基本平面图形单元测试题
单元测试(四) 基本平面图形

单元测试(四) 基本平面图形(时间:45分钟 满分:100分)一、选择题(每小题3分,共24分)1.如图,下列表示角的方法中,不正确的是( )A .∠AB .∠EC .∠αD .∠1 2.下面四个图形中,是多边形的是( )3.如图,若∠AOC =∠BOD ,则∠AOD 与∠BOC 的关系是( )A .∠AOD>∠BOCB .∠AOD<∠BOC C .∠AOD =∠BOC D .无法确定4.已知射线OA ,由点O 引射线OB 、OC ,∠AOB =72°,∠BOC =36°,则∠AOC 的度数是( )A .36°B .108°C .72°或36°D .36°或108° 5.下列计算错误的是( )A .0.25°=900″B .1.5°=90′C .1 000″=(518)° D .125.45°=1 254.5′6.已知线段AB =5 cm ,在直线AB 上画线段BC =2 cm ,则AC 的长是( )A .3 cmB .7 cmC .3 cm 或7 cmD .无法确定7.在6×6正方形网格中,点O 在中心格点上(小正方形的顶点叫格点),已知格点P 在点O 的东北方向(即北偏东45°),这样的格点P 共有( )A .1个B .2个C .3个D .4个8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么六条直线最多有( )A .21个交点B .18个交点C .15个交点D .10个交点二、填空题(每小题3分,共18分)9.如图所示的图形中,一共有________个扇形.10.要在A ,B 两个村庄之间建一个车站,则当车站建在________________时,它到两个村庄的路程和最短,理由是________________.11.若点C 在线段AB 上,则下列各式:①AC =12AB ,②AC =CB ,③AB =2AC ,④AC +CB =AB 中,能说明C是线段AB 的中点的有________.12.由2点15分到2点30分,时钟的分针转过的角度是________度.13.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是________.14.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为________. 三、解答题(共58分)15.(6分)如图,已知:A ,B ,C 在同一条线段上,M 是线段AC 的中点,N 是线段BC 的中点,且AM =5 cm ,CN =3 cm.求线段AB 的长.16.(8分)如图,已知∠AOE =∠COD ,且射线OC 平分∠BOE ,∠EOD =30°,求∠AOD 的度数.。
七年级数学上册第四章基本平面图形单元综合测试题(共4页)

第四章根本(gēnběn)平面图形一、填空题1.通过画图判断:假如两条直线都和同一条直线垂直,这两条直线的位置关系是.2.平面上有四个点A,B,C,D,没有三个点在同一直线上,过其中每两点画直线,可以画________条直线.3.时钟的分针每分钟转度,时针每小时转________度.4.如图,点A,B,C,D在同一直线上,以这四个点为端点的线段有______条,假设AC=12,点D是线段AB的中点,点B是线段CD的中点,BD那么AB=________.5.如图,∠BOA=90°,直线CD经过点O,假设∠BOD∶∠AOC=5∶2,那么∠AOC=_______,∠BOD=__________.6.如图,将一张长方形纸对折,使OA与OB重合,∠BOC的度数是__________.7.如图,将一张长方形纸按照如下图的方法对折,两条虚线为折痕,这两条折痕构成的角的度数是__________.二、选择题1.点A,B,P在同一(tóngyī)直线上,以下说法正确的选项是〔〕.(A)假设AB=2PA,那么P是AB的中点 (B)假设AP=PB,那么P是AB的中点(C)假设AB=2PB,那么P是AB的中点 (D)假设AB=2PA=2PB,那么P是AB的中点2.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,假如MC比NC长2cm,AC比BC长〔〕.(A)1 cm (B)2 cm (C)4 cm (D)6 cm3.平面内的6条直线两两相交,最多有〔〕个交点.(A)12 (B)15 (C)16 (D)204.一个钝角的平分线和这个角的一边形成的角一定是〔〕.(A)锐角 (B)钝角 (C)直角 (D)平角5.如图,圆的四条半径分别是OA,OB,OC,OD,其中点O,A,B在同一条直线上,∠AOB=90°,∠AOC=3∠BOC,那么圆被四条半径分成的四个扇形的面积的比是〔〕(A)1∶2∶2∶3 (B) 3∶2∶2∶3 (C) 4∶2∶2∶3 (D) 1∶2∶2∶1三、解答题1.点A,B,C三点在同一直线上,AB的中点是点E,BC的中点是点F,EF=12,求AC的长度.〔答案可能不止一个哟!〕2.如图,∠AOC=∠DOE=90°,OF平分(píngfēn)∠AOD,OB平分∠COE,∠B OF度数是多少?说明理由.3.如图,点B,D都在线段AC上,D是线段AB的中点,BD=3BC, AC是BC的多少倍?4.如图,点O,A,B在同一直线上,OC平分∠AOD,OE平分∠FOB,∠COF=∠DOE=90°,求∠AOD.三、画图题在图中按要求画图并填空,并标上字母.①画直线AB;②过A点画直线a;③过A点画射线AC,和直线BF交于点C;④画线段(xiànduàn)AB的中点D;⑤连接DC,比拟线段AB和线段DC的长短;⑥画∠ACF的角平分线CE.内容总结(1)⑥画∠ACF的角平分线CE.。
江苏省盐城市 第六章 平面图形的认识单元测试卷 2022-2023学年苏科版数学七年级上册

2022-2023学年七年级上册数学单元测试卷第六章平面图形的认识(一)(分值150分时间120分钟)一、选择题(每小题3分,共24分)1.如果∠α=20°,那么∠α的补角等于()A.20°B.70°C.110°D.160°2.如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30’,则下列结论中不正确的是()A.∠2=45°B.∠AOD与∠1互为补角C.∠1=∠3D.∠1的余角等于75°30’第2题第3题第4题3.如图,A.O.B在一条直线上,∠AOC=∠BOC,若∠1=∠2,则图中互余的角共有()A.5对B.4对C.3对D.2对4.如图,已知直线AB.CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.30°B.35°C.20°D.40°5.如图所示,从A地到C地,可供选择的方案是走水路.走陆路.走空中,从A地到B地,有2条水路.2条陆路,从B地到C地有3条陆路可供选择,走空中从A地不经B地直接到C 地,则从A地到C地可供选择的方案有()A.20种B.8种C.5种D.13种6.如图,OB.OC是∠AOD内的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON =α,∠BOC=β,则表示∠AOD的代数式是()A.2α-βB.α-βC.α+βD.都不正确第5题第6题第7题7.如图所示,表示东北方向的射线是()A.射线OA B.射线OB C.射线OC D.射线OD8.如图所示,是一跳远运动员跳落沙坑时的痕迹,则表示该运动员成绩的是( )A .线段AP 1的长B .线段BP 1的长C .线段AP 2的长D .线段BP 2的长二、填空题(每小题3分,共24分)9.如图,直线EF 与AB 相交于G ,与CD 相交于H ,则∠AGH 的对顶角是∠BGH ;∠AGF 与___是对顶角。
(北师大版)青岛市七年级数学上册第四单元《基本平面图形》测试题(有答案解析)

一、选择题1.如图,点C 把线段MN 分成两部分,其比为:5:4MC CN =,点P 是MN 的中点,2cm PC =,则MN 的长为( )A .30cmB .36cmC .40cmD .48cm 2.若线段AB =12cm ,点C 是线段AB 的中点,点D 是线段AC 的三等分点,则线段BD 的长为( )A .2cm 或4cmB .8cmC .10cmD .8cm 或10cm 3.下列说法中,正确的是( ).A .a -的相反数是正数B .两点之间线的长度叫两点之间的距离C .两条射线组成的图形叫做角D .两点确定一条直线 4.已知点O 在直线AB 上,且线段4OA =,6OB =,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为( )A .1B .5C .3或5D .1或5 5.如图,OC 是AOB ∠的平分线,OD 是AOC ∠的平分线,且25COD ∠=︒,则AOB ∠等于( )A .25︒B .50︒C .75︒D .100︒ 6.已知线段AB =6cm ,在直线AB 上取一点C ,使BC =2cm ,则线段AB 的中点M 与AC 的中点N 的距离为( )A .1cmB .3cmC .2cm 或3cmD .1cm 或3cm 7.如图,线段CD 在线段AB 上,且3CD =,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .不能确定 8.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条 9.在射线AK 上截取线段10,4AB cm BC cm ==,点,M N 分别是,AB BC 的中点,则点M 和点N 之间的距离为( )A .3cmB .5cmC .7cmD .3cm 或7cm 10.将一副直角三角尺按如图所小的不同方式摆放,则图中α∠与β∠互余的是( ) A . B .C .D .11.某一时刻钟表上时针和分针所成的夹角是105°,那么这一时刻可能是( ) A .8点30分B .9点30分C .10点30分D .以上答案都不对12.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个 B .2个 C .3个 D .4个 二、填空题13.如图,已知线段m ,n ,射线AM .点B ,C 为射线AM 上两点,且AB m n =+,2AC m n =-.(1)请用尺规作图确定B ,C 两点的位置(要求:保留作图痕迹,不写作法); (2)若3m =,5n =,求BC 的长.14.如图,已知直线AB ,CD 相交于点O ,OE ,OF 为射线,∠AOE=90°,OF 平分∠BOC , (1)若∠EOF=30°,求∠BOD 的度数;(2)试问∠EOF 与∠BOD 有什么数量关系?请说明理由.15.如图,点,C D 在线段AB 上,点M 是线段AC 的中点,点N 是线段DB 的中点,若8,3MN CD ==,求线段AB 的长.16.根据下列要求画图(不写作法,保留作图痕迹)(1)连接线段OB ;(2)画射线AO ,射线AB ;(3)用圆规在射线AB 上截取AC ,使得AC OB =,画直线OC .17.已知,∠AOD=120°,若B 是∠AOD 内任意一点,连接OB .(1) 如图①,若OM 平分∠AOB ,ON 平分∠BOD ,求∠MON 的度数.(2) 如图②,OC 是∠BOD 内的射线,且∠BOC=20°,若OM 平分∠AOC ,ON 平分∠BOD ,求∠MON 的大小.18.已知射线OC 在AOB ∠的内部,射线OE 平分AOC ∠,射线OF 平分COB ∠. (1)如图1,若100AOB ∠=︒,30AOC ∠=︒,则EOF ∠=__________度;(2)如图2,若AOB α∠=,AOC β∠=,若射线OC 在AOB ∠的内部绕点O 旋转,求EOF ∠ 的大小;(3)在(2)的条件下,若射线OC 在AOB ∠的外部绕点O 旋转(旋转中AOC ∠、COB ∠均是指小于180︒的角),其余条件不变,请借助图3探究EOF ∠的大小,求EOF ∠的大小.19.如图,OD 平分∠AOB ,OE 平分∠BOC ,∠COD =20°,∠AOB =140°.(1)求∠BOC 的度数.(2)求∠DOE 的度数.20.如图,OC 在BOD ∠内.(1)如果AOC ∠和BOD ∠都是直角.①若60BOC ∠=︒,求AOD ∠的度数;②猜想BOC ∠与AOD ∠的数量关系;(2)如果AOC BOD x ∠=∠=︒,AOD y ∠=︒,求BOC ∠的度数(用含x 、y 的式子表示).三、解答题21.如图,已知156,48AOD DON ∠=︒∠=︒,射线,,OB OM ON 在AOD ∠内部,OM 平分,AOB ON ∠平分BOD ∠.(1)求MON ∠的度数;(2)若射线OC 在AOD ∠内部,23NOC ∠=︒,求COM ∠的度数.22.