(完整版)基本平面图形单元检测(含答案)

合集下载

(北师大版)南京市七年级数学上册第四单元《基本平面图形》测试(包含答案解析)

(北师大版)南京市七年级数学上册第四单元《基本平面图形》测试(包含答案解析)

一、选择题1.下列说法正确的是( ) A .经过两点可以作无数条直线 B .各边相等,各角也相等的多边形是正多边形C .长方体的截面形状一定是长方形D .棱柱的每条棱长都相等2.若线段AB =12cm ,点C 是线段AB 的中点,点D 是线段AC 的三等分点,则线段BD 的长为( ) A .2cm 或4cmB .8cmC .10cmD .8cm 或10cm3.两条长度分别为20cm 和24cm 的线段有一端点重合,且在一条直线上,则此两条线段的中点之间的距离为( ) A .2cmB .22cmC .2cm 或22cmD .4cm 或20cm4.有如下说法:①直线是一个平角;②如果线段AM MC =,则M 是线段AC 的中点;③在同一平面内,60AOB ∠=︒,30BOC ∠=︒,30AOC ∠=︒;④两点之间,线段最短.其中正确的有( ) A .1个B .2个C .3个D .4个5.下列说法中,错误的是( )A .两点之间直线最短B .两点确定一条直线C .一个锐角的补角一定比它的余角大90°D .等角的补角相等6.如图,直线,AB CD 交于点O ,已知EO AB ⊥于点,O OF 平分BOC ∠,若35DOE EOF ︒∠=∠+,则AOD ∠的度数是( )A .71°B .72°C .73°D .74°7.将一副直角三角尺按如图所小的不同方式摆放,则图中α∠与β∠互余的是( )A .B .C .D .8.下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若线段AC BC =,则点C 是线段AB 的中点;③射线OB 与射线OC 是同一条射线;④连结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有( ) A .1个B .2个C .3个D .4个9.已知点C 在线段AB 上,点D 在线段AB 的延长线上,若5AC =,3BC =,14BD AB =,则CD 的长为( )A .2B .5C .7D .5或110.如图,线段CD 在线段AB 上,且2CD =,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .31 11.下列正多边形中,能够铺满地面的是( ) A .正方形B .正五边形C .正七边形D .正八边形12.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离; (2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个二、填空题13.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长;(2)当13CN CD =时,求BD 的长. 14.综合与探究 问题背景数学活动课上,老师将一副三角尺按图1所示位置摆放,三角尺ABC 中,∠BAC=90°,∠B=∠C=45°;三角尺ADE 中,∠D=90°,∠DAE=60°,∠E=30°.分别作出∠BAD 、∠CAE 的平分线AM、AN.然后提出问题:求出∠MAN的度数.特例探究“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,AM和AN仍然是∠BAD和∠CAE的平分线.其中,按图2方式摆放时,AB和AE在同一直线上.按图3方式摆放时, AB、AD、AM在同一直线上.(1)计算:图2中∠MAN的度数为 °,图3中∠MAN的度数为 °(直接写出答案,不写过程).发现感悟(2)探究完图2,图3所示的特殊位置问题后,请你猜想图1中∠MAN的度数为 °;“智慧小组”的同学认为图2,图3中∠BAD、∠CAE的度数都已知或能求出具体的度数,图1中,∠MAN=∠MAB+∠BAE+∠EAN ,这些角比较一般化,求不出具体的度数,所以想到了用字母表示数,如果设∠BAE为x°,则可以用含x的式子表示∠BAD和∠CAE,进而可以表示∠MAB和∠EAN,这样就能求出∠MAN的度数;请你根据智慧小组的思路,求出图1中∠MAN的度数.类比拓展(3)受到“智慧小组”的启发,“创新小组”将三角尺按图4所示方式摆放,分别作出∠BAD、∠CAE的平分线AM、AN.他们认为也能求出∠MAN的度数.请你求出∠MAN的度数.15.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使60AOC ∠=︒,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)如图2,将图1中的三角板绕点O 逆时针旋转,使边OM 在BOC ∠的内部,且OM 恰好平分BOC ∠.求此时BOM ∠度数;(2)如图3,继续将图2中的三角板绕点O 按逆时针方向旋转,使得ON 在AOC ∠的内部.试探究AOM ∠与CON ∠之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 以一定速度沿逆时针方向旋转一周,在旋转的过程中,若射线ON 恰好与射线OC 在同一直线上,则此时AOM ∠的角度为_________.(直接写出结果)16.计算:(1)2113623⎛⎫-+⨯- ⎪⎝⎭ (2)48396735''︒+︒17.如图,已知直线AB ,CD 相交于点O ,OE ,OF 为射线,∠AOE=90°,OF 平分∠BOC , (1)若∠EOF=30°,求∠BOD 的度数;(2)试问∠EOF 与∠BOD 有什么数量关系?请说明理由.18.如图,已知110AOF BOC ∠=∠=︒,80BOF ∠=︒,OE 是AOC ∠的平分线,求COE ∠的度数.19.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1. (1)求BD 的长. (2)求CD 的长.20.如图,不在同一条直线上的四个点A ,B ,C ,D ,请按下列要求画图.(不写画法)(1)连接AC ,BD 相交于点O ;(2)连接CB ,DA ,延长线段CB 交DA 延长线交于点P ; (3)连接BA ,并延长,在射线BA 上用圆规截取线段BE BD =.三、解答题21.如图,平面上有三个点A 、B 、C ,根据下列要求画图. (1)画直线AB 、AC ; (2)作射线BC ;(3)在线段AB 上取点E 、在线段AC 上取点F ,连接EF ,并延长EF .22.