱动的车辆容易甩尾,如 是前驱动的车辆容易方向失控。有ASR时,汽车在加速时就 不会有或能够减轻这种现象。在转弯时,如果发生驱动轮打 滑会导致整个车辆向一侧偏移,当有ASR时就会使车辆沿着 正确的路线转向。 *在低附着系数的路面加速时,有良好的稳定性和转向能力。 *在曲线行驶时,ASR系统可避免因加大油门导致车冲出弯道
MSR Motorschleppmomenten Regelung 发动机牵引力调节 降低牵引力矩, 提高在光滑路面上的转向能力。
TCS Traction Control System 牵引力控制系统 当汽车加速时将滑移率控 制在一定的范围内,从而防止驱动轮快速滑动。通过降低发动机功率来 提高牵引力,保持汽车的行驶稳定。

汽车电子稳定控制系统ESP的发展现状

汽车电子稳定控制系统ESP的发展现状

42科技资讯 SC I EN C E & TE C HN O LO G Y I NF O R MA T IO N信 息 技 术汽车底盘控制通常是指通过控制汽车的侧向运动、垂向运动和纵向运动来提高汽车的操纵性、乘坐舒适性和牵引/制动性能,对这些运动的控制可以分别通过转向盘、油门、制动踏板来实现,相应的执行量是前轮的转向角及车轮上的驱动力矩或制动力矩,真正起作用的是轮胎的纵向力和侧向力。

本文通过总结汽车底盘控制的的研究成果,分析今后底盘控制技术的发展趋势。

1 汽车电子稳定控制系统ESP(Electronic Stability Program)(如图1)目前,ESP较为成熟的底盘主动安全系统。

上世纪90年代中期,德国Bosch公司推出了车辆动力学控制系统(V DC ),也就是ESP系统。

通常情况下,我们将ES P系统的控制思想称为“直接横摆力矩控制”(DYC:Direct Yaw-moment Control)或者“差动制动控制”(DBC:Differential Braking Control)。

控制原理如图1。

2.1汽车转向的电子控制系统1.2.1 主动前轮转向系统AFS(Active Front Steering)依据驾驶员意图(驾驶员的转向输入),AFS系统通过AFS的执行机构给前轮叠加一个额外的转向角。

此额外的转向角由电子控制单元根据转向盘转角和汽车的一些运动变量计算得出。

电动机、自锁式蜗轮蜗杆和行星齿轮机构等构成了AFS的执行机构。

一般来讲,AFS常被串联在转向盘和转向器之间。

1.2.2 四轮转向系统4WS(4 wheels system)4W S 是出现较早的底盘主动控制思想,低速时可以提高汽车的转向灵便性,高速时可以改善汽车的操纵稳定性,由于4W S 是靠轮胎的侧向力影响汽车姿态的,因而在大侧向加速度工况下,轮胎力的饱和特性将导致控制性能下降,4W S在实节际生产中实施复杂、成本高,阻碍了成品车的市场化[13~15]。

浅谈汽车电子稳定程序系统(ESP)(图)

浅谈汽车电子稳定程序系统(ESP)(图)

浅谈汽车电子稳定程序系统(ESP)(图)随着现代汽车技术的发展,车辆的主动安全性大大提高。

为了防止车轮抱死,避免车辆在紧急制动时因车轮抱死而失控,1978年博世公司开发了世界首套ABS,并在1985年投产。

据统计在2004年欧洲生产的新车ABS,装备率已达到85%,而欧洲生产协会更保证对2004年7月起生产的新车100%装备ABS系统。

在我国生产的新车中装备ABS系统也达到66%。

由于ABS不能解决车辆在湿滑路面上起步或加速出现的车轮打滑问题,更不能避免车辆发生侧滑。

因此,在ABS的基础上,进一步发展出了牵引力控制系统(TCS)。

在车辆起步或加速时,如果某个车轮出现了打滑现象(车轮速度传感器不断监视着每一个车轮),TCS会迅速干预制动系统和发动机工作,使车辆能够安全地起步或加速(防止车轮打滑,保证车辆具有良好的牵引性能,同时照顾其稳定性和操纵性)。