综合与探究问题背景数学活动课上,老师将一副三角尺按图1所示位置摆放,三角尺ABC 中,∠BAC=90°,∠B=∠C=45°;三角尺ADE 中,∠D=90°,∠DAE=60°,∠E=30°.分别作出∠BAD 、∠CAE 的平分线AM 、AN .然后提出问题:求出∠MAN 的度数.特例探究“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,AM 和AN 仍然是∠BAD 和∠CAE 的平分线. 其中,按图2方式摆放时,AB 和AE 在同一直线上.按图3方式摆放时, AB 、AD 、AM 在同一直线上.(1)计算:图2中∠MAN 的度数为 °,图3中∠MAN 的度数为 °(直接写出答案,不写过程).发现感悟(2)探究完图2,图3所示的特殊位置问题后,请你猜想图1中∠MAN 的度数为 °; “智慧小组”的同学认为图2,图3中∠BAD 、∠CAE 的度数都已知或能求出具体的度数,图1中,∠MAN=∠MAB+∠BAE+∠EAN ,这些角比较一般化,求不出具体的度数,所以想到了用字母表示数,如果设∠BAE 为x°,则可以用含x 的式子表示∠BAD 和∠CAE ,进而可以表示∠MAB 和∠EAN ,这样就能求出∠MAN 的度数;请你根据智慧小组的思路,求出图1中∠MAN 的度数.类比拓展(3)受到“智慧小组”的启发,“创新小组”将三角尺按图4所示方式摆放,分别作出∠BAD 、∠CAE 的平分线AM 、AN .他们认为也能求出∠MAN 的度数.请你求出∠MAN 的度数.23.(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠= °.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOC AON BOM∠-∠∠-∠的值为 . (3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值MOC NOD AOD BOC∠-∠∠-∠.24.如图,点A O B 、、在同一条直线上,COD ∠为直角,将COD ∠绕点О在直线AB 上方旋转(AOC ∠大于0︒,且小于或等于90),射线OE 是BOC ∠的平分线.(1)当30AOC ∠=︒时,求DOE ∠的度数﹔(2)若OC 恰好将AOE ∠分成了1:2的两个角,求此时DOE ∠的度数.25.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1.(1)求BD 的长.(2)求CD 的长.26.计算:(1)2113623⎛⎫-+⨯-⎪⎝⎭(2)48396735''︒+︒【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意设MC=5x ,CN=4x ,根据线段之间的计算得出等量关系,列方程求解即可解答.【详解】解:根据题意,设MC=5x ,CN=4x ,则MN=MC+CN=9x ,∵点P 是MN 的中点,∴PN= 12MN= 92x , ∴PC=PN ﹣CN=12x=2, 解得:x=4,∴MN=9×4=36cm ,故选:B .【点睛】本题考查线段的计算,由题目中的比例关系设未知数是常见做题技巧,根据线段之间关系列方程求解是解答的关键.2.D解析:D【分析】根据线段中点的定义和线段三等分点的定义即可得到结论.【详解】解:∵C 是线段AB 的中点,AB =12cm ,∴AC =BC =12AB =12×12=6(cm ), 点D 是线段AC 的三等分点,①当AD =13AC 时,如图,BD=BC+CD=BC+23AC=6+4=10(cm);②当AD=23AC时,如图,BD=BC+CD′=BC+13AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:D.【点睛】本题考查了两点间的距离,线段中点的定义,分类讨论的思想的运用是解题的关键;3.D解析:D【分析】依据角的概念、直线的性质、相反数的定义以及两点之间的距离的定义进行判断即可;【详解】A、-a的相反数不一定是正数,故错误;B、两点之间的线段的长度叫两点之间的距离,故错误;C、有公共顶点两条射线组成的图形叫做角,故错误;D、两点确定一条直线,故正确;故选:D.【点睛】本题主要考查了直线的性质、角的概念、两点之间的距离的定义,掌握相关概念和性质是解题的关键.4.D解析:D【分析】根据题意,画出图形,此题分两种情况:①点A,B在点O同侧时;②点A,B在点O两侧时两种情况.【详解】解:分情况讨论:①点A,B在点O同侧时,由线段OA=4,线段OB=6,∵E,F分别是OA,OB的中点,∴OE=12OA=2,OF=12OB=3,∴EF=OF-OE=3-2=1;②点A,B在点O两侧时,如图,由线段OA=4,线段OB=6,∵E ,F 分别是OA ,OB 的中点,∴OE=12OA=2,OF=12OB=3, ∴EF=OE+OF=2+3=5,∴线段EF 的长度为1或5.故选D .【点睛】本题考查线段中点的定义及线段长的求法.利用中点性质转化线段之间的倍分关系是解题的关键.5.D解析:D【分析】根据角平分线定义得出∠AOC=2∠COD ,∠AOB=2∠AOC ,代入求出即可.【详解】解:∵OD 是AOC ∠的平分线,∠COD=25°,∴∠AOC=2∠COD=50°,∵OC 是AOB ∠的平分线,∴∠AOB=2∠AOC=100°,故选:D .【点睛】本题考查了角平分线定义的应用,能理解角平分线定义是解此题的关键.6.A解析:A【分析】分情况讨论,点C 在线段AB 上,或点C 在直线AB 上,根据线段中点的性质求出线段长.【详解】解:①如图,点C 在线段AB 上,∵6AB cm =,2BC cm =,∴624AC AB BC cm =-=-=,∵M 是AB 的中点,∴132AM AB cm ==, ∵N 是AC 的中点,∴122AN AC cm ==, ∴321MN AM AN cm =-=-=;②如图,点C 在直线AB 上,∵6AB cm =,2BC cm =,∴628AC AB BC cm =+=+=,∵M 是AB 的中点,∴132AM AB cm ==, ∵N 是AC 的中点, ∴142AN AC cm ==, ∴431MN AN AM cm =-=-=.故选:A .【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.7.C解析:C【分析】写出所有线段之和为AC+AD+AB+CD+CB+BD=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AB-CD )=3(AB+1),从而确定这个结果是3的倍数,即可求解.【详解】解:所有线段之和=AC+AD+AB+CD+CB+BD ,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD )=12+3(AB-CD )=12+3(AB-3)=3AB+3=3(AB+1),∵AB 是正整数,∴所有线段之和是3的倍数,故选:C .【点睛】本题考查线段的和差、线段计数,根据图形写出所有线段之和是解题的关键.8.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A 、射线AB 和射线BA 是不同的射线,故本选项不符合题意;B 、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C 、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确 故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键. 9.D解析:D【分析】分情况讨论,点C 在线段AB 外,点C 在线段AC 上,根据中点的性质计算线段长度.【详解】解:如图,∵M 是AB 中点,∴152BM AB cm ==, ∵N 是BC 中点, ∴122BN BC cm ==, ∴527MN BM BN cm =+=+=;如图,∵M 是AB 中点,∴152BM AB cm ==, ∵N 是BC 中点, ∴122BN BC cm ==, ∴523MN BM BN cm =-=-=.故选:D .【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.10.A解析:A【分析】根据直角三角板中各个角的度数、互余、互补的定义逐项判断即可得.【详解】A 、90180αβ∠+∠+︒=︒,90αβ∴∠+∠=︒,即α∠与β∠互余,此项符合题意; B 、90β∠=︒,α∠为锐角,90αβ∴∠+∠>︒,则α∠与β∠不可能互余,此项不符题意; C 、18045135αβ∠=∠=︒-︒=︒, 270αβ∴∠+∠=︒,则α∠与β∠不可能互余,此项不符题意;D 、904545,903060αβ∠=︒-︒=︒∠=︒-︒=︒,4560105αβ∴∠+∠=︒+︒=︒,则α∠与β∠不可能互余,此项不符题意;故选:A .【点睛】本题考查了余角、补角、角的运算,熟练掌握角的运算是解题关键.11.B解析:B【分析】根据时间得到分针和时针所在位置,算出夹角度数,判断选项的正确性.【详解】A 选项,分针指向6,时针指向8和9的中间,夹角是3021575︒⨯+︒=︒;B 选项,分针指向6,时针指向9和10的中间,夹角是30315105︒⨯+︒=︒;C 选项,分针指向6,时针指向10和11的中间,夹角是30415135︒⨯+︒=︒D 选项错误,因为B 是正确的.故选:B .【点睛】本题考查角度求解,解题的关键是掌握钟面角度的求解方法.12.A解析:A【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D .【详解】∵线段AB 的长度是A 、 B 两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.二、填空题13.(1)见解析;(2)7【分析】(1)在射线AM上以点A为端点取m的长得到端点D再以点D为端点向右取n的长可得点B;以点A为端点取2m的长得到点F再以点F为端点向左取n的长可得点C;(2)根据BC=A解析:(1)见解析;(2)7【分析】(1)在射线AM上以点A为端点取m的长,得到端点D,再以点D为端点向右取n的长,可得点B;以点A为端点取2m的长,得到点F,再以点F为端点向左取n的长,可得点C;(2)根据BC=AB-AC计算出BC,将m和n代入求值即可.【详解】解:(1)如图,点B和点C即为所作;(2)∵AB=m+n,AC=2m-n,∴BC=AB-AC=m+n-(2m-n)=m+n-2m+n=2n-m=2×5-3=7.【点睛】本题考查的是作图-基本作图,整式的加减—化简求值,解题的关键是根据描述作出相应线段.14.(1)∠BOD=60°;(2)∠BOD=2∠EOF 理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°由OF 平分∠BOC 求出∠BOC=120°进而求出∠BOD=180°-120°=60°;解析:(1)∠BOD=60°;(2)∠BOD=2∠EOF ,理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF 平分∠BOC 求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB 、∠BOC 分别用α的代数式表示,最后∠BOD=180°-∠BOC 即可求解.【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°,∵∠EOF=30°,∴∠FOB=90°-30°=60°,∵OF 为∠BOC 的角平分线,∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°;(2)设∠EOF=α,则∠FOB=90°-α,∵OF 为∠BOC 的角平分线,∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α,即∠BOD=2∠EOF .【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.15.13【分析】根据已知条件得出再求出=10根据求出AB 的长即可;【详解】解:点是的中点点是的中点【点睛】本题考查了两点之间的距离的应用主要考查学生的观察图形的能力和计算能力解析:13【分析】根据已知条件得出2,2==AC MC BD DN ,再求出22+=+AC BD MC DN =10,根据AB AC BD CD =++求出A B 的长即可;【详解】解: 8,3MN CD ==835,MC DN ∴+=-=点M 是AC 的中点,点N 是BD 的中点2,2,AC MC BD DN ∴==∴+=+AC BD MC DN22,()2MC DN=+=⨯25=.10∴=++AB AC BD CD=+103=13【点睛】本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力.16.