如图1,线段AB 长为24个单位长度,动点P 从A 出发,以每秒2个单位长度的速度沿射线AB 运动,M 为AP 的中点,设P 的运动时间为x 秒.(1)当2PB AM =时,求x 的值(2)当P 在线段AB 上运动时,2BM BP -=________,请填空并说明理由. (3)如图2,当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA PN +的值不变,选择一个正确的结论,并求出其值.23.已知AOB ∠与COD ∠互补,射线OE 平分COD ∠,设AOC α∠=,BOD β∠=. (1)如图1,COD ∠在AOB ∠的内部, ①当45COD ∠=︒时,求αβ+的值. ②当3αβ=时,求∠BOE 的度数.(2)如图2,COD ∠在AOB ∠的外部,45BOE ∠=︒,求α与β满足的等量关系.24.如图,已知点C 在线段AB 上,点D 、E 分别在线段AC 、BC 上,(1)观察发现:若D 、E 分别是线段AC 、BC 的中点,且12AB =,则DE =_______; (2)拓展探究;若2AD DC =,2BE CE =,且10AB =,求线段DE 的长;(3)数学思考:若AD kDC =,BE kCE =(k 为正数),则线段DE 与AB 的数量关系是________.25.已知,∠AOD=120°,若B 是∠AOD 内任意一点,连接OB . (1) 如图①,若OM 平分∠AOB ,ON 平分∠BOD ,求∠MON 的度数.(2) 如图②,OC 是∠BOD 内的射线,且∠BOC=20°,若OM 平分∠AOC ,ON 平分∠BOD ,求∠MON 的大小.26.如图,已知OE 是AOC ∠的角平分线,OD 是BOC ∠的角平分线. (1)若70AOE ∠=︒,20COD ∠=︒,求AOB ∠的度数;(2)若45DOE ∠=︒,且180AOC BOC ∠+∠=︒,求COD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】两点确定一条直线,长方体的截面有多种形状,棱柱的棱长可能相等.【详解】∵两点确定一条直线,∴A说法是错误;∵各边相等,各角也相等的多边形是正多边形,是正确的,∴B说法是正确;∵长方体的截面形状可以是正方形,也可以是六边形,∴C说法是错误;一般长方体的棱长是不相等的,∴D说法是错误;故选B.【点睛】本题考查了一些列的数学基本概念和性质,熟记数学概念和性质是解题的关键.2.D解析:D【分析】根据线段中点的定义和线段三等分点的定义即可得到结论.【详解】解:∵C是线段AB的中点,AB=12cm,∴AC=BC=12AB=12×12=6(cm),点D是线段AC的三等分点,①当AD=13AC时,如图,BD=BC+CD=BC+23AC=6+4=10(cm);②当AD=23AC时,如图,BD=BC+CD′=BC+13AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:D.【点睛】本题考查了两点间的距离,线段中点的定义,分类讨论的思想的运用是解题的关键;3.C解析:C【分析】设较长的线段为AB,较短的线段为BC,根据中点定义求出BM、BN的长度,然后分①BC 不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM−BN,分别代入数据进行计算即可得解.【详解】解:如图,设较长的线段为AB=24cm,较短的线段为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM−BN=12−10=2cm,综上所述,两条线段的中点间的距离是2cm或22cm;故选:C.【点睛】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.4.A解析:A【分析】根据平角的定义、中点定义、角的和差以及两点之间,线段最短的性质直接判断即可.【详解】解:①直线是一个平角,角是由有公共端点的两条射线组成的,故错误;②如果线段AM MC =,则M 是线段AC 的中点;M 不一定在线段AC 上,故错误; ③在同一平面内,60AOB ∠=︒,30BOC ∠=︒,30AOC ∠=︒;射线OC 不一定在∠AOB 内部,故错误; ④两点之间,线段最短.正确, 故选:A . 【点睛】本题考查了平角的定义、线段中点的定义、角的和差和线段的性质,准确掌握定义,画出图形是解题关键.5.A解析:A 【分析】根据基本平面图的性质判断即可; 【详解】A 两点之间线段最短,故错误;B 两点确定一条直线,故正确;C 一个锐角的补角一定比它的余角大90°,故正确;D 等角的补角相等,故正确; 故答案选A . 【点睛】本题主要考查了基本平面图形的性质应用,准确分析判断是解题的关键.6.D解析:D 【分析】根据垂直的定义得∠AOE=∠BOE=90°,由角平分线的定义和对顶角的性质可得∠AOD=∠BOC=2∠COF .把∠DOE=∠AOD+90°, ∠EOF=90°-∠BOF=90°-∠COF 代入∠DOE=3∠EOF+5°可求出∠COF ,进而可求出∠AOD 的值. 【详解】解:∵EO AB ⊥, ∴∠AOE=∠BOE=90°. ∵OF 平分BOC ∠, ∴∠AOD=∠BOC=2∠COF .∵∠DOE=∠AOD+90°, ∠EOF=90°-∠BOF=90°-∠COF , 35DOE EOF ︒∠=∠+, ∴∠AOD+90°=3(90°-∠COF)+5°, ∴2∠COF+90°=270°-3∠COF+5°, ∴∠COF=37°, ∴∠AOD=2×37°=74°. 故选D . 【点睛】本题考查了角的和差,以及角平分线的定义,正确识图是解答本题的关键.7.A解析:A 【分析】根据直角三角板中各个角的度数、互余、互补的定义逐项判断即可得. 【详解】 A 、90180αβ∠+∠+︒=︒, 90αβ∴∠+∠=︒,即α∠与β∠互余,此项符合题意;B 、90β∠=︒,α∠为锐角,90αβ∴∠+∠>︒,则α∠与β∠不可能互余,此项不符题意;C 、18045135αβ∠=∠=︒-︒=︒,270αβ∴∠+∠=︒,则α∠与β∠不可能互余,此项不符题意;D 、904545,903060αβ∠=︒-︒=︒∠=︒-︒=︒,4560105αβ∴∠+∠=︒+︒=︒,则α∠与β∠不可能互余,此项不符题意;故选:A . 【点睛】本题考查了余角、补角、角的运算,熟练掌握角的运算是解题关键.8.B解析:B 【分析】根据线段的性质及两点间距离的定义对各说法进行逐一分析即可. 