1995年博世公司又推出了电子稳定程序(Electronic Stability Program,简称ESP 系统)。

实际上ESP系统也是一种牵引力控制系统,但是与其它牵引力控制系统比较,ESP 不但控制驱动轮,而且可控制从动轮。

如后轮驱动汽车出现转向过度时,ESP便会慢刹外侧的前轮来稳定车子,防止后轮失控而发生甩尾现象;在转向过小时,为了校正行驶循迹方向,ESP则会慢刹内侧后轮,从而校正行驶方向。

ESP是一个主动安全系统,通过有选择性的分缸制动及发动机管理系统干预,防止车辆滑移。

ESP判定为出现转向不足将制动内侧后轮,从而稳定车辆。

当ESP判定为出现转向过度,ESP将制动外侧前轮,防止出现甩尾,并减弱过度转向趋势,从而稳定车辆。

如果单独制动某个车轮不足以稳定车辆,ESP将通过降低发动机扭矩输出的方式来制动其它车轮来满足需求。

有ESP系统的与只有ABS的汽车相比,它们之间的差别在于ABS只能被动地做出反应,而ESP则能够控测和分析车况,并纠正驾驶错误,预患于未然。

车身电子稳定系统

车身电子稳定系统
VDC:车辆动态稳定控制系统,主要通过对单个车轮主动增压以纠正车轮的不足转向和过度转向。TCS和VDC 属于主动增压,即不用施加制动踏板力即可以对制动管路施加压力。
谢谢观看
沟通装置
仪表盘上的ESP灯。
工作原理
工作原理
工作示意图在一定的路面条件和车辆负载条件下,车轮能够提供的最大附着力为定值,即在极限情况下,车 轮受到的纵向力(沿车轮滚动方向)与侧向力(垂直车轮滚动方向)为此消彼长关系。电子稳定程序可分别控制 各轮的纵向的制动力,从而对侧向力施加影响,从而提高车辆的操控性tronic Stability Program的缩写,中文译成“电子稳定程序”。它通过对从各传感器传 来的车辆行驶状态信息进行分析,然后向ABS、EBD等发出纠偏指令,来帮助车辆维持动态平衡。ESP可以使车辆 在各种状况下保持最佳的稳定性,在转向过度或转向不足的情形下效果更加明显。
但由于ABS只在制动时起作用,TCS只在驱动时起作用,因此ABS/TCS的集成只能解决车辆纵向稳定性问题, 无法解决车辆驱动和制动转向、高速转向等极端工况引起的侧向稳定性问题。宝马与博世公司合作于1992年在 ABS/TCS的基础上开发了旨在解决车辆侧向稳定性问题的第一代稳定性控制系统。1995年ESC系统实现批量生产, 并首次应用在奔驰S级轿车上。
作用
作用
ESP包括电子刹车分配力系统(EBD, Electrical Brake Distribution)、防抱死刹车系统(ABS, Anti-lock Brake System)、循迹控制系统(TCS, Traction Control System)、车辆动态控制系统(VDC, Vehicle Dynamic Control)这几项功能。
EBD:调节制动力分配,以防止车辆后轮先抱死,一般情况下只有模块硬件出现故障时才会失效;

车辆ESP系统的发展及稳定性研究

车辆ESP系统的发展及稳定性研究
四、 结 语
表二 能够安装E S P 的部分汽车品牌和不能安装的部分汽车品牌
能够 安装 奇瑞 A 3全系、大众一 朗逸 品轩版 、宝 马、奔驰 、 P 的汽 车品牌 高尔夫 速腾 、 别克英朗 、 荣威 部分 、 奔腾 B T 0 2 . 3

不 能安装 E S P的汽 车品牌

向 角速 度 的大 d , t , J 。 4 、 方 向盘 转 角 传 感 器
我们 说过 E S P能够 识别到驾驶员 的操作意 图, 正是通过计算方 向盘转
角的大 小和变化速率来 实现这一 目的的。 方向盘转角传感器可 以将 方向盘 转 角转化 为一个 可以代表 司机期望 的行驶方 向的信 号, 转角一般根据光 电