(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB即可;(2)连接AOAB并延长;(3)先用圆规在射线上截取AC=OB再画直线OC 【详解】解:(1)如图所示线段即为所求;(2)如图所示射解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB即可;(2)连接AO、AB并延长;(3)先用圆规在射线AB上截取AC=OB,再画直线OC.【详解】解:(1)如图所示,线段OB即为所求;(2)如图所示,射线AO、射线AB即为所求;(3)如图所示,直线OC即为所求.【点睛】本题考查了画线段、射线、和直线,解题关键是遵循题意画图,注意直线、射线、线段的区别.17.(1)60°;(2)50°【分析】(1)根据角平分线的定义求出∠MOB和∠BON然后根据∠MON=∠MOB+∠BON代入数据进行计算即可得解;(2)由图②可知∠MON=∠MOC+∠BON-∠BOC根解析:(1)60°;(2)50°【分析】(1)根据角平分线的定义求出∠MOB和∠BON,然后根据∠MON=∠MOB+∠BON代入数据进行计算即可得解;(2)由图②可知,∠MON=∠MOC+∠BON-∠BOC,根据角平分线的定义求出∠MOC=12∠AOC,和∠BON=12∠BOD,将其代入到∠MON=∠MOC+∠BON-∠BOC中,然后进行角度的等量转换,即可求得.【详解】(1)∵OM平分∠AOB,∴∠MOB=12∠AOB,又∵ ON平分∠BOD,∴∠BON=12∠BOD,∴∠MON=∠MOB+∠BON,=12∠AOB+12∠BOD,=12∠AOD,=12×120°,=60°;(2) ∵OM平分∠AOC,∴∠MOC=12∠AOC,又∵ ON平分∠BOD,∴∠BON=12∠BOD,∴∠MON=∠MOC+∠BON-∠BOC,=12∠AOC+12∠BOD-∠BOC,=12×(∠AOC+∠BOD)-∠BOC,=12×(∠AOD+∠BOC)-∠BOC,=12(120°+20°)-20°,=50°.【点睛】本题考查了角的计算、角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用.18.(1)50;(2);(3)当射线只有1条在外面时;当射线OEOF都在∠AOB外部时【分析】(1)先求解再利用角平分线的性质求解从而可得答案;(2)由射线平分射线平分可得可得从而可得答案;(3)分以下解析:(1)50;(2)12EOF α∠=;(3)当射线OE ,OF 只有1条在AOB ∠外面时,12EOF α∠=;当射线OE ,OF 都在∠AOB 外部时,11802EOF α∠=︒-. 【分析】(1)先求解,BOC ∠ 再利用角平分线的性质求解,,EOC FOC ∠∠ 从而可得答案; (2)由射线OE 平分AOC ∠,射线OF 平分COB ∠,可得12EOC AOC ∠=∠,12COF COB ∠=∠,可得()11,22EOF AOC BOC AOB ∠=∠+∠∠=∠ 从而可得答案; (3)分以下两种情况:①当射线OE ,OF 只有1条在AOB ∠外部时,如图3①,②当射线OE ,OF 都在AOB ∠外部时,如图3②,再利用角平分线的性质可得:11,,22COE AOC COF BOC ∠=∠∠=∠ 结合角的和差可得答案. 【详解】解:(1) 100AOB ∠=︒,30AOC ∠=︒,1003070,BOC AOB AOC ∴∠=∠-∠=︒-︒=︒射线OE 平分AOC ∠,射线OF 平分COB ∠,1115,35,22EOC AOC FOC BOC ∴∠=∠=︒∠=∠=︒ 153550EOF EOC FOC ∴∠=∠+∠=︒+︒=︒,故答案为:50.(2)∵射线OE 平分AOC ∠,射线OF 平分COB ∠ ∴12EOC AOC ∠=∠,12COF COB ∠=∠ ()12EOF EOC COF AOC BOC ∴∠=∠+∠=∠+∠∠ 1,2AOB =∠ ,AOB α∠=1.2EOF α∴∠= (3)分以下两种情况: ①当射线OE ,OF 只有1条在AOB ∠外部时,如图3①,同理可得:11,,22COE AOC COF BOC ∠=∠∠=∠ ()111,222EOF COF COE BOC AOC AOB α∴∠=∠-∠=∠-∠=∠= ②当射线OE ,OF 都在AOB ∠外部时,如图3②,同理可得:11,,22COE AOC COF BOC ∠=∠∠=∠ ()()111360180,222EOF EOC COF AOC BOC AOB α∴∠=∠+∠=∠+∠=︒-∠=︒- 综上所述:当射线OE ,OF 只有1条在AOB ∠外面时,12EOF α∠=;当射线,OE OF 都在AOB ∠的外部时,11802EOF α∠=︒-. 【点睛】 本题考查的是角的和差运算,角平分线的定义,角的动态定义,分类思想的运用,掌握以上知识是解题的关键.19.(1)∠BOC =50°;(2)∠DOE =45°【分析】(1)由角平分线的定义得∠DOB =∠AOB =70°再由∠BOC =∠BOD ﹣∠COD 即可得出结果;(2)由角平分线的定义得∠COE =∠BOC =25解析:(1)∠BOC =50°;(2)∠DOE =45°【分析】(1)由角平分线的定义得∠DOB =12∠AOB =70°,再由∠BOC =∠BOD ﹣∠COD ,即可得出结果;(2)由角平分线的定义得∠COE =12∠BOC =25°,再由∠DOE =∠COE +∠COD ,即可得出结果.【详解】解:(1)∵OD 平分∠AOB ,∴∠DOB =12∠AOB =12×140°=70°, ∴∠BOC =∠BOD ﹣∠COD =70°﹣20°=50°;(2)∵OE 平分∠BOC ,∴∠COE =12∠BOC =12×50°=25°, ∴∠DOE =∠COE +∠COD =25°+20°=45°.【点睛】本题考查了角平分线的定义、角的计算等知识;熟练掌握角平分线的定义是解题的关键. 20.(1)①;②;(2)【分析】(1)①根据直角的定义先求出∠AOB 再根据角的和差关系即可得出答案;②先得到再得出代入求出即可;(2)类比②可得:∠AOD+∠BOC=∠BOD+∠AOC 依此代入计算即可求解析:(1)①120AOD ∠=︒;②180BOC AOD ∠+∠=︒;(2)()2BOC x y ∠=-︒【分析】(1)①根据直角的定义先求出∠AOB ,再根据角的和差关系即可得出答案;②先得到90AOD BOD AOB AOB ∠=∠+∠=︒+∠,再得出9090BOC AOD BOC AOB AOC ∠+∠=∠+︒+∠=︒+∠,代入求出即可;(2)类比②可得:∠AOD+∠BOC=∠BOD+∠AOC ,依此代入计算即可求解.【详解】解:(1)①∵AOC ∠和BOD ∠都是直角,60BOC ∠=︒,∴30AOB ∠=︒,∴120AOD AOB BOD ∠=∠+∠=︒;②猜想180BOC AOD ∠+∠=︒.证明:∵90BOD ∠=︒,∴90AOD BOD AOB AOB ∠=∠+∠=︒+∠,∵90AOC ∠=︒,∴90909090180BOC AOD BOC AOB AOC ∠+∠=∠+︒+∠=︒+∠=︒+︒=︒; (2)类比②可得:AOD BOC BOD AOC ∠+∠=∠+∠,∵BOD AOC x ∠=∠=︒,∴2AOD BOC BOD AOC x ∠+∠=∠+∠=︒,∵AOD y ∠=︒,∴()2BOC x y ∠=-︒.【点睛】本题考查了角的有关计算,主要考查学生根据图形进行计算的能力,题目比较好,但有一定的难度.三、解答题21.(1)∠MON=78°;(2)∠COM=101°或55°【分析】(1)由题意易得11,22BON BOD BOM AOB ∠=∠∠=∠,由∠BOD+∠AOB=∠AOD ,进而问题可求解;(2)由题意可分当射线OC 在∠MON 的外部时和当射线OC 在∠MON 的内部时,然后分类求解即可.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD , ∴11,22BON BOD BOM AOB ∠=∠∠=∠, ∵∠AOD=∠BOD+∠AOB=156°, ∴()111567822MON BON BOM BOD AOB ∠=∠+∠=∠+∠=⨯︒=︒; (2)由题意得:①当射线OC 在∠MON 的外部时,如图所示:由(1)得∠MON=78°,∵∠CON=23°,∴∠COM=∠CON+∠MON=101°;②当射线OC 在∠MON 的内部时,如图所示:∴∠COM=∠MON-∠NOC=55°;综上所述:∠COM=101°或55°.【点睛】本题主要考查角平分线的定义及角的和差关系,熟练掌握角平分线的定义及角的和差关系是解题的关键.22.(1)75,75;(2)75,过程见解析;(3)105°.【分析】(1)图2,由角平分线的性质得到11,22EAM MAD EAD CAN NAB CAB ∠=∠=∠∠=∠=∠,再结合角的和差解题即可;图3,由角平分线的性质,得到12CAN NAE CAE ∠=∠=∠,再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE+∠EAN ,结合角平分线的性质解题;(3)由∠MAN=∠MAD +∠EAN-∠DAE ,结合角平分线的性质解题.【详解】解:(1)图2中,AM 和AN 是∠BAD 和∠CAE 的平分线, 1130,4522EAM MAD EAD CAN NAB CAB ∴∠=∠=∠=︒∠=∠=∠=︒ 304575MAN EAM NAB ∴∠=∠+∠=︒+︒=︒;图3中,AM 和AN 是∠BAD 和∠CAE 的平分线,111()(9060)15222CAN NAE CAE CAB EAB ∴∠=∠=∠=∠-∠=⨯︒-︒=︒ 901575MAN MAC CAN ∴∠=∠-∠=︒-︒=︒故答案为:75;75;(2)设∠BAE 为x°,则∠BAD=∠DAE- x°=60°- x°,∠CAE=∠BAC- x°=90°-x°因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAB=12∠BAD =12(60°- x°)=30°-12x°∠EAN=12∠CAE=12(90°- x°)=45°+12x°. 所以∠MAN=∠MAB+∠BAE+∠EAN =(30°-12 x°)+ x°+(45°-12 x°) =75°,故答案为:75°;(3)设∠BAE 为x°,则∠BAD=∠DAE+ x°=60°+ x°,∠CAE=360°-∠BAC-∠BAE=360°-90°-x°=270°-x°,因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAD=12∠BAD =12(60°+ x°)=30°+12 x° ∠EAN=12∠CAE=12(270°- x°)=135°-12x°. 所以∠MAN=∠MAD +∠EAN-∠DAE=(30°+12 x°)+(135°-12x°)- 60° =105°.【点睛】 本题考查三角板的特殊角、角平分线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)30;(2)1;(3)12 【分析】(1)根据AOD BOC ∠=∠,可推出AOC BOD ∠=∠,即可求出结果.(2)根据OM 、ON 分别是AOC ∠和BOC ∠角平分线,可得出2AOC MOC ∠=∠,2BOC NOC ∠=∠,通过化简计算从而得到AON BOM MOC NOC ∠-∠=∠-∠,进而求出比值结果.(3)根据OM 、ON 分别是AOD ∠和BOC ∠角平分线,可得到12MOD AOD ∠=∠,12NOC BOC ∠=∠,()12MOC NOD AOD BOC ∠-∠=∠-∠,进而求出比值结果. 【详解】(1)∵120AOD BOC ∠=∠=︒∴AOD COD BOC COD ∠∠=∠-∠-,∴AOC BOD ∠=∠∵30AOC ∠=︒∴30BOD ∠=︒(2)∵OM 、ON 分别平分AOC ∠,BOC ∠,2AOC MOC ∴∠=∠,2BOC NOC ∠=∠,AON AOC NOC ∠=∠+∠BOM BOC MOC ∠=∠+∠()()AON BOM AOC BOC NOC MOC ∴∠-∠=∠-∠+∠-∠22MOC NOC NOC MOC =∠-∠+∠-∠MOC NOC =∠-∠,AON BOM ∠≠∠,1MOC NOC AON BOM∠-∠∴=∠-∠ (3)∵OM 、ON 分别平分AOD ∠和BOC ∠,12MOD AOD ∴∠=∠,12NOC BOC ∠=∠, 又MOC MOD COD ∠=∠-∠,NOD NOC COD ∠=∠-∠,()()MOC NOD MOD COD NOC COD ∴∠-∠=∠-∠-∠-∠,MOD NOC =∠-∠1122AOD BOC =∠-∠ ()12AOD BOC =∠-∠ 12MOC NOD AOD BOC ∠-∠∴=∠-∠; 【点睛】本题主要考察角平分线的性质,角的计算,准确找出题目中的等角,利用等角找出它们之间的联系是解题关键.24.