【详解】解:①符合两点之间线段最短,故本说法正确;②当ABC 不共线时,点C 不是线段AB 的中点,故本说法错误; ③射线OB 与射线OC 可能是两条不同的射线,故本说法错误; ④连接两点的线段的长度叫做这两点的距离,故本说法错误; ⑤符合两点确定一条直线,故本说法正确. 故选:B . 【点睛】本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键.9.B解析:B 【分析】根据线段的和差关系可求AB ,再根据14BD AB =,可求BD ,再根据线段的和差关系可求CD 的长. 【详解】解:如图,∵点C 在线段AB 上,AC=5,BC=3, ∴AB=AC+BC=5+3=8,∴14BD AB ==2,∵点D 在线段AB 的延长线上,∴CD=BC+BD=3+2=5.故选B【点睛】本题考查了线段的和差,根据题意,画出正确图形,是解题关键.10.B解析:B【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB ,然后根据CD=2,线段AB 的长度是一个正整数,依次对选项进行判断即可解答本题.【详解】解:由题意可得,图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和是: AC+CD+DB+AD+CB+AB=(AC+CD+DB )+(AD+CB )+AB=AB+AB+CD+AB=3AB+CD , ∵CD=2,∴AC+CD+DB+AD+CB+AB=3AB+2,∴A 选项中:当和为28时,即3AB+2=28,解得:AB=263,与AB 长度是正整数不符,故不符合要求;B 选项中:当和为29时,即3AB+2=29,解得:AB=9,AB 长度是正整数,故符合要求;C 选项中:当和为30时,即3AB+2=30,解得:AB=283,与AB 长度是正整数不符,故不符合要求;D 选项中:当和为31时,即3AB+2=31,解得:AB=293,与AB 长度是正整数不符,故不符合要求;故选:B .【点睛】本题考查线段的长度,解题的关键是明确题意,找出所求问题需要的条件. 11.A解析:A【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.【详解】A 、正方形的每个内角是90°,4个能密铺,符合题意;B 、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,不符合题意;C、正七边形每个内角是180°-360°÷7=9007,不能整除360°,不能密铺,不符合题意;D、正八边形每个内角是180°-360°÷8=135°,不能整除360°,不能密铺,不符合题意.故选:A.【点睛】本题考查了一种多边形的镶嵌问题,考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.12.A解析:A【分析】根据两点之间距离的定义可以判断A、C,根据射线的定义可以判断B,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.二、填空题13.(1)14(2)【分析】(1)根据题意可得出CM=ACCN=CD所以MN=CM+CN=(AC+CD)=AD=9从而得出AD的长根据AB:BC:CD=2:3:4可得出AB的长继而求出BD的长;(2)根解析:(1)14(2)378 23【分析】(1)根据题意可得出CM=12AC,CN=12CD,所以MN=CM+CN=12(AC+CD)=12AD=9,从而得出AD的长,根据AB:BC:CD=2:3:4,可得出AB的长,继而求出BD的长;(2)根据题意,当CN=13CD时,设AB=2x,BC=3x,CD=4x,可得AC=5x,因为点M是线段AC的中点,可得CM=2.5x,因为CN=13CD,可求出CN=43x,根据MN=9,可解出x的值,继而得出BD的长;【详解】解:(1)如图,∵点M是线段AC的中点,点N是线段CD的中点,∴CM=12 AC,CN=12CD,∴MN=CM+CN=12 (AC+CD)=12AD=9,∴AD=18,∵AB:BC:CD=2:3:4,∴AB=29×AD=4,∴BD=AD﹣AB=18﹣4=14;(2)∵当CN=13CD时,如图,∵AB:BC:CD=2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=12AC=2.5x,∵CN=13CD=43x,∴CM+CN =52x+43x =MN =9, ∴x =5423, ∴BD =7x =37823; 【点睛】 本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键.14.(1)7575;(2)75过程见解析;(3)105°【分析】(1)图2由角平分线的性质得到再结合角的和差解题即可;图3由角平分线的性质得到再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE解析:(1)75,75;(2)75,过程见解析;(3)105°.【分析】(1)图2,由角平分线的性质得到11,22EAM MAD EAD CAN NAB CAB ∠=∠=∠∠=∠=∠,再结合角的和差解题即可;图3,由角平分线的性质,得到12CAN NAE CAE ∠=∠=∠,再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE+∠EAN ,结合角平分线的性质解题;(3)由∠MAN=∠MAD +∠EAN-∠DAE ,结合角平分线的性质解题.【详解】解:(1)图2中,AM 和AN 是∠BAD 和∠CAE 的平分线, 1130,4522EAM MAD EAD CAN NAB CAB ∴∠=∠=∠=︒∠=∠=∠=︒ 304575MAN EAM NAB ∴∠=∠+∠=︒+︒=︒;图3中,AM 和AN 是∠BAD 和∠CAE 的平分线,111()(9060)15222CAN NAE CAE CAB EAB ∴∠=∠=∠=∠-∠=⨯︒-︒=︒ 901575MAN MAC CAN ∴∠=∠-∠=︒-︒=︒故答案为:75;75;(2)设∠BAE 为x°,则∠BAD=∠DAE- x°=60°- x°,∠CAE=∠BAC- x°=90°-x°因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAB=12∠BAD =12(60°- x°)=30°-12 x° ∠EAN=12∠CAE=12(90°- x°)=45°+12x°. 