E S P系统 的 发 展
E S P最早使用 是在 1 9 8 7年在奔驰和 宝马的汽车上安装了牵引力控制
系统 , 这 种 控 制 系 统 可 以针 对 不 同 的 车 施 加 不 同 的 制 动 力和 牵 引 力来 保 持
车 辆稳定 , 最初 设计并不是 为了辅助转 向, 9 O 年代 时, 牵引力 控制系 统的 叫 TC L, 最初 是三菱装备 了防滑系统 在这之 后 , 系 统又不 断更新 , 和现
编 码来确定, 会有~ 个编码盘来 显示 , 这上面 的信 息 由接近式 光电耦合器 进 行扫 描 。方 向盘 转 角 传 感 器 与 E C U 的 连 接通 过 CA N 总线来完成 。 5 、 横摆角速度传感器 这个传感器 主要是 用来检测汽车沿垂 直轴 的偏 转, 偏转的大小代表 的
实时监控 , E S P能够实时监控路面 反应、 汽车的运行状况 , 以及 司机的 操控动作, 根据检 测到的信息, 对发动机和制动系统进行控制 。 事先提醒 , 当驾驶者操作 不当或者路面有 异常状况 时, 系统会 发出警 报, 这是 因为系统可 以控 制驱动轮和 从动轮M , 当汽车在行 驶过程 中, 出现 转 向过多的情 况时, E S P会 通过调整轮胎 , 校正行驶方 向。 主动干预, 通过上个特 点, 我们 也可 以知道 , E S P系统可 以通过监测数 据, 而 直 接 干 预 汽 车 的运 行 。

车辆ESP系统的发展及稳定性研究

车辆ESP系统的发展及稳定性研究

车辆ESP系统的发展及稳定性研究作者:唐新胜来源:《科学与财富》2014年第03期摘要:ESP是“Electronic Stability Program”的缩写形式,是电子稳定程序,即车辆稳定性控制系统。

是提高汽车安全性的重要系统。

近年来,汽车行驶速度不断加快,道路的行车密度不断增大,因此,车辆的稳定性越来越得到人们的重视,许多交通事故的发生,都是因为车辆稳定性差的原因。

ESP系统就是解决这一问题的重要措施。

它可以大大降低交通事故并提高道路安全。

它整合了防抱死制动系统和牵引力控制系统,能够有效防止汽车在转向时滑移、不稳定的现象,有效提高汽车的安全性。

关键词:ESP系统发展稳定性ESP系统综合了ABS(防抱死制动系统)、ASR(加速防滑控制系统)和BAS(制动辅助系统)三个系统[1]。

这个系统能够通过合理分配轮胎力,通过汽车动力学行为使汽车最大限度的按照驾驶员的意愿行驶,也可以通过调节发动机来控制汽车,使汽车能达到司机的操作意图,能在驾驶过程中,保持车辆的稳定。

ESP系统现在在国外已经批量生产,但在国内仍然处于研究之中。

因此,许多国产车上还没有装备这个系统。

一、ESP系统的发展ESP最早使用是在1987年在奔驰和宝马的汽车上安装了牵引力控制系统,这种控制系统可以针对不同的车施加不同的制动力和牵引力来保持车辆稳定,最初设计并不是为了辅助转向,90年代时,牵引力控制系统的叫TCL,最初是三菱装备了防滑系统[2],在这之后,系统又不断更新,和现在的ESP大致一样了,它的设计目的是帮助司机在弯道时,车辆能够按照预定路线行驶,车载电脑可以获取车辆运行各部的参数,使电子牵引力控制系统起作用。

表一几种汽车在没有ESP和有ESP的情况下的最大速度表二能够安装ESP的部分汽车品牌和不能安装的部分汽车品牌二、ESP系统的组成ESP系统由电子控制单元(ECU)、轮速传感器、横向或纵向角速度传感器、方向盘转角传感器,横摆角速度传感器和液压系统构成。

ESP工作原理和工作过程

ESP工作原理和工作过程

ESP工作原理和工作过程ESP是一种车辆动态稳定系统,全称为Electronic Stability Program,它通过传感器监测车辆的运动状态,对车辆进行自动干预,帮助驾驶员保持车辆的稳定性,提高驾驶安全性。