(1)15DOE ∠=;(2)18DOE ∠=或45【分析】(1)利用平角的定义求得∠BOC=150︒,利用角平分线的性质求得∠COE=75︒,再利用余角的性质即可求得∠DOE=15︒;(1)分:①∠AOC :∠COE=1:2;②∠AOC :∠COE=2:1两种情况讨论,利用平角的定义和角平分线的性质求解即可.【详解】解:(1)∵30180AOC AOB ∠=︒∠=︒,,∴150BOC AOB AOC ∠=∠-∠=︒,∵射线OE 是BOC ∠的平分线,∴75COE BOE ∠=∠=,∵90COD ∠=,∴907515DOE COD COE ∠=∠-∠=︒-︒=;(1)∵OC 恰好将AOE ∠分成了1:2的两个角,∴有两种情况:①∠AOC :∠COE=1:2;②∠AOC :∠COE=2:1;①如答图1,当∠AOC :∠COE=1:2时,设∠AOC=x ,∠COE=2x ,则2BOE COE x ∠=∠=,∵180AOB ∠=︒,∴22180x x x ++=︒,解得,36x =︒,∴272EOC x ∠==︒,∴907218DOE COD COE ∠=∠-∠=︒-︒=︒;②如答图2,当∠AOC :∠COE=2:1时,设∠AOC=2x ,∠COE=x ,则BOE COE x ∠=∠=,∵180AOB ∠=︒∴2180x x x ++=︒,解得,45x =︒,∴45EOC x ∠==︒,∴904545DOE COD COE ∠=∠-∠=︒-︒=︒;综上所述18DOE ∠=或45.【点睛】本题考查了角的计算,角平分线的定义,正确的识别图形并且运用好有关性质准确计算角的和差倍分是解题的关键.25.(1)20cm ;(2)10cm【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC ,再由CD=BC-BD ,可得出答案.【详解】解:(1)∵60cm AB =,AD 与DB 的长度之比2:1, ∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.26.(1)-8;(2)'11614︒【分析】(1)先算乘方和括号,再算乘法,后算加法;(2)两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度,从而得出答案.【详解】解:(1)2113623⎛⎫-+⨯-⎪⎝⎭ =1966-+⨯=-9+1=-8;(2)48396735''︒+︒='︒11574='︒.11614【点睛】'=是解本题考查了有理数的混合运算,以及度、分、秒的计算,熟练掌握1°=60',160''答本题的关键.。
2020—2021年最新鲁教版五四制六年级数学下册《基本平面图形》单元测试题及答案.docx

鲁教版(五四制)六年级下册单元评价检测第五章(45分钟100分)一、选择题(每小题4分,共28分)1.下列说法:①射线AB与射线BA是同一条射线;②线段AB是直线AB的一部分;③延长线段AB到C,使AB=AC;④射线AB与射线BA的公共部分是线段AB.正确的个数是( )(A)1 (B)2 (C)3 (D)42.如图所示,长度为12 cm的线段AB的中点为M,C为线段MB上一点,且MC∶CB=1∶2,则线段AC的长度为( )(A)2 cm (B)8 cm (C)6 cm (D)4 cm3.下列说法正确的是( )(A)角的两边可以度量(B)一条直线可看成一个平角(C)角是由一点引出的两条射线组成的图形(D)一条射线可看成一个周角4.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为( )(A)95°(B)100°(C)110°(D)120°5.如图,已知C是线段AB的中点,D是BC的中点,E是AD的中点,F是AE的中点,那么线段AF是线段AC的( )(A)18(B)14(C)38(D)3166.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是( )(A)3对(B)4对(C)5对(D)7对7.已知∠α和∠β的和是平角,且∠α∶∠β=1∶8,则∠β的度数是( )(A)20°(B)40°(C)80°(D)160°二、填空题(每小题5分,共25分)8.30.12°=________°_______′_______″,100°12′36″=_______°.9.已知线段AB,延长线段AB到C,使BC=2AB,反向延长AB到D,使AD=AB,则AC=_______AB;DC=_______AC.10.如图,圆中两条半径把圆分成面积为4∶5的两个扇形,则两个扇形的圆心角的度数为_________.11.如图,点C是∠AOB的边OA上一点,D,E是OB上两点,则图中共有_________条线段,可用字母表示的射线有_________条,_________个小于平角的角.12.直线上有2 013个点,我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后,直线上共有_________个点.三、解答题(共47分)13.(11分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18 cm,求DE的长;(2)若CE=5 cm,求BD的长.14.(11分)如图所示,∠AOB=30°,∠BOC=40°,∠COD=26°,OE平分∠AOD.求∠BOE的度数.15.(12分)如图所示,回答下列问题.(1)2条直线相交有几个交点?(2)3条直线两两相交,最多有几个交点?(3)4条直线两两相交,最多有几个交点?(4)根据(1)(2)(3)总结:n(n为大于或等于2的正整数)条直线两两相交,最多有几个交点;(5)根据上述结论,求100条直线两两相交最多有几个交点.16.(13分)(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如果(1)中的∠AOB=α(OC在∠AOB外),其他条件不变,求∠MON的度数;(3)如果(1)中的∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)(2)(3)的结论中能得出什么结论?答案解析1.【解析】选B.射线的端点不同,射线就不同,所以射线AB与射线BA不是同一条射线,①错;②对;③错,因为无法使AB=AC;④对;所以选B.2.【解析】选B.因为AM=MB=12AB=6(cm),MC=6×13=2(cm),所以AC=AM+MC=6+2=8(cm),故选B.3.【解析】选C.角是由具有公共端点的两条射线组成的,可知C正确;射线不可以度量,故A错;角有顶点和两条边,故B,D错,因此选C.4.【解析】选C.因为∠BOC=90°-20°=70°,所以∠2=180°-∠BOC=180°-70°=110°.5.【解析】选C.根据题意可设CD=DB=x,则AC=CB=2DB=2x,AD=3x,AE=32x,AF=12AE=34x,所以3xAF34==AC2x8,故选C.6.【解析】选C.因为∠COB=∠DOE=90°,所以∠COE+∠COD=90°,∠COD+∠BOD=90°,所以∠COE=∠BOD;因为∠AOC=∠DOE,所以∠COE+∠COD=90°,∠AOE+∠COE=90°,所以∠AOE=∠COD;∠AOC=∠BOC.故选C.7.【解析】选D.可设∠α=x,∠β=8x,则x+8x=180°,x=20°,所以∠β=8x=160°,故选D.8.【解析】0.12°=0.12×60'=7.2',0.2'=0.2×60″=12″,所以30.12°=30°7'12″,36″=36×(160)'=0.6',12.6'=12.6×(160)°=0.21°,所以100°12'36″=100.21°.答案:30 7 12 100.219.【解析】如图所示,AC=3AB,DC=4AB,所以DC=43AC.答案:3 4310.【解析】两个扇形圆心角的度数分别为360°×49=160°和360°×59=200°.答案:160°,200°11.【解析】图中有线段OD,OE,OB,DE,DB,EB,OC,OA,CA,DC,EC,共11条,射线OA,CA,OB,DB,EB,共5条,小于平角的角有∠O,∠ODC,∠CDE,∠CED,∠CEB,∠ACE,∠ECD,∠DCO,∠ACD,∠OCE,共10个.答案:11 5 1012.【解析】2 013+2 012=4 025,4 025+4 024=8 049,8 049+8 048=16 097. 答案:16 09713.【解析】(1)因为C 是AB 的中点,所以AC=BC=12AB=9 cm.因为D 是AC 的中点,所以AD=DC=12AC=92cm.因为E 是BC 的中点,所以CE=BE=12BC=92cm.又因为DE=DC+CE,所以DE=92+92=9(cm). (2)由(1)知AD=DC=CE=BE,所以CE=13BD. 因为CE=5 cm,所以BD=15 cm.14.【解析】因为∠AOB=30°,∠BOC=40°,∠COD=26°,所以∠AOD=∠AOB+∠BOC+∠COD=30°+40°+26°=96°, 又因为OE 平分∠AOD,所以∠AOE=12∠AOD=12×96°=48°, 所以∠BOE=∠AOE-∠AOB=48°-30°=18°. 15.【解析】(1)由图可知,2条直线相交有1个交点. (2)3条直线两两相交,最多有2+1=3个交点. (3)4条直线两两相交,最多有3+2+1=6个交点. (4)依此类推,n 条直线两两相交最多有n-1+…+3+2+1=n(n 1)2-个交点. (5)根据上述结论,当n=100时, n(n 1)2-=100992⨯=4 950个交点.16.【解析】(1)因为ON 是∠BOC 的平分线, 所以∠CON=∠BON=12∠BOC=12×30°=15°. 因为OM 是∠AOC 的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+30°)=60°,所以∠MON=∠COM-∠CON=60°-15°=45°. (2)当∠AOB=α,其他条件不变时,由(1)得∠CON=15°.因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(α+30°)=12α+15°,所以∠MON=∠COM-∠CON=12α+15°-15°=12α.(3)当∠BOC=β,其他条件不变时,因为ON是∠BOC的平分线,所以∠CON=∠BON=1 2∠BOC=12β,因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+β)=45°+12β,所以∠MON=∠COM-∠CON=45°+12β-12β=45°.(4)∠MON的度数总等于∠AOB的一半,而与锐角∠BOC的度数没有关系.。
2022年精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试练习题(含详解)