所以∠MAN=∠MAB+∠BAE+∠EAN=(30°-12 x°)+ x°+(45°-12x°) =75°, 故答案为:75°;(3)设∠BAE 为x°,则∠BAD=∠DAE+ x°=60°+ x°,∠CAE=360°-∠BAC-∠BAE=360°-90°-x°=270°-x°,因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAD=12∠BAD =12(60°+ x°)=30°+12 x° ∠EAN=12∠CAE=12(270°- x°)=135°-12x°. 所以∠MAN=∠MAD +∠EAN-∠DAE=(30°+12 x°)+(135°-12x°)- 60° =105°.【点睛】 本题考查三角板的特殊角、角平分线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.(1)60°;(2)理由见解析;(3)30°或150°【分析】(1)由OM 恰好平分∠BOC 得∠BOM=∠BOC=(180°-∠AOC )=(180°-60°)=60°;(2)由∠AOM+∠NOA=90解析:(1)60°;(2)30AOM NOC ∠-∠=︒,理由见解析;(3)30°或150°【分析】(1)由OM 恰好平分∠BOC 得,∠BOM=12∠BOC=12(180°-∠AOC )=12(180°-60°)=60°;(2)由∠AOM+∠NOA=90°,∠AON+∠NOC=60°,可得结论;(3)结合旋转过程分情况讨论,并利用角的和差关系计算求解【详解】(1)∵60AOC ∠=︒∴180********BOC AOC ∠=︒-∠=︒-︒=︒,又∵OM 平分BOC ∠ ∴1602BOM BOC ∠=∠=︒ (2)30AOM NOC ∠-∠=︒,理由∵6090AOC MON ∠=︒∠=︒,∴90AOM MON AON AON ∠=∠-∠=︒-∠60NOC AOC AON AON ∠=∠-∠=︒-∠∴30AOM NOC ∠-∠=︒.(3)如图,当点N 在射线OC 上时此时∠AOM=∠MON-∠AOC=90°-60°=30°当点N 在射线OC 的反向延长线上时,此时,∠MOB=∠MON-∠BON=∠MON-∠AOC=90°-60°=30°∴∠AOM=180°-∠MOB=150°综上,∠MON 的度数为30°或150°故答案为:30或150︒【点睛】考查角平分线的意义及角的和差运算,理解题意,注意分类讨论思想解题是关键. 16.(1)-8;(2)【分析】(1)先算乘方和括号再算乘法后算加法;(2)两个度数相加度与度分与分对应相加分的结果若满60则转化为度从而得出答案【详解】解:(1)==-9+1=-8;(2)==【点睛】本解析:(1)-8;(2)'11614︒【分析】(1)先算乘方和括号,再算乘法,后算加法;(2)两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度,从而得出答案.【详解】解:(1)2113623⎛⎫-+⨯-⎪⎝⎭ =1966-+⨯=-9+1=-8;(2)48396735''︒+︒='11574︒='11614︒.【点睛】本题考查了有理数的混合运算,以及度、分、秒的计算,熟练掌握1°=60',160'''=是解答本题的关键.17.(1)∠BOD=60°;(2)∠BOD=2∠EOF 理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°由OF 平分∠BOC 求出∠BOC=120°进而求出∠BOD=180°-120°=60°;解析:(1)∠BOD=60°;(2)∠BOD=2∠EOF ,理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF 平分∠BOC 求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB 、∠BOC 分别用α的代数式表示,最后∠BOD=180°-∠BOC 即可求解.【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°,∵∠EOF=30°,∴∠FOB=90°-30°=60°,∵OF 为∠BOC 的角平分线,∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°;(2)设∠EOF=α,则∠FOB=90°-α,∵OF 为∠BOC 的角平分线,∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α,即∠BOD=2∠EOF .【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.18.【分析】根据可证利用角的和差关系可求出则由得出即可根据角平分线定义求得结果【详解】解:∵∴即∵∴∴∴∵是的平分线∴【点睛】本题考查了角的计算问题掌握角平分线的定义并能利用角的和差关系求解是解题的关键 解析:70︒【分析】根据AOF BOC ∠=∠可证AOB COF ∠=∠,利用角的和差关系可求出30AOB ∠=︒,则由110BOC ∠=°得出140BO OC O C A A B ∠=+∠=∠︒,即可根据角平分线定义求得结果.【详解】解:∵AOF BOC ∠=∠,∴AOF BOF BOC BOF ∠-∠=∠-∠,即AOB COF ∠=∠.∵80BOF ∠=︒,110BOC ∠=°,∴30BO OF BO C C F ∠-∠=∠=︒,∴30AOB ∠=︒,∴140BO OC O C A A B ∠=+∠=∠︒,∵OE 是AOC ∠的平分线, ∴1702COE AOC ∠=∠=︒. 【点睛】本题考查了角的计算问题,掌握角平分线的定义并能利用角的和差关系求解是解题的关键. 19.(1)20cm ;(2)10cm 【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC 再由CD=BC-BD 可得出答案【详解】解:(1)∵AD 与DB 的长度之比2:1∴(2解析:(1)20cm ;(2)10cm【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC ,再由CD=BC-BD ,可得出答案.【详解】解:(1)∵60cm AB =,AD 与DB 的长度之比2:1, ∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.20.