本文将探讨ESP的工作原理和工作过程。

工作原理ESP系统的主要工作原理基于车辆动力学和控制理论。

通过车辆上安装的传感器(如转向传感器、车速传感器、侧倾传感器等),ESP系统能够实时监测车辆的各种参数,如车速、加速度、侧倾角等。

同时,ESP系统还监测驾驶员的方向盘操作,通过这些数据,系统可以判断车辆的运动状态。

当ESP系统检测到车辆出现潜在的失控情况时(如车辆打滑、侧滑等),系统会通过制动系统或调整车辆动力来进行干预,帮助车辆回复稳定状态。

具体干预方式包括有针对性地制动某个车轮、调整发动机输出功率等操作,以恢复车辆的稳定性。

工作过程ESP系统的工作过程可以简单地分为以下几个步骤:1.传感器监测:ESP系统不断地通过各种传感器监测车辆状态,包括车速、车轮转速、侧倾角等参数。

2.数据处理与分析:ESP系统对传感器获取的数据进行处理和分析,判断车辆是否出现失控情况。

3.干预决策:当系统确定车辆存在失控风险时,ESP系统会根据预设的算法和逻辑,制定相应的干预措施。

4.实施干预:系统会通过制动系统或调整车辆动力等方式,对车辆进行干预,恢复稳定状态。

5.监测反馈:ESP系统持续监测车辆状态,确保车辆恢复稳定后,逐渐减少干预措施,让驾驶员重新掌控车辆。

在车辆行驶过程中,ESP系统不断重复以上过程,保障车辆在各种路况下保持稳定性,确保驾驶安全。

结语ESP作为一种重要的车辆安全系统,通过其精确的传感器监测和高效的干预机制,为驾驶员提供了额外的安全保障。

了解ESP的工作原理和工作过程不仅可以帮助驾驶者更好地理解车辆的运动控制,还有助于提高行车安全意识,降低交通事故发生概率。

希望本文能够带给您更多有关ESP系统的了解和认识。

ESP电子稳定系统PPT

ESP电子稳定系统PPT

ESP电子稳定系统作为主动安全技术 的重要组成部分,能够提前预测车辆 失控风险,采取相应措施避免或减少 事故发生。
ESP电子稳定系统在摩托车行业的应用
摩托车稳定性控制
ESP电子稳定系统应用于摩托车,能够通过控制车轮的制动和发动 机输出,提高摩托车在行驶过程中的稳定性。
摩托车安全性能提升
ESP电子稳定系统能够预测摩托车失控风险,及时采取措施避免事 故发生,提高骑行安全性。
应用领域
ESP电子稳定系统在汽车行业的应用
车辆操控稳定性
节能减排
ESP电子稳定系统通过控制车轮的制 动和发动机输出,帮助驾驶员在湿滑、 冰雪等路况下保持车辆稳定,提高操 控性能。
ESP电子稳定系统通过优化发动机输 出和车轮制动,能够提高车辆燃油经 济性,减少尾气排放,对环保有积极 作用。
主动安全技术
通过加强研发与创新,不断优化ESP电子稳定系统的性能和功能,提高其安全性和用户 体验。
降低成本与价格
通过优化生产工艺和供应链管理等方式,降低ESP电子稳定系统的成本和价格,使其更 加适用于广泛的应用场景。
适应法规与标准
加强与各国政府和国际组织的合作,了解并适应不同市场的法规与标准要求,推动ESP 电子稳定系统的国际标准化进程。
摩托车性能优化
ESP电子稳定系统可以优化发动机输出和车轮制动,提高摩托车动力 性能和燃油经济性。
ESP电子稳定系统在其他领域的应用
商用车
ESP电子稳定系统也可以应用于商用车,如卡车、公交车 等,提高车辆在行驶过程中的稳定性、安全性和燃油经济 性。
农业机械
在农业机械领域,如拖拉机、收割机等,ESP电子稳定系 统可以提高机械在作业过程中的稳定性,减少事故风险。
主动干预
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在汽车参数化中ESP系统的发展Hansung Lee, Kihong Park, Taehun Hwang, Keunje Noh1, Seung-Jin HeoJay Il Jeong, Seongho Choi, Byunghak Kwakand Sewoong Kim.(手稿收到时间2008年12月24日,修改稿收到时间2009年3月16日,收录于2009年3月16日)摘要在这项研究里,增强的横向稳定性控制系统被用于车辆的开发。

这项系统包括车辆参数估计系统和一个增强的ESP控制逻辑系统。

车辆参数估量系统是通过参考纵向动态的部件之间的物理位置关系来工作的。

增强型的ESP逻辑被成功设计,使得控制器能更好的适应车辆参数的变化,所有的系统部件在一个模拟环境中测试,当然车辆质量估计算法还要测实地测量。

结果表明设计的ESP系统可使车辆侧向极限稳定性大大提高。

关键词ESP(Electronic Stability Program)负载的自适控制最优化参数估计1 简介ESP(车身电子稳定系统)是一种电控底盘系统,它的目的就是在汽车进行临界转弯时维持汽车的横向稳定性。