六年级数学下册第五章基本平面图形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点D 是线段AB 的中点,点E 是AC 的中点,若6cm AB =,14cm AC =,则线段DE 的长度是( )A .3cmB .4cmC .5cmD .6cm2、如图,已知点C 为线段AB 的中点,D 为CB 上一点,下列关系表示错误的是( )A .CD =AC ﹣DBB .BD +AC =2BC ﹣CD C .2CD =2AD ﹣AB D .AB ﹣CD =AC ﹣BD3、七巧板是我国民间流传最广的一种传统智力玩具,由正方形分割成七块板组成(如图),则图中4号部分的小正方形面积是整个正方形面积的( )A .14B .16C .18D .1164、如图,码头A 在码头B 的正西方向,甲、乙两船分别从A ,B 同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )A .北偏西55°B .北偏东65°C .北偏东35°D .北偏西35°5、已知70A ∠=︒,则A ∠的补角的度数为( )A .20︒B .30C .110︒D .130︒6、如图,点A ,B 在线段EF 上,点M ,N 分别是线段EA ,BF 的中点,EA :AB :BF =1:2:3,若MN =8cm ,则线段EF 的长为( )cmA .10B .11C .12D .137、延长线段AB 到C ,使得BC =3AB ,取线段AC 的中点D ,则下列结论:①点B 是线段AD 的中点.②BD =12CD ,③AB =CD ,④BC ﹣AD =AB .其中正确的是( )A .①②③B .①②④C .①③④D .②③④8、如图所示,若90AOB ∠=︒,则射线OB 表示的方向为( ).A .北偏东35°B .东偏北35°C .北偏东55°D .北偏西55°9、将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是()A .∠α=∠βB .∠α=12∠β C .∠α+∠β=90° D .∠α+∠β=180°10、如图,一副三角板(直角顶点重合)摆放在桌面上,若150BOC ︒∠=,则AOD ∠等于()A .30︒B .45︒C .50︒D .60︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、45°30'=_____°.2、9830'18︒"=_____度,90°﹣3527'︒=___° __'.3、一个圆的周长是31.4cm ,它的半径是_____cm ,面积是_____cm 2.4、如图,点C 在线段AB 上,点D 是线段AB 的中点,AB =10cm ,AC =7cm ,则CD =______cm .5、A 、B 、C 三个城市的位置如右图所示,城市C 在城市A 的南偏东60°方向,且155BAC ∠=︒,则城市B 在城市A 的______方向.三、解答题(5小题,每小题10分,共计50分)1、课上,老师提出问题:如图,点O 是线段上一点,C ,D 分别是线段AO ,BO 的中点,当AB =10时,求线段CD 的长度.(1)下面是小明根据老师的要求进行的分析及解答过程,请你补全解答过程;未知线段 已知线段……=12= .(2)小明进行题后反思,提出新的问题:如果点O 运动到线段AB 的延长线上,CD 的长度是否会发生变化?请你帮助小明作出判断并说明理由.2、如图(1),∠BOC 和∠AOB 都是锐角,射线OB 在∠AOC 内部,AOB α∠=,BOC β∠=.(本题所涉及的角都是小于180°的角)(1)如图(2),OM 平分∠BOC ,ON 平分∠AOC ,填空:①当40α=︒,70β=︒时,COM ∠=______,CON ∠=______,MON ∠=______;②MON ∠=______(用含有α或β的代数式表示).(2)如图(3),P 为∠AOB 内任意一点,直线PQ 过点O ,点Q 在∠AOB 外部:①当OM 平分∠POB ,ON 平分∠POA ,∠MON 的度数为______;②当OM 平分∠QOB ,ON 平分∠QOA ,∠MON 的度数为______;(∠MON 的度数用含有α或β的代数式表示)(3)如图(4),当40α=︒,70β=︒时,射线OP 从OC 处以5°/分的速度绕点O 开始逆时针旋转一周,同时射线OQ 从OB 处以相同的速度绕点O 逆时针也旋转一周,OM 平分∠POQ ,ON 平分∠POA ,那么多少分钟时,∠MON 的度数是40°?3、已知线段a 、b (如图),用直尺和圆规在方框内按以下步骤作图:(保留作图痕迹,不要求写出作法和结论)①画射线OP ;②在射线OP 上顺次截取OA =a ,AB =a ;③在线段OB 上截取BC =b ;④作出线段OC 的中点D .(1)根据以上作图可知线段OC = ;(用含有a 、b 的式子表示)(2)如果OD =2厘米,CD =2AC ,那么线段BC = 厘米.4、如图,∠AOB 是平角,80AOC ∠=︒,30BOD ∠=︒,OM 、ON 外别是∠AOC 、∠BOD 的平分线,求∠MON 的度数.5、已知:如图1,M 是定长线段AB 上一定点,C D ,两点分别从M ,B 出发以1cm/s ,3cm /s 的速度沿BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若10cm AB =,当点C D ,运动了2s ,求AC MD +的值;(2)若点C D ,运动时,总有3MD AC =,试说明14AM AB =; (3)如图2,已知14AM AB =,N 是线段AB 所在直线AB 上一点,且AN BN MN -=,求MN AB的值. -参考答案-一、单选题1、B【解析】【分析】根据中点的定义求出AE 和AD ,相减即可得到DE .【详解】解:∵D 是线段AB 的中点,AB =6cm ,∴AD =BD =3cm ,∵E 是线段AC 的中点,AC =14cm ,∴AE =CE =7cm ,∴DE =AE -AD =7-3=4cm ,故选B .【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.2、D【解析】【分析】根据图形可以明确线段之间的关系,对线段CD、BD、AD进行和、差转化,即可发现错误选项.【详解】解:∵C是线段AB的中点,∴AC=BC,AB=2BC=2AC,AB﹣BD=AC﹣BD;∴CD=BC﹣BD=12∵BD+AC=AB﹣CD=2BC﹣CD;∵CD=AD﹣AC,∴2CD=2AD﹣2AC=2AD﹣AB;∴选项A、B、C均正确.而答案D中,AB﹣CD=AC+BD;∴答案D错误符合题意.故选:D.【点睛】本题考查线段的和差,是基础考点,掌握相关知识是解题关键.3、C【解析】【分析】把正方形进行分割,可分割成16个面积相等的等腰直角三角形,4号是正方形,由两个等腰直角三角形组成,占整个正方形面积的18.【详解】解:把大正方形进行切割,如下图,由图可知,正方形可分割成16个面积相等的等腰直角三角形,4号正方形,由两个等腰直角三角形组成,∴占整个正方形面积的21 168=.故选 C.【点睛】本题主要考查了七巧板,正方形的性质,能够正确的识别图形,明确4号部分的正方形是由两个等腰直角三角形构成是解题的关键.4、D【解析】【分析】如图,根据两船同时出发,同速行驶,假设相撞时得到AC=BC,求出∠CBA=∠CAB=90°-35°=55°,即可得到答案.【详解】解:假设两船相撞,如同所示,根据两船的速度相同可得AC=BC ,∴∠CBA =∠CAB =90°-35°=55°,∴乙的航向不能是北偏西35°,故选:D .【点睛】此题考查了方位角的表示方法,角度的运算,正确理解题意是解题的关键.5、C【解析】【分析】两个角的和为180,︒ 则这两个角互补,利用补角的含义直接列式计算即可.【详解】 解: 70A ∠=︒,∴ A ∠的补角18070110,故选C【点睛】本题考查的是互为补角的含义,掌握“两个角的和为180,︒ 则这两个角互补”是解本题的关键.6、C【解析】【分析】由于EA :AB :BF =1:2:3,可以设EA =x ,AB =2x ,BF =3x ,而M 、N 分别为EA 、BF 的中点,那么线段MN 可以用x 表示,而MN =8cm ,由此即可得到关于x 的方程,解方程即可求出线段EF 的长度.【详解】解:∵EA :AB :BF =1:2:3,可以设EA =x ,AB =2x ,BF =3x ,而M 、N 分别为EA 、BF 的中点,∴MA =12EA =12x ,NB =12BF 32x , ∴MN =MA +AB +BN =12x +2x +32x =4x , ∵MN =16cm ,∴4x =8,∴x =2,∴EF =EA +AB +BF =6x =12,∴EF 的长为12cm ,故选C .【点睛】本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7、B【解析】【分析】先根据题意,画出图形,设AB a ,则3,4BC a AC a == ,根据点D 是线段AC 的中点,可得122AD CD AC a === ,从而得到BD a = ,BD =12CD ,AB =12CD ,BC AD a -= ,即可求解. 【详解】解:根据题意,画出图形,如图所示:设AB a ,则3,4BC a AC a == ,∵点D 是线段AC 的中点, ∴122AD CD AC a === , ∴BD AD AB a =-= ,∴AB =BD ,即点B 是线段AD 的中点,故①正确;∴BD =12CD ,故②正确;∴AB =12CD ,故③错误;∴32BC AD a a a -=-= ,∴BC ﹣AD =AB ,故④正确;∴正确的有①②④.故选:B【点睛】本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.8、A【解析】【分析】根据同角的余角相等90BOD AOD AOD AOC ∠+∠=∠+∠=︒即可得,35BOD AOC ∠=∠=︒,根据方位角的表示方法即可求解.【详解】如图,90,35AOB AOC ∠=︒∠=︒90BOD AOD AOD AOC ∠+∠=∠+∠=︒35BOD AOC ∴∠=∠=︒即射线OB 表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.9、C【解析】【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.【详解】解:∠α+∠β=180°﹣90°=90°,故选:C .【点睛】本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.10、A【解析】【分析】由三角板中直角三角尺的特征计算即可.【详解】△和AOB为直角三角尺∵COD∴90∠=AOB︒∠=,90COD︒∴BOC COD BOC AOB∠-∠=∠-∠∴1509060∠=∠=︒-︒=︒AOC BOD∴906030AOD BOA BOD∠=∠-∠=︒-︒=︒故选:A.【点睛】本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.二、填空题1、45.5【解析】【分析】先将30'化为度数,然后与整数部分的度数相加即可得.【详解】解:'30300.560⎛⎫=︒=︒ ⎪⎝⎭ 4530'450.545.5︒=︒+︒=︒.故答案为:45.5.【点睛】题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.2、 90.505 54 33【解析】【分析】根据角度的和差以及角度值进行化简计算即可【详解】 解:1830.3180.330.3==0.5056060''''==︒, ∴9830'18︒"90.505=︒90°﹣3527'︒896035275433'''=︒-︒=︒故答案为:90.505,54,33【点睛】本题考查了角度的和差以及角度值,掌握角度值单位的转化是解题的关键.3、 5 78.5【解析】【分析】设圆的半径为cm r .先利用圆的周长公式求出r ,再利用圆的面积公式即可得.【详解】解:设圆的半径为cm r ,由题意得:231.4r π=,解得=5r ,则圆的面积为22578.5(cm )π⋅=,故答案为:5,78.5.【点睛】本题考查了圆的周长、面积等知识,解题的关键是记住圆的周长公式和面积公式.4、2【解析】【分析】根据点D 是线段AB 的中点,可得15cm 2AD AB == ,即可求解. 【详解】解:∵点D 是线段AB 的中点,AB =10cm , ∴15cm 2AD AB == , ∵AC =7cm ,∴752cm CD AC AD =-=-= .故答案为:2【点睛】本题主要考查了中点的定义,线段的和与差,熟练掌握把一条线段分成相等的两段的点,叫做线段的中点是解题的关键.5、35°##35度【分析】根据方向角的表示方法可得答案.【详解】解:如图,∵城市C在城市A的南偏东60°方向,∴∠CAD=60°,∴∠CAF=90°-60°=30°,∵∠BAC=155°,∴∠BAE=155°-90°-30°=35°,即城市B在城市A的北偏西35°,故答案为:35°.【点睛】本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.三、解答题1、 (1)BO,BO,AB,5(2)不变,见解析【分析】(1)根据已知条件及解答过程中的每步推理即可完成;(2)由线段中点的定义及线段的差即可完成.(1)因为C,D分别是线段AO,BO的中点,所以CO=12AO,DO=12BO.因为AB=10,所以CD=CO+DO=12AO+12BO=12AB=5.故答案为:BO,BO,AB,5(2)不会发生变化:理由如下:如图因为C,D分别是线段AO,BO的中点,所以12CO AO =,12DO BO =. 因为10AB =, 所以1115222CD CO DO AO BO AB =-=-==. 