(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结AC 和BD 并把ACBD 的交点标记为O 即可;(2)连接CB 和DA 并分别延长并把它们延长线的交点标记为P即可;(3)以B为端点作一条射线经过解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结A、C和B、D,并把AC、BD的交点标记为O即可;(2)连接CB和DA并分别延长,并把它们延长线的交点标记为P即可;(3)以B为端点,作一条射线经过A,然后以B为圆心、BD长为半径画弧交射线BA于点E即可.【详解】解:(1)如图,AC,BD相交于点O.(2)如图,CB,DA相交于点P.(3)如答图,BE为所求.【点睛】本题考查与线段有关的尺规作图,熟练掌握用尺规作线段及其延长线以及在射线上截取线段等于已知线段的方法和步骤是解题关键.三、解答题21.见解析【分析】(1)画直线AB、AC注意两端延伸;(2)以B点为端点,向点C方向延伸;(3)根据几何语言画出对应的几何图形即可.【详解】解:(1)直线AB、AC为所作;(2)射线BC为所作;(3)EF为所作.【点睛】本题考查了直线、线段、射线的画法,解决此类题目的关键是熟悉基本几何图形的性质,能区别直线、线段、射线.22.(1)6;(2)24;理由见解析;(3)①MN 长度不变,为12;②MA PN +的值改变,理由见解析.【分析】(1)根据PB=2AM 建立关于x 的方程,解方程即可;(2)将BM=24-x ,PB=24-2x 代入2BM-BP 后,化简即可得出结论;(3)利用PA=2x ,AM=PM=x ,PB=2x-24,PN=12PB=x-12,分别表示出MN 及MA+PN 的长度,即可作出判断.【详解】解:(1)∵M 是线段AP 的中点,∴AM=12AP=x , PB=AB-AP=24-2x .∵PB=2AM ,∴24-2x=2x ,解得x=6;(2)∵AM=x ,BM=24-x ,PB=24-2x ,∴2BM-BP=2(24-x )-(24-2x )=24,即2BM-BP 为定值;(3)当P 在AB 延长线上运动时,点P 在B 点右侧.∵PA=2x ,AM=PM=x ,PB=2x-24,PN=12PB=x-12, ∴①MN=PM -PN=x-(x-12)=12是定值;②MA+PN=x+x -12=2x-12,是变化的.【点睛】本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.23.(1)①90°;②45°;(2)3360αβ+=︒.【分析】(1)①根据补角的定义可得135AOB ∠=︒,AOB ∠-COD ∠即可得到结论; ②设2COD x ∠=,根据角平分线的定义和补角的定义即可得到结论;(2)根据角平分线的定义和角的和差求出45COE DOE β∠=∠=-︒,则2290COD DOE β∠=∠=-︒,根据角的和差求出,BOC AOB ∠∠,再由AOB ∠与COD ∠互补即可得到结论.【详解】解:(1)①∵180AOB COD ∠+∠=︒,45COD ∠=︒,∴135AOB ∠=︒,∴90AOB COD αβ+=∠-∠=︒;②设2COD x ∠=,∵OE 平分COD ∠, ∴12COE DOE COD x ∠=∠=∠=, ∵180AOB COD ∠+∠=︒,∴22180x x αβ+++=︒又∵3αβ=, ∴()4180x β+=︒,∴45BOE x β∠=+=︒;(2)∵45COE DOE BOD BOE β∠=∠=∠-∠=-︒,∴2290COD DOE β∠=∠=-︒,∵90BOC BOE COE β∠=∠-∠=︒-,∴90AOB AOC BOC αβ∠=∠-∠=+-︒,∵180AOB COD ∠+∠=︒,∴()()90290180αββ+-︒+-︒=︒, ∴3360αβ+=︒【点睛】本题考查了角的计算,角平分线的定义,补角的定义,正确的识别图形是解题的关键. 24.(1)6;(2)103;(3)()1AB k DE =+ 【分析】(1)根据中点的定义,结合线段的和、差计算即可(2)利用线段之间的和、差关系倍数关系计算即可(3)结合(2)的求解,再利用线段之间的和、差关系倍数关系计算即可【详解】 (1)D 、E 为线段AC ,BC 的中点11,22DC AC CE BC ∴== ()12DC CE AC BC ∴+=+ ,DE DC CE AB AC BC =+=+12DE AB ∴=1211262AB DE =∴=⨯= (2)2,2AD DC BE CE ==AB AD DC CE BE =+++,()223AB DC DC CE CE DC CE ∴=+++=+10,AB DE DC CE ==+3310103DE ABDE DE ∴=∴=∴=(3),AD kDC BE kCE == AB AD DC CE BE =+++,DE DC CE =+()()1AB kDC DC CE kCE k DC CE ∴=+++=++()1k DE AB ∴+=【点睛】本题考查了线段n 等分点的有关计算,掌握线段之间和、差倍数关系是解题关键. 25.(1)60°;(2)50°【分析】(1)根据角平分线的定义求出∠MOB 和∠BON ,然后根据∠MON=∠MOB+∠BON 代入数据进行计算即可得解;(2)由图②可知,∠MON=∠MOC+∠BON-∠BOC ,根据角平分线的定义求出∠MOC=12∠AOC ,和∠BON=12∠BOD ,将其代入到∠MON=∠MOC+∠BON-∠BOC 中,然后进行角度的等量转换,即可求得.【详解】(1)∵OM 平分∠AOB ,∴ ∠MOB=12∠AOB , 又 ∵ ON 平分∠BOD , ∴ ∠BON=12∠BOD , ∴ ∠MON=∠MOB+∠BON , =12∠AOB+12∠BOD , =12∠AOD , =12×120°,(2) ∵OM 平分∠AOC ,∴ ∠MOC=12∠AOC , 又∵ ON 平分∠BOD , ∴ ∠BON=12∠BOD , ∴∠MON=∠MOC+∠BON-∠BOC , =12∠AOC+12∠BOD-∠BOC , =12×(∠AOC+∠BOD)-∠BOC , =12×(∠AOD+∠BOC)-∠BOC , =12(120°+20°)-20°, =50°.【点睛】本题考查了角的计算、角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用.26.(1)100°;(2)22.5°【分析】(1)由角平分线的定义可知∠BOC=2∠COD ,∠AOC=2∠AOE ,根据∠AOB=∠AOC-∠BOC 易得结果;(2)由角平分线定义,设∠COD=∠BOD=x .得∠BOE=45°−x ,∠COE=45°+x .∠AOE=∠COE=45°+x 再根据题意∠AOC+∠BOC=180°,列方程,求出x ,即可得.【详解】解:(1)因为OD 是BOC ∠的角平分线,20COD ∠=︒,所以240BOC COD ∠=∠=︒.因为OE 是AOC ∠的角平分线,所以2140AOC AOE ∠=∠=︒.所以14040100AOB AOC BOC ∠=∠-∠=-︒=︒.(2)因为OD 是BOC ∠的角平分线,所以设COD BOD x ∠=∠=.因为45DOE ∠=︒,所以45BOE x ∠=︒-,45COE x ∠=︒+.因为OE 是AOC ∠的角平分线,所以45AOE COE x ∠=∠=︒+因为180AOC BOC ∠+∠=︒,所以()2452180x x ︒++=︒,所以22.5x =︒,即22.5COD ∠=︒.本题考查了角平分线知识,关键是根据题意,由角平分线得定义得出角之间的等量关系,从而根据等量关系求出角的度数.。