在逻辑控制开始时ESP计算参考横摆角速度并作为以后的目标并使用横向汽车模型。

但是汽车参数的模型可以随着乘客和和负载的变化而剧烈的发生变化。

对于某些汽车总质量发生的变化有可能比整车的质量还要大。

因此拥有智能逻辑控制的ESP在汽车参数发生变化时就显得尤为重要,否则有可能在汽车转弯时使情况变得更糟。

之前,在许多在参数化领域的研究中,大部分都采用了递归最小二乘法,在汽车进行短暂的运动中这种不受约束的线性最小二乘法是比较可信的。

但是由于可能拥有不唯一的最优解决方案,可能使在大量的数学问题中提取物理参数这一过程变得困难。

博世最近做的一些研究表明通过对汽车质量的估计,ESP可以极大的提高制动效能和制动稳定性。

在这项研究中,一种增强型的ESP 被开发并用于乘用车中。

这种系统包含有两部分:汽车的参数估量部分和增强的ESP 控制逻辑。

车辆参数估量系统是通过参考纵向动态的部件之间的物理位置关系来工作的。

这种增强型的ESP 控制在设计的过程中运用的比例—积分—微分技术(PID ),用来检测车辆的参数在一定合适范围内,并通过最轨迹优化的方法做出了一个PID 的查询表。

所有的系统中的元件都在一个一个模拟的环境中得到验证。

其中CarSim 模型代替了实车进行测试。

但是汽车质量估测算法只能在适当的修改后进行测试,所以它只能够在信号传感器安装的实车中进行。

2 基于模型的质量估算汽车质量估计算法首先开发应用在动力总成上,如图。

这个模型包括发动机,液力变矩器,变速器,主减速器,车轮,它们之间的等量关系满足:EOUT T =E E EIN J T ϖ-(1)在这个发动机模型(1)中,EIN T (EOUT T )是发动机的输入输出扭矩,e ω是发动机的转速,E J 是转动惯量。

液力变矩器是根据查表得到它的特性曲线的。

在这个变速模型(2)中,TOUT TMIN T T 是变速器的输出扭矩,tm ω是角速度,TM J 是旋转惯量,tm i 是传动比。

在后桥的模型(3)中,)(FDO UT FDIN T T 是后桥的输出转矩,FD I 是传动比。

在模型(4)中,W F 是轮胎的摩擦阻力,f r 是车轮有效半径,W J 是轮胎的转动惯量。

x a 是车轮的纵向加速度。

一旦轮胎的摩擦力确定,那么汽车的质量M 就可以通过以下的等式来确定:AeroRolling W x R R F ma --=在上式中,RollingR 是滚动阻力,Aero R 是气动阻力,它们在这个研究中是由经验算法得到的,如图表2。

在图表中可以看出不同速度下各个阻力的大小,表明在低速时滚动阻力占据主导地位,并且趋向于常数。

这节的中基于模型的质量估算方法用的是CarSim 汽车模型,最大估计误差在百分之二以内。

3 信号传感器中的质量估算这节介绍另外一种质量估算方法,它是基于之前的算法,但是经过修改简化应用于实车中。

在CarSim 汽车模型中(在第二章应用的)在传动系中摩擦造成损耗被忽略,而且转动惯量并没有精确的估算,为了改善在实车中的质量估算的准确性,这些部件首先应用于汽车测试中。

当汽车在定速巡航时候,一个小开度的节气门(产生的动力)就能抵挡住所有的汽车阻力。

折可以用下面的式子表示:affFD tm TC Eout Totalr i i R T R =(6)在(6)式中,TC T 是从液力变矩器或得的转矩,total T 是总的阻力,它包括滚动阻力,空气阻力,和传动系损失的摩擦力。