【点睛】本题考查了线段中点的定义,线段的和、差等知识,掌握这些知识是关键.2、 (1)135,55,20,2︒︒︒α (2)12α,11802α︒-(3)48分钟时,∠MON 的度数是40°【解析】【分析】(1)根据角平分线的定义判断即可;(2)①根据()12MON POB POA ∠=∠+∠求解即可,②根据()12MON BOQ QOA ∠=∠+∠求解即可; (3)分OP 在AOB ∠的外部和内部两种情况讨论,在外部时根据旋转的时间乘以速度等于POA AOB BOC ∠+∠+∠,在内部时可以判断35POM ∠=︒,MON POM PON ∠=∠-40=︒,则此情况不存在(1) ① OM 平分∠BOC ,ON 平分∠AOC ,当40α=︒,70β=︒时,COM ∠=113522BOC ∠=β=︒, CON ∠=()111()55222AOC AOB BOC ∠=∠+∠=α+β=︒, MON ∠=()11120222CON COM αββα∠-=+-==︒②MON ∠()111222CON COM =∠-=α+β-β=α 故答案为:135,55,20,2︒︒︒α (2) ①OM 平分∠POB ,ON 平分∠POA , ∴()12MON POB POA ∠=∠+∠ 1122AOB =∠=α ②OM 平分∠QOB ,ON 平分∠QOA , ∴()12MON BOQ QOA ∠=∠+∠()1136018022AOB =︒-∠=︒-α 故答案为:12α,11802α︒-(3)根据题意POQ BOC ∠=∠=βOM 平分∠POQ ,113522POM POQ ∴∠=∠=β=︒ 如图,当OP 在AOB ∠的外部时,MON的度数是40°∠=∠+MON PON POM∴∠=︒5PONON平分∠POA,210∴∠=∠=︒POA PON∴∠=︒120POC︒-︒=︒则OP旋转了360120240∴÷=分240548即48分钟时,∠MON的度数是40°如图,OP在AOB∠的内部时,∠=∠-∠MON POM PON即4035PON︒=︒-∠∴∠=-︒PON5此情况不存在综上所述,48分钟时,∠MON的度数是40°【点睛】本题考查了几何图形中角度的计算,角平分线的意义,掌握角平分线的意义是解题的关键.-3、 (1)作图见解答,2a b(2)6【解析】【分析】利用基本作图画出对应的几何图形,(1)根据线段的和差得到OC OA AB BC=+-;(2)先利用D点为CA=厘米,然后利用BC CA AB CA OC CA==厘米,则1DC ODOC的中点得到2=+=++进行计算.(1)解:如图,=+-=+-=-;2OC OA AB BC a a b a b-;故答案为:2a b(2)解:D点为OC的中点,∴==厘米,DC OD2=,2CD CACA∴=厘米,1∴=+=+=++=++=(厘米);1416BC CA AB CA OA CA OC CA故答案为:6.【点睛】本题考查了作图-复杂作图,两点间的距离,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.4、125︒【解析】【分析】根据角平分线的定义求出,AOM BON ∠∠,再用平角减去+AOM BON ∠∠即可得到结果.【详解】解:∵∠AOB 是平角,∴180AOB ∠=︒∵OM 、ON 外别是∠AOC 、∠BOD 的平分线,且∠AOC =80°,∠BOD =30°, ∴1402AOM AOC ∠=∠=︒,1152BON BOD ∠=∠=︒, ∴∠MON =∠AOB -∠AOM -∠BON =180°-40°-15°=125°.【点睛】本题主要考查了角的平分线的有关计算,性质、角的和差等知识点.解决本题亦可利用:∠MON =∠COD +∠COM +∠DON .5、 (1)2cm(2)见解析 (3)12或1【解析】【分析】(1)根据运动的时间为2s ,结合图形可得出2AC AM =-,6MD BM =-,即可得出26AC MD AM BM +=-+-,再由AM BM AB +=,即得出AC +MD 的值;(2)根据题意可得出AC AM t =-,3MD BM t =-.再由3MD AC =,可求出3BM AM =,从而可求出3AM BM AM AM AB +=+=,即证明14AM AB =; (3)①分类讨论当点N 在线段AB 上时、②当点N 在线段AB 的延长线上时和③当点N 在线段BA 的延长线上时,根据线段的和与差结合AN BN MN -=,即可求出线段MN 和AB 的等量关系,从而可求出MN AB的值,注意舍去不合题意的情形. (1)∵时间2t =时,2AC AM =-,32MD BM =-⨯,∴26AC MD AM BM +=-+-8AB =-108=-2cm =;(2)∵AC AM t =-,3MD BM t =-,又∵3MD AC =,∴33()BM t AM t -=-,∴3BM AM =,∴3AM BM AM AM AB +=+=, ∴14AM AB =; (3)①如图,当点N 在线段AB 上时,∵AN BN MN AN AM MN -=-=,, ∴14BN AM AB ==, ∴12MN AB AM BN AB =--=, ∴12MN AB =; ②如图,当点N 在线段AB 的延长线上时,∵AN BN MN AN BN AB -=-=,,∴MN AB =, ∴1MN AB=, ③如图,当点N 在线段BA 的延长线上时,AN BN MN -≠,这种情况不可能, 综上可知,MN AB 的值为12或1. 【点睛】本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.。
专题4.7第4章基本平面图形单元测试(培优卷)-2021年七年级数学上册尖子生同步培优题库(教师版含

2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题4.7第4章基本平面图形单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•雅安期末)如图所示,下列对图形描述不正确的是()A.直线AB B.直线BC C.射线AC D.射线AB【分析】依据直线,线段以及射线的定义进行判断即可.【解析】解:由图可得,直线AB,线段BC,射线AC,射线AB,图中不存在直线BC,故选:B.2.(2019秋•东湖区校级期末)下列生活现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象个数有()A.1B.2C.3D.4【分析】直接利用直线的性质和线段的性质分别判断得出答案.【解析】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:B.3.(2020春•肇东市期末)在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为() A.5cm B.8cm C.5cm或8cm D.5cm或11cm【分析】分两种情况:点C在线段AB上,点C在线段AB的延长线上.再根据线段的和差,可得线段BC的长.【解析】解:当点C在线段AB上时,BC=AB﹣AC=8﹣3=5(cm);当点C在线段AB的延长线上时,BC=AB+AC=8+3=11(cm),所以线段AC的长为5cm或11cm.故选:D.4.(2019秋•铁西区期末)如图,小明从A处沿北偏东40°方向行走至B处,又从B处沿东偏南21°方向行走至C处,则∠ABC的度数为()A.131°B.129°C.109°D.101°【分析】根据平行线性质求出∠ABE,再求出∠EBC即可得出答案.【解析】解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南21方向行走至点C处,∴∠DAB=40°,∠CBF=21°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∵∠EBF=90°,∴∠EBC=90°﹣21°=69°,∴∠ABC=∠ABE+∠EBC=40°+69°=109°,故选:C.5.(2019秋•青山区期末)如图,下列说法错误的是()A.∠ECA是一个平角B.∠ADE也可以表示为∠DC.∠BCA也可以表示为∠1D.∠ABC也可以表示为∠B【分析】角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况下,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.【解析】解:A、∠ECA是一个平角,故正确,不符合题意;B、∠ADE也可以表示为∠D,故正确,不符合题意;C、∠BCA也可以表示为∠1,故正确,不符合题意;D、∠ABC也不可以表示为∠B,故错误,符合题意;故选:D.6.(2019秋•兰考县期末)如图,OB平分平角∠AOD,∠AOB:∠BOC=3:2,则∠COD等于()A.30°B.45°C.60°D.75°【分析】先利用OB平分平角∠AOD得到∠AOB=∠DOB=90°,再利用∠AOB:∠BOC=3:2得到∠BOC=60°,然后回家互余计算出∠COD的度数.【解析】解:∵OB平分平角∠AOD,∴∠AOB =∠DOB =12×180°=90°,∵∠AOB :∠BOC =3:2,∴∠BOC =23×90°=60°,∴∠COD =90°﹣60°=30°.故选:A .7.(2019秋•海淀区期末)若扇形的半径为2,圆心角为90°,则这个扇形的面积为( )A .π2 B .π C .2π D .4π【分析】直接利用扇形的面积公式计算.【解析】解:这个扇形的面积=90⋅π⋅22360=π.故选:B .8.(2019秋•通州区期末)如图,OC 为∠AOB 内的一条射线,下列条件中不能确定OC 平分∠AOB 的是()A .∠AOC =∠BOCB .∠AOB =2∠BOCC .∠AOC +∠COB =∠AOBD .∠AOC =12∠AOB【分析】根据角平分线的定义即可判断.【解析】解:A .∵∠AOC =∠BOC∴OC 平分∠AOB .所以A 选项正确,不符合题意;B .∵∠AOB =2∠BOC∴OC 平分∠AOB .所以B 选项正确,不符合题意;C .∵∠AOC +∠COB =∠AOB∴OC 不一定平分∠AOB .所以C 选项错误,符合题意;D .∵∠AOC =12∠AOB∴OC平分∠AOB.所以D选项正确,不符合题意.故选:C.9.(2019秋•南山区期末)已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=12∠AOBA.1个B.2个C.3个D.4个【分析】根据角平分线的定义即可判断.【解析】解:①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC=12∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选:A.10.(2019秋•埇桥区期末)已知:线段AB,点P是直线AB上一点,直线上共有3条线段:AB,P A和PB.若其中有一条线段的长度是另一条线段长度的两倍,则称点P是线段AB的“巧分点”,线段AB的“巧分点”的个数是()A.3B.6C.8D.9【分析】根据“巧点”的定义即可求解.【解析】解:线段AB的3个等分点都是线段AB的“巧分点”.同理,在线段AB延长线和反向延长线也分别有3个“巧分点”.∴线段AB的“巧分点”的个数是9个.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•新泰市期末)已知点A、B、C在一条直线上,AB=5cm,BC=3cm,则AC的长为2cm或8cm.【分析】分类讨论,C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.【解析】解:若C在线段AB上,则AC=AB﹣BC=5﹣3=2(cm);若C在线段AB的延长线上,则AC=AB+BC=5+3=8(cm),故答案为2cm或8cm.12.(2019秋•沙坪坝区期末)已知线段AB,延长AB至点C,使BC=13AB.若点D为线段AC的中点,点E为线段AB的中点,且DE=1cm,则线段AB=6cm.【分析】设BC=x,则AB=3x,于是得到AC=4x,根据线段中点的定义得到AD=12AC=2x,AE=12AB=32x,于是得到结论.【解析】解:设BC=x,则AB=3x,∴AC=4x,∵点D为线段AC的中点,点E为线段AB的中点,∴AD=12AC=2x,AE=12AB=32x,∴DE=AD﹣AE=2x−32x=12x=1,∴x=2,∴AB=6cm,故答案为:6.13.(2019秋•沙河口区期末)如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是两点确定一条直线.