基本平面图形单元检测(含答案)

基本平面图形单元检测(含答案)

基本平面图形单元检测时间:90分钟满分:100分一、选择题(本题共10小题,每小题3分,共30分)1.平面上有四点,经过其中的两点画直线最多可画出( ).A.三条B.四条C.五条D.六条2.在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ).A.①②B.①③C.②④D.③④3.平面上有三点A,B,C,如果AB=8,AC=5,BC=3,那么( ).A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外4.下列各角中,是钝角的是( ).A.14周角 B.23周角 C.23平角 D.14平角5.如图,O为直线AB上一点,∠COB=26°30′,则∠1=( ).A.153°30′B.163°30′C.173°30′D.183°30′6.在下列说法中,正确的个数是( ).①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上十二点整时,时针和分针形成的角是周角;④钟表上差一刻六点时,时针和分针形成的角是直角;⑤钟表上九点整时,时针和分针形成的角是直角.A.1 B.2 C.3 D.47.如图,C是AB的中点,D是BC的中点,下面等式不正确的是( ).A.CD=AC-DB B.CD=AD-BCC.CD=12AB-BD D.CD=13AB第1 页8.如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于( ).A.3 cm B.6 cm C.11 cm D.14 cm9.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a,b)表示,则从景点A到景点C用时最少....的路线是( ).A.A→E→C B.A→B→C C.A→E→B→C D.A→B→E→C 10.如图所示,云泰酒厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在金斗大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该厂的接送车打算在这个路段上只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( ).A.点A B.点B C.AB之间D.BC之间二、填空题(本题共4小题,每小题4分,共16分)11.如图所示,线段AB比折线AMB__________,理由是:____________________.12.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=10,AC =6,则CD=__________ .13.现在是9点20分,此时钟面上的时针与分针的夹角是__________.14.如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南——淄博——潍坊——青岛,那么要为这次列车制作的火车票有__________种.三、解答题(本题共4小题,共54分)15.(12分)计算:(1)将24.29°化为度、分、秒;(2)将36°40′30″化为度.第2 页16.(7分)请以给定的图形“”(两个圆,两个三角形,两条线段)构思独特而且又有意义的图形,并且写上一句贴切的解说词.17.(8分)已知线段a,b(如图),画出线段AB,使AB=a+2b.18.(8分)已知在平面内,∠AOB=70°,∠BOC=40°,求∠AOC的度数.19.(9分)如图,已知AB和CD的公共部分BD=13AB=14CD.线段AB,CD 的中点E,F之间的距离是10 cm,求AB,CD的长.20.(10分)某摄制组从A市到B市有一天的路程,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一(原计划行驶到C地),过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C地到这里路程的二分之一就到达目的地了,问A,B两市相距多少千米?第3 页基本平面图形单元检测答案1答案:D 2答案:D3答案:A4答案:C 点拨:因为23平角=23×180°=120°,所以23平角是钝角,故选C.5答案:A 点拨:∠1=180°-26°30′=153°30′.6答案:C 点拨:说法①④错误.7答案:D8答案:B9答案:D 点拨:分别计算各选项中的用时可知,从景点A到景点C用时最少的线路是A→B→E→C,故选D.10答案:A11答案:短两点之间,线段最短12答案:2 点拨:∵AB=10,AC=6,∴BC=AB-AC=10-6=4.又∵点D是线段BC的中点,∴CD=12BC=2.13答案:160°点拨:可画出钟表的示意图帮助解答(如图).观察图可知,9点20分时,时针和分针的夹角是5个大格加时针从9点开始转过的角度,所以9点20分时,时针和分针的夹角是5×30°+20×0.5°=160°.14答案:10 点拨:由泰山到青岛的某一次列车的车票的种数是:泰山——济南,泰山——淄博,泰山——潍坊,泰山——青岛;济南——淄博,济南——潍坊,济南——青岛;淄博——潍坊,淄博——青岛;潍坊——青岛,共10种.15解:(1)先将0.29°化为17.4′,再将0.4′化为24″.24.29°=24°+0.29×60′=24°+17′+0.4×60″=24°+17′+24″=24°17′24″.(2)先将30″化为0.5′,再将40.5′化为0.675°.∵1′=160⎛⎫︒⎪⎝⎭,1″=160⎛⎫'⎪⎝⎭,∴30″=160⎛⎫'⎪⎝⎭×30=0.5′,40.5′=160⎛⎫︒⎪⎝⎭×40.5=0.675°.∴36°40′30″=36.675°.