运用这个等式,在不同档位时摩擦损失就可以被发现。

一旦传动系中的摩擦损失被计算出来,那么传动系的转动惯量就可以从一个恒加速度测试中通过(7)式测算出来。

T代表传动系惯量的等效转矩。

在这个式子中I表1 ——质量估算运算条件。

表2——实际估算测量数据。

图表3——测试的估算质量。

这章的质量估测算法需要一些特定的车辆瞬态的纵向动力学,所以在适当的时间进行质量估测成为这个算法中最关键的问题。

表1列出了进行这种算法需要的条件。

图表3展示了由是啊眼得出的质量估算结果。

汽车的货箱当载有300kg的负载时,从节气门静止状态施加一个阶跃加速输入,在这项测试中,最大的纵向加速度大约为0.2g。

在图3中,阴影部分的面积是满足表1时的结果。

表2给出了其他不同负载的质量估算结果。

表2表明这章的质量估算法在质量大范围变化是提供了一个相当可靠运算结果。

这可以从估算误差中看出来,最大误差也没有超过1.5% 。

4 增强的ESP系统图4展现了在这个研究中增强型ESP的配置,当需要估测的质量变化超过一定的范围时,用于计算目标横摆率为ESP参考的汽车模型是依据质量和速度而不断更新的,而且ESP控制增益也随着PID查询表不断更新。

图表4——增强型ESP的配置图图表5——PID增益的轨迹优化为了确定特征速度和PID控制对不同车辆重量的增益,制作了离线的轨迹优化表。

图5显示了找到最佳的PID增益框图通过轨迹优化的车辆质量的不同值的ESP逻辑。

不同的车辆质量特征速度也发现相似,所以CarSim模型和2DOF自行车模型之间的稳态横摆角速度误差被降低。

5 模拟结果在这一章节中给出了在研究中增强型的ESP的仿真分析结果,在摩擦系数为0.9的道路上进行双移线试验,车速保持在80km/h,方向盘的转角在 120度内。

在进行性能验证时,将增强型的ESP系统和普通的ESP系统不带有自适控制的进行对比。

图表6展示了普通的没有装配LAC和额外负载的ESP的仿真结果,表明了该控制器能敏捷的捕捉到横摆角速度的变化。

图表7展示了一个没有装配有LAC的ESP系统但具有500kg负载时车辆的轨迹。

结果表明汽车不能变换车道,这是由于参考额定横摆角速度和控制器增益是在车辆没有任何负载的条件下的模型。

从图表8中可以看出,装配有增强型ESP系统并且载有500kg的负载时,汽车可以在规定的横摆角度下进行换道,并且没有出现侧向失稳的现象。

图表6——无负载和无LAC下的ESP图7——没有装配LAC且具有500kg负载的ESP(a)横摆角速度(b)轨迹曲线图——(8)增强型的ESP并且载有500kg负载6 结论本文主要讲述开发了一个增强的横向稳定系统,这个系统主要包括;车辆参数估测部分,一个增强型的ESP控制逻辑部分。

汽车参数估测部分主要是在汽车纵向动力学中物理关系的进行估测,增强的ESP逻辑被开发使得控制器能够更好的察觉到汽车参数的变化。

所有的系统部件都在模拟的环境下进行测试,当然质量估测算法也进行了实地的测量,试验结果表明在设计的ESP系统下汽车的横向极限稳定性得到较大的提高。

7 感谢这项工作得到了韩国国民大学研究机构的大力支持,也得到了韩国万都集团的大力支持。

8 参考文献[1] S. J. Lee, K. Park and T. H. Hwang, J. H. Hwang, Y.C. Jung, and Y. J. Kim, Development of hardwarein-the-loop simulation system as a testbench for ESP unit, International Journal of Automotive Technology, 8 (2) (2007) 203-209.[2] K. Huh, S. Lim and J. Jung, Vehicle mass estimator for adaptive roll stability control, SAE Technical papers, (2007) 04-16-2007.[3] A. Vahidi, A. Stefanopoulou, and H. Peng, Recursive least squares with forgetting for online estimationof vehicle mass and road grade: theroy and experiments, Vehicle System Dynamics, 43 (1) (2005) 31-55.[4] E. Liebemann, T. Fuhrer and P. Kroger, Light commercial vehicles - challenges for vehicle stabilitycontrol, Proc. of International Technical Conference on the Enhanced Safety of Vehicles, Lyon, France, (2007) 07-0269.作者简介:1986年毕业于首尔国立大学,并获得机械设计及其制造学士学位,1990年获得康奈尔大学机械硕士学位,1994年或得康奈尔大学博士学位。

现在就职于汉城韩国国民大学机械与汽车工程学院,博士生导师,主要研究方向在智能车辆和底盘控制设计。

相关文档
最新文档