【分析】由直线公理可直接得出答案.【解析】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.14.(2020春•舒兰市期末)34°18′36″=34.31°.【分析】根据小单位华大单位除以进率,可得答案.【解析】解:34°18′36″=34.31°.故答案是:34.31.15.(2019秋•曲阳县期末)如图,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为2个①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.【分析】根据角平分线的定义进行判断即可.【解析】解:AD不一定平分∠BAF,①错误;AF不一定平分∠DAC,②错误;∵∠1=∠2,∴AE平分∠DAF,③正确;∵∠1=∠2,∠3=∠4,∴∠1+∠3=∠2+∠4,即∠BAE=∠CAE,∴AE平分∠BAC,④正确;故答案为:2个.16.(2019秋•兰考县期末)如图所示,OB是∠AOC的平分线,OC是∠AOD的平分线,若∠COD=76°,那么∠AOD=152°,∠BOC=38°.【分析】根据角平分线的定义,利用OC是∠AOD的平分线得到∠AOC=∠COD=76°,∠AOD=2∠COD=152°,然后利用OB是∠AOC的平分线得到∠BOC=12∠AOC.【解析】解:∵OC是∠AOD的平分线,∴∠AOC=∠COD=76°,∠AOD=2∠COD=2×76°=152°,∵OB是∠AOC的平分线,∴∠BOC=12∠AOC=12×76°=38°.故答案为152°;38°.17.(2019秋•北仑区期末)将两个正方形与直角三角板的一个直角顶点重合放置,如图所示,则∠1的度数为16°.【分析】根据角的和差进行计算即可.【解析】解:如图∵∠1+α+β=90°∠1+α=90°﹣46°∠1+β=90°﹣28°∴∠1=90°﹣46°+90°﹣28°﹣90°=16°.故答案为16°.18.(2019秋•吉州区期末)过一个多边形的一个顶点的所有对角线把多边形分成2019个三角形,则这个多边形的边数为2021.【分析】经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形,根据此关系式求边数.【解析】解:设多边形有n条边,则n﹣2=2019,解得n=2021.故这个多边形的边数是2021.故答案是:2021.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•襄城县期末)如图,已知三点A、B、C.(1)请读下列语句,并分别画出图形①画直线AB;②画射线AC;③连接BC.(2)在(1)的条件下,图中共有6条射线.(3)从点C到点B的最短路径是CB,依据是两点间线段最短.【分析】(1)按题意,直接作图即可.(2)根据射线的定义进行判断,写出即可.(3)根据两点间线段最短的性质即可求解.【解析】解:(1)如图所示:直线AB、射线AC、线段BC即为所求.(2)图中共有3+2+1=6条射线.(3)最短路径是CB ,依据:两点间线段最短.故答案为:6;CB ,两点间线段最短.20.观察下面图形,并回答问题.(1)四边形有 2 条对角线;五边形有 5 条对角线;六边形有 9 条对角线?(2)根据规律七边形有 14 条对角线,n 边形有n(n−3)2 条对角线. 【分析】(1)根据图形查出即可;(2)根据对角线条数的数据变化规律进行总结,然后填写.【解析】解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;∵从一个顶点可以作(n ﹣3)条对角线,∴n 边形有n(n−3)2条对角线.(2)七边形有14条对角线,n 边形有n(n−3)2条对角线. 故答案为:(1)2,5,9,(2)14,n(n−3)2.21.(2019秋•潮州期末)如图所示,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∠EOC =65°,∠DOC =25°,求∠AOB 的度数.【分析】由角的和差求出∠DOE=40°,再根据角平分线的定义,角的和差求出∠AOB的度数为130°.【解析】解:如图所示:∵∠EOC=∠DOE+∠DOC,∠EOC=65°,∠DOC=25°,∴∠DOE=65°﹣25°=40°,∵OC是∠AOD的平分线,∠BOD=2∠EOD=2×40°=80°,同理可得:∠AOD=50°又∵∠AOB=∠AOD+∠BOD∴∠AOB=130°.22.(2020春•河口区期末)如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b且(a﹣16)2+|2b﹣8|=0,求a,b的值:(2)在(1)的条件下,求线段CD的长,【分析】(1)由(a﹣16)2+|2b﹣8|=0,根据非负数的性质即可推出a、b的值;(2)根据(1)所推出的结论,即可推出AB和CE的长度,根据图形即可推出AC=8,然后由AE=AC+CE,即可推出AE的长度,由D为AE的中点,即可推出DE的长度,再根据线段的和差关系可求出CD的长度.【解析】解:(1)∵(a﹣16)2+|2b﹣8|=0,∴a﹣16=0,2b﹣8=0,∵a、b均为非负数,∴a=16,b=4,(2)∵点C为线段AB的中点,AB=16,CE=4,∴AC=12AB=8,∴AE=AC+CE=12,∵点D为线段AE的中点,∴DE=12AE=6,∴CD=DE﹣CE=6﹣4=2.23.(2019秋•宁都县期末)某一野外探险队由基地A处向北偏东30°方向前进了40千米到达B点,然后又向北偏西60°方向前进了30千米到达C点处工作.(1)请在图中画出行走路线图.(1厘米表示10千米)(2)通过度量,请你算出C点离基地A的距离.(精确到1千米)(3)若基地要派一指导员赶往C点,要求在2小时内赶到,问指导员应以不低于多大的平均速度前进才能按时到达?【分析】(1)根据方位角的意义,按要求的比例尺画图,确定B点位置,再在B点处画方位角以相同的比例尺确定C点;(2)连接AC,量出图上距离,再按比例尺算出实际距离;(3)根据速度=路程÷时间即可求解.【解析】解:(1)如图所示:(2)连接AC,度量出AC=5厘米,即C点离基地A的实际距离为50千米;(3)50÷2=25(千米/时).答:指导员的平均速度应不低于25千米/时.24.(2019秋•海州区校级期末)如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.【分析】(1)利用∠AOB =180°﹣∠AOM ﹣∠BON ,即可求出结论;(2)利用∠AOM +∠BON =180°+∠AOB ,即可得出关于t 的一元一次方程,解之即可得出结论;(3)分0≤t ≤18及18≤t ≤60两种情况考虑,当0≤t ≤18时,利用∠AOB =180°﹣∠AOM ﹣∠BON =90°,即可得出关于t 的一元一次方程,解之即可得出结论;当18≤t ≤60时,利用∠AOM +∠BON =180°+∠AOB (∠AOB =90°或270°),即可得出关于t 的一元一次方程,解之即可得出结论.综上,此题得解.【解析】解:(1)当t =3时,∠AOB =180°﹣4°×3﹣6°×3=150°.(2)依题意,得:4t +6t =180+72,解得:t =1265. 答:当∠AOB 第二次达到72°时,t 的值为1265.(3)当0≤t ≤18时,180﹣4t ﹣6t =90,解得:t =9; 当18≤t ≤60时,4t +6t =180+90或4t +6t =180+270,解得:t =27或t =45.答:在旋转过程中存在这样的t ,使得射线OB 与射线OA 垂直,t 的值为9、27或45.25.(2019秋•肇庆期末)已知O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .(1)如图①,若∠AOC =30°,求∠DOE 的度数.(2)在图①中,若∠AOC =a ,求∠DOE 的度数(用含a 的代数式表示).(3)将图①中的∠DOC 绕顶点O 顺时针旋转至图②的位置,且保持射线OC 在直线AB 上方,在整个旋转过程中,当∠AOC 的度数是多少时,∠COE =2∠DOB .【分析】(1)由已知可求出∠BOC =180°﹣∠AOC =150°,再由∠COD 是直角,OE 平分∠BOC ,即可求出∠DOE 的度数;(2)由(1)中的方法可得出结论∠DOE =12∠AOC ,从而用含α的代数式表示出∠DOE 的度数;(3)设∠AOC =α,则∠BOC =180°﹣α,依据OE 平分∠BOC ,可得∠COE =12×(180°﹣α)=90°−12α,再依据∠COE =2∠DOB ,即可得到∠AOC 的度数.【解析】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∵∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD−12∠BOC=90°−12×150°=15°;(2)由(1)知∠DOE=∠COD−12∠BOC,∴∠DOE=90°−12(180°﹣∠AOC)=12∠AOC=12α;(3)设∠AOC=α,则∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=12×(180°﹣α)=90°−12α,∠BOD=90°﹣(180°﹣α)=α﹣90°,∵∠COE=2∠DOB,∴90°−12α=2(α﹣90°),解得α=108°.综上所述,当∠AOC的度数是108°时,∠COE=2∠DOB.26.(2019秋•金牛区期末)已知线段AB=m(m为常数),点C为直线AB上一点(不与点A、B重合),点M、N分别在线段BC、AC上,且满足CN=3AN,CM=3BM.(1)如图,当点C恰好在线段AB中点,且m=8时,则MN=6;(2)若点C在点A左侧,同时点M在线段AB上(不与端点重合),请判断CN+2AM﹣2MN的值是否与m有关?并说明理由.(3)若点C是直线AB上一点(不与点A、B重合),同时点M在线段AB上(不与端点重合),求MN长度(用含m的代数式表示).【分析】(1)设AN=x,BM=y,则CN=3x,CM=3y.由AB=8列出方程,求得x+y,再进而求得MN;(2)把MN=AM+AN代入CN+2AM﹣2MN中计算便可知道结果;(3)设AN=x,BM=y,则CN=3x,CM=3y,①当C点在B点右边时,不符合题意,会去;②当点C在点A的左边,由AB=CB﹣CA得出y﹣x=14m,进而得MN=3(y﹣x)=34m;③当点C在线段(AB上时,由AB=CB+CA得y+x=14m,进而得MN=3(y+x)=34m,最后总结结论.【解析】解:(1)设AN=x,BM=y,则CN=3x,CM=3y.∵AB=AN+CN+CM+MB=m,∴x+3x+3y+y=m=8,∴x+y=2,MN=NC+CM=3x+3y=3(x+y)=6.(2)CN+2AM﹣2MN的值与m无关.理由如下:如图1,∵CN=3AN,∴CN+2AM﹣2MN=3AN+2AM﹣2(AN+AM)=AN∵AN与m的取值无关,∴CN+2AM﹣2MN的值与m无关;(3)设AN =x ,BM =y ,则CN =3x ,CM =3y ①当C 点在B 点右边时,∵满足CM =3BM ,M 在线段AB 上,如图2此时,M 不是线段BC 上的点,不符合题意,会去; ②当点C 在点A 的左边,如图3,∵AB =CB ﹣CA =(CM +MB )﹣(CN +AN )=m , ∴(3y +y )﹣(x +3x )=m ,∴y ﹣x =14m ,∴MN =CM ﹣CN =3y ﹣3x =3(y ﹣x )=34m ; ③当点C 在线段(AB 上时,如图4,∵AB =CB +CA =(CM +MB )+(CN +AN )=m , ∴(3y +y )+(x +3x )=m ,∴x +y =14m ,∴MN =CM +CN =3y +3x =3(y +x )=34m ;∴MN 长度为34m . 综上,MN 长度为34m .。
七年级数学《基本平面图形》单元测试题(含答案)