第4 页第 5 页16解:以下答案供参考.17解:如图所示:18解:(1)当∠BOC 在∠AOB 的外部时,如图1所示,∠AOC =∠AOB +∠BOC =70°+40°=110°;(2)当∠BOC 在∠AOB 的内部时,如图2所示,∠AOC =∠AOB -∠BOC =70°-40°=30°.故∠AOC 的度数为110°或30°.19解:设BD =x cm ,则AB =3x cm ,CD =4x cm.因为E ,F 分别是线段AB ,CD 的中点, 所以EB =12AB =1.5x ,FD =12CD =2x . 又EF =10 cm ,EF =EB +FD -BD , 所以1.5x +2x -x =10. 解得x =4.所以3x =12,4x =16.所以AB 长12 cm ,CD 长16 cm.20解:如图,设小镇为D ,傍晚汽车在E 处休息,由题意知,DE =400千米,AD =12DC ,EB =12CE ,AD +EB =12(DC +CE )=12DE =12×400=200(千米).所以AB =AD +EB +DE =600(千米).答:A ,B 两市相距600千米.。

(必考题)初中数学七年级数学上册第四单元《基本平面图形》检测题(含答案解析)(1)

(必考题)初中数学七年级数学上册第四单元《基本平面图形》检测题(含答案解析)(1)

一、选择题1.如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”.图中“同棋共线”的线共有( )A .12条B .10条C .8条D .3条2.有下列说法:①由许多条线段连接而成的图形叫做多边形;②从一个多边形(边数为n )的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成()2n -个三角形;③角的边越长,角越大;④一条射线就是一个周角.其中正确的结论有( )A .1个B .2个C .3个D .0个3.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ = 4.如图,已知110AOB ∠=︒,60BOC ∠=︒,OD 平分COA ∠,则AOD ∠度数为( )A .25︒B .20︒C .85︒D .305.两条长度分别为20cm 和24cm 的线段有一端点重合,且在一条直线上,则此两条线段的中点之间的距离为( )A .2cmB .22cmC .2cm 或22cmD .4cm 或20cm 6.若线段122A A =,在线段12A A 的延长线上取一点3A ,使2A 是13A A 的中点;在线段13A A 的延长线上取一点4A ,使3A 是41A A 的中点;在线段41A A 的延长线上取一点5A ,使4A 是15A A 的中点……,按这样操作下去,线段2021A A 的长度为( )A .182B .192C .202D .212 7.甲打电话给乙:“你在哪儿啊?”在下面乙的回话中,甲能确定乙位置的是( ). A .我和你相距500米 B .我在你北偏东30的方向500米处C .我在你北偏东30的方向D .你向北走433米,然后转90︒再走250米 8.把一副三角板按如图所示方式拼在一起,并作ABE ∠的平分线BM ,则CBM ∠的度数是( )A .120°B .60°C .30°D .15°9.下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若线段AC BC =,则点C 是线段AB 的中点;③射线OB 与射线OC 是同一条射线;④连结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有( )A .1个B .2个C .3个D .4个10.永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A ,B 两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是( )A .两点确定一条直线B .垂线段最短C .过一点有且只有一条直线与已知直线垂直D .两点之间,线段最短11.已知点A ,B ,C 在同一条直线上,线段5AC =,2BC =,则线段AB 的长度为( )A .7B .3C .7或3D .不能确定 12.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个 B .2个 C .3个 D .4个二、填空题13.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数.14.如图,已知点D 在线段AB 上,且:7:3,6cm AD DB DB ==,若点M 是线段AD 的中点,求线段BM 的长.15.数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休”.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来从而实现优化解题途径的目的.请你利用“数形结合”的思想解决以下的问题:(1)如图1:射线OC 是AOB ∠的平分线,这时有数量关系:AOB ∠=______. (2)如图2:AOB ∠被射线OP 分成了两部分,这时有数量关系:AOB ∠=______. (3)如图3:直线AB 上有一点M ,射线MN 从射线MA 开始绕着点M 顺时针旋转,直到与射线MB 重合才停止.①请直接回答AMN ∠与BMN ∠是如何变化的?②AMN ∠与BMN ∠之间有什么关系?请说明理由.16.已知O 为直线AB 上一点,射线OD 、OC 、OE 位于直线AB 上方,OD 在OE 的左侧,120AOC ∠=︒,DOE α∠=.(1)如图1,70α=︒,当OD 平分AOC ∠时,求EOB ∠的度数.(2)如图2,若2DOC AOD ∠=∠,且80α<︒,求EOB ∠的度数(用含α的代数式表示).17.(初步探究)(1)如图1,已知线段12cm AB =,点C 和点D 为线段AB 上的两个动点,且3cm CD =,点M 、N 分别是AC 和BD 的中点,求MN 的长是多少?(类比探究)如图2,已知,直角COD ∠与平角AOB ∠如图摆放在一起,且OM 和ON 分别是AOC ∠,BOD ∠的角平分线,则MON ∠的度数为多少?(知识迁移)(3)当AOB α∠=,COD β∠=时,如图3摆放在一起,且OM 和ON 分别是AOC ∠,BOD ∠的角平分线,则MON ∠的度数为多少?(α和β均为小于平角的角)18.