第五章《基本平面图形》单元测试题(后附答案)班级:_________ 姓名:___________题号一二171819202122附加总分分数一、选择题1.如图1,l是一条笔直的公路,在公路的两侧各有一个村庄A,B,两个村庄准备集资修建一个公交车站,经过协商,要求车站到两个村庄的路程和最短,小聪帮助设计了公交车站修建点M,则小聪设计的理由是()A.两点确定一条直线B.两点确定一条线段C.经过三点也可以确定一条直线D.两点之间线段最短图1 图22.下列表示方法正确的是()3.在下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的图形是( )4.下图所示的图形中,其中两条线能相交的是( )5.下列图形中,是正六边形的是( )OBABOOABDCOCAACBEABDC1111AA BDC····BA BDC···CA BDC··DA BDC··A BC D6.已知线段AB=5cm ,在直线AB 上画线段AC=3cm ,则线段BC 的长为( ) A .8cm B .2 cm C . 2 cm 或8 cm D .不能确定7.已知点M 是∠AOB 内一点,作射线OM ,则下列不能说明OM 是∠AOB 的平分线的是( ) A.∠AOM=∠BOM B.∠AOB=2∠AOM C.∠BOM =21∠AOB D.∠AOM+∠BOM=∠AOB 8. 如图,圆的四条半径分别是OA ,OB ,OC ,OD ,其中点O ,A ,B 在同一条直线上,∠AOD =90°,∠AOC =3∠BOC ,那么圆被四条半径分成的四个扇形的面积的比是( )A. 1∶2∶2∶3B. 3∶2∶2∶3C. 4∶2∶2∶3D. 1∶2∶2∶1 9.现在的时间是9点30分,时钟面上的时针与分针的夹角是( ) A.100° B.105° C.110° D.120°10. 如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB=BC=3CD ,若A ,D 两点表示的数的分别为﹣5和6,点E 为BD 的中点,那么点E 表示的整数是( ) A.﹣1 B.0 C.1 D.2二、填空题11.把一根木条固定在墙上,至少要钉2颗钉子,这是根据 . 12.点O 是线段AB 的中点,OA=2cm,则AB=_______cm .13如图4所示,把一块三角尺的直角顶点放在一条直线l 上,若∠1=20º,则∠2的度数为 .图414.如图5,点A ,O ,B 在一条直线上,且∠BOC =130°,OD 平分∠AOC ,则图中∠BOD= 度.15.从六边形的一个顶点出发可以引出 条对角线,可将六边形分为 个三角形,六边形共有_____条对角线.16.我市某校某班有5名代课老师,过新年时,若每两人都互相握一次手,则共需要握 次手.三、解答题17. (每小题4分,共8分)计算:(1)将24.29°化为度、分、秒; (2)将36°40′30″化为度.18. (8分)如图6,把一个圆分成三个扇形,求出这三个扇形的圆心角度数.图619. (8分) 如图9,已知线段AB,请用尺规按下列要求作图:(1)延长线段AB到C,使BC=AB;延长线段BA到D,使AD=AC.(2)若AB=2cm,则AC=cm,BD=cm,CD=cm.图920. (8分) .如右图,∠BAD=90°,射线AC平分∠BAE.(1)当∠CAD=40°时,∠BAC=_______°.(2)当∠DAE=46°时,求∠CAD的度数.理由如下:由∠BAD=90°与∠DAE=46°,可得∠BAE =______________=_______°.由射线AC平分∠BAE,可得∠CAE =∠BAC =______________= _______°.所以∠CAD =_____________=_______°.21. (9分) 如图11,点P 是线段AB 上的一点,点M ,N 分别是线段AP ,PB 的中点. (1)如图①,若点P 是线段AB 的中点,且MP =4cm ,求线段AB 的长; (2)如图②,若点P 是线段AB 上的任一点,且AB =12cm ,求线段MN 的长.① ② 图1122. (11分)如图,已知数轴上点A 表示的数为8,B 是数轴上的一点,AB=12,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数 ,点P 表示的数 (用含t 的代数式表示);(2)若M 为AP 的中点,N 为PB 的中点.点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.附加题1.(6分) 如图1,在锐角∠AOB 内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得 个锐角.图12. (14分) 小知识:如图,我们称两臂长度相等(即CB CA =)的圆规为等臂圆规. 当等臂圆规的两脚摆放在一条直线上时,若张角︒=∠x ACB ,则底角︒-=∠=∠)290(xCBA CAB .请运用上述知识解决问题:如图,n 个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:112160AC A ∠=︒,22380A C A ∠=︒, 33440A C A ∠=︒,44520A C A ∠=︒,…(1)①由题意可得∠A 1A 2C 1= º;②若2A M 平分321A A C ∠,则22C MA ∠= º; (2)n n n C A A 1+∠= º(用含n 的代数式表示,n ≥1);(3)当3≥n 时,设11n n n A A C --∠的度数为a ,11n n n A A C +-∠的平分线N A n 与n n A C 构成的角的度数为β,那么α与β之间的等量关系是 ,请说明理由. (提示:可以借助下面的局部示意图)参考答案一、1.C2.D3.A4.C5.B6.C 提示:如图1所示,当点C 在线段AB 上时,BC=AB -AC=5-3=2(cm );如图2所示,当点C 在线段AB 外时,BC=AB+AC=5+3=8(cm ).图1 图2 7.D8.B 提示:9点30分时,时针与分针的夹角是3×30°+12×30°=105°. 9. A 10. D二、11. 两点确定一条直线 121. 4 13. 70° 14. 3 4 915. 155° 提示:∠BOD=∠BOC+∠COD=∠BOC+12∠AOC=∠BOC+12(180°-∠BOC )=130°+12(180°-130°)=155°.16. 10三、17. 解:(1) 24.29°=24°+0.29⨯60′=24°+17.4′= 24°+17′+0.4⨯60″=24°+17′+24″= 24°17′24″(2) 36°40′30″=36°+40′+30″=36°+40′+601⨯30′=36°+40.5′=36°+601⨯40.5°=36°+0.675°=36.675°. 18.解:因为一个周角为360°,所以分成三个扇形的圆心角分别是:360°×25%=90°,360°×30%=108°,360°×45%=162°. 19.(1)如图4所示:图4 (2)4 6 8 20.(1)50 (2)理由如下:由∠BAD=90°与 ∠DAE=46°,可得∠BAE =_90°+46°(或∠BAD+∠DAE )=136°. 由射线AC 平分∠BAE ,可得 ∠CAE =∠BAC =136°÷2(或∠BAE ÷2)=68°. 所以 ∠CAD =90°-68°(∠BAD -∠CAE )= 22 °.21.解:(1)因为M 是线段AP 的中点,MP=4 cm ,所以AP=2MP=2×4=8(cm ).ACB CAB又因为点P 是线段AB 的中点,所以AB=2AP=2×8=16(cm ). (2)因为点M 是线段AP 的中点,点N 是线段PB 的中点,所以MP=AP ,PN=PB. 所以MN=MP+PN=AP+PB=(AP+PB )=AB.因为AB =12 cm ,所以MN=6 cm. 22. (1)﹣4 8﹣6t(2)①如图1,点P 在AB 中间,因为AM=PM ,BN=PN ,所以MN=AB=6;图1②如图2,点P 在B 点左侧,PM=PA=(PB+AB ),PN=PB ,所以MN=PM ﹣PN=PA ﹣PB=AB=6. 综上所述,MN 在点P 运动过程中长度无变化.图2 1. 662. 解:(1)①10 ②35 (2)(90-1802n ) (3)α-β=45° 理由:不妨设∠C n -1=k.根据题意可知2n kC ∠=.由小知识可知11n n n A A C --∠=902kα=︒-.所以11n n n A A C +-∠=180α︒-=902k︒+.由小知识可知1n n n A A C +∠= 904k︒-.因为 N A n 平分11n n n A A C +-∠,所以 1∠=1211n n n A A C +-∠=454k ︒+.因为1n n n A A C +∠=1n n C A N ∠+∠,所以 904k ︒-=454kβ︒++.所以 902k︒-=45β︒+.所以α=45β︒+. 所以45αβ-=︒.212121212121。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本平面图形单元测试题
(时间:90分钟 总分:100分)
班级 _ 姓名_ _____ 学号 成绩
一、
选择题(每小题3分,共30分)每小题只有一个正确答案,请将正确答
案的编号填在该小题后的括号内。
1. 下面表示ABC 的图是 ( )
A
(A) (B) (C) (D)
2. 已知平面上B C A 、、三点,过每两点画一条直线,那么直线的条数一共有( )
(A) 3条 (B) 1条 (C) 1条和3条 (D) 0条
3. 下列说法错误的是( ) (A) 任何线段都能度量它们的长度
(B) 因为线段有长度,所以它们之间能比较大小
(C) 利用圆规配合刻度尺可以进行线段的度量,也能比较它们的大小 (D) 两条直线也能进行度量和比较大小
A
C
A
B B
A
4. 在右图的跳远比赛中,由点E 跳到点F 的跳远成绩应该是( ) (A )线段EF (B )垂线段MF
(C )垂线段MF 的长度 (D )线段EF 的长度
5、如图,已知直线AB ,CD 相交于点O ,OA 平分COE ∠,
︒=∠100EOC ,则BOD ∠的度数是( )
A.︒20
B.︒40
C. ︒50
D. ︒80
6. 右图C 、D 是线段AB 上的两点, E 是AC 的中点,F 是BD 的中点,若EF =m, CD =n ,则AB =( )
(A) m -n (B) 2m -n (C) m +n (D) 2m +n
7. 如果两个不相等的角的和为180 ,则这两个角可能是( ) (A) 两个锐角 (B) 两个钝角 (C) 一个锐角,一个钝角 (D) 以上答案都不对
M E D F D C E B
A O
8. 如果线段AB =5cm ,BC =4cm ,那么A 、C 两点的距离是( ) (A) 1cm (B) 9cm (C) 1cm 或9cm (D) 以上答案都不对
9. 如右下图,从小明家到超市有3条路,其中第2条路最近,因为( ) (A) 两点之间的所有连线中,线段最短 (B) 经过两点有且只有一条直线
(C) 经过直线外一点,有且只有一条直线与这条直线平行 (D) 在同一平面内,过一点有且只有一条直线与已知直线垂直
10. 在海上,灯塔位于一艘船的北偏东40 方向,那么这艘船位于这个灯塔的( )
(A) 南偏西50 方向 (B) 南偏西40 方向 (C) 北偏东50 方向 (D) 北偏东40 方向
二、
填空(每小题3分,共24分)
11. '_____'_____'____33.6︒=︒,︒=︒___________''42'2098;
12.圆心角为60度的扇形,所对应扇形的面积占整个圆面积的________%
13.一个圆被分成四个扇形,若各个扇形的面积之比为4:2:1;3,
则最小的扇形的圆心角的度数为_______________
14. 观察时钟的表面,在中午1:00的时候,它的时针与分针的夹角为
度。
15一条射线OA,再引射线OB和射线OC,使∠AOB=80°,∠AOC=30°,
∠BOC= ;
16. 如图,C D E
、、为线段AB上的点,且AC CD DE EB
===,
那么图中有个点是线段的中点。
17. 要把木条固定在墙上至少要钉两颗钉
子,这是因
为。
18. 如右图,已知,,
⊥∠=∠则
AB AC DAB C
∠+∠=度。
C CAD
A
D
C
B
A C D B
三、
解答题(共46分)
19.(9分) 如下图,∠AOC 是直角,OD 平分∠AOC ,∠BOC=60°, 求(1)∠AOD 的度数(2)∠AOB 的度数、(3)∠DOB 的度数
20.(5分) 已知平面上有四个点,按要求画图:
(1) 画直线AB
(2) 画线段AC
(3) 画射线AD
(4) 连结CD 、BC (线段)
过点D 作直线DN 9分) 如图,C 为线段AB 的中点,D 在线段CB 上,且6,4DA DB ==,求CD 的长。
22. (7分)如图,由一副三角尺拼成的图形,指出∠C,∠EAD,∠CBE的度数;
23.(8分)如图是一个台阶的示意图:台阶横长5m,如果要在台阶上铺垫地毯,那么至少要买地毯多少米如何计算请你说出你的思路。
24:(8分)已知,如图,︒
BOC,OD平分BOC
∠,
∠50
=
∠80
AOC,︒
=
求:AOD。
B
O。