如图,平面上有A 、B 、C 、D 、F 五个点,请根据下列语句画出图形:(1)直线BC 与射线AD 相交于点M ;(2)连接AB ,并延长线段AB 至点E ,使点B 为AE 中点;(3)在直线BC 上找一点P ,使点P 到A 、F 两点的距离之和最小,作图的依据是: .19.把下列解答过程补充完整:如图,已知线段16cm AB =,点C 为线段AB 上的一个动点,点M ,N 分别是AC 和BC的中点.(1)若点C 恰为AB 的中点,求MN 的长;(2)若6cm AC =,求MN 的长;(3)试猜想:不论AC 取何值(不超过16cm ),MN 的长总等于_______________. 20.如图,线段AB 的中点为M ,C 点将线段MB 分成MC ,CB 两段,且:1:3MC CB =,若20AC =,求AB 的长.三、解答题21.已知:90AOB ∠=︒,做射线OC ,OD 是AOC ∠的角平分线,OE 是BOC ∠的角平分线.(1)如图①,当70BOC ∠=︒时,求DOE ∠的度数;①(2)如图②,若射线OC 在AOB ∠内部绕O 点旋转,当BOC a ∠=时,求DOE ∠的度数;②(3)若射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,求DOE ∠的度数.22.如图,已知线段a b c 、、,用尺规求作线段AM ,使得2AM a b c =+-.(不写作法,保留作图痕迹)23.已知线段AB ,请用尺规按下列要求作图,保留作图痕迹,不写作法:(1)延长线段BA 到C ,使3AC AB =;(2)延长线段AB 到D ,使3AD AB =;(3)在上述作图条件下,若8cm CB =,求BD 的长度.24.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1.(1)求BD 的长.(2)求CD 的长.25.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.26.如图,点O 在直线AB 上,OE 、OF 分别平分AOC ∠、BOD ∠.(1)当144BOC ∠=︒时,COE ∠=(2)当40AOC ∠=︒,60BOD ∠=︒时,求EOF ∠的度数;(3)当40COD ∠=︒时,求EOF ∠的度数;(4)当COD x ∠=︒时,直接写出EOF ∠的度数(用含x 的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把问题转化两白棋子共线和两黑棋子共线两种情形求解即可.【详解】结合图形,从横行、纵行、斜行三个方面进行分析;一条直线上至少有两颗棋子并且颜色相同,如下,共有10条:故选B.【点睛】本题考查了新定义问题,准确理解新定义的内涵,并灵活运用分类的思想是解题的关键.2.A解析:A【分析】根据多边形的定义,多边形对角线,角的大小,周角等知识逐项判断即可求解.【详解】解:①由许多条线段连接而成的图形叫做多边形,判断错误;②从一个多边形(边数为n)的同一个顶点出发,分别连接这个顶点与其余与之不相邻的n-个三角形,判断正确;各顶点,可以把这个多边形分割成()2③角的边越长,角越大,判断错误;④一条射线就是一个周角,判断错误.故选:A【点睛】本题考查了多边形、角等知识,理解多边形、多边形对角线、角、周角的概念是解题关键.3.A解析:A设运动时间为t 秒,根据题意可知AP=3t ,BQ=t ,AB=2,然后分类讨论:①当动点P 、Q 在点O 左侧运动时,②当动点P 、Q 运动到点O 右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t 秒,由题意可知: AP=3t , BQ=t ,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P 、Q 在点O 左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),∵OQ= BO- BQ=2-t ,∴PQ= 2OQ ;②当动点P 、Q 运动到点O 右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),∵OQ=BQ- BO=t-2,∴PQ= 2OQ ,综上所述,在运动过程中,线段PQ 的长度始终是线段OQ 的长的2倍,即PQ= 2OQ 一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用. 4.A解析:A【分析】先求出∠AOC=50°,再根据角平分线的定义求出∠AOD 即可.【详解】解:∵110AOB ∠=︒,60BOC ∠=︒,∴∠AOC=∠AOB-∠BOC=110°-60°=50°,∵OD 平分COA ∠,∴∠AOD=12∠AOC=12×50°=25° 故选:A .【点睛】主要考查了角平分线的定义和角的运算,要会结合图形找到其中的等量关系.5.C【分析】设较长的线段为AB,较短的线段为BC,根据中点定义求出BM、BN的长度,然后分①BC 不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM−BN,分别代入数据进行计算即可得解.【详解】解:如图,设较长的线段为AB=24cm,较短的线段为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM−BN=12−10=2cm,综上所述,两条线段的中点间的距离是2cm或22cm;故选:C.【点睛】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.6.B解析:B【分析】根据线段中点的定义,和两点之间的距离,找出题目中的规律,即可得到结论.【详解】由题意可知:如图写出线段的长,A1A2=2,A2是 A1A3的中点得A1A2=A2A3=2,A1A3=4,A3是 A1A4的中点得A1A3=A3A4=4,A1A4=8,A4是 A1A5的中点得A1A4=A4A5=8,……根据线段的长,找出规律,∵A1A2=2,A2A3=2=21,A3A4=4=22,A4A5=8=23,A5A6=16=24,A7A8=……,总结通项公式,∴线段 A n A n+1=2n-1(n为正整数)∴线段 A20A21=219故此题选:B【点睛】本题考查了两点间的距离,线段中点的定义,找出题目中的规律是解题的关键.7.B解析:B【分析】要确定乙位置,必须有方位角和距离两个条件才能确定,由此进行判断即可.【详解】解:A、我和你相距500米,没有方位,不能确定乙位置,故此选项错误;B、我在你北偏东30°的方向500米处,能确定乙位置,故此选项正确;C、我在你北偏东30°的方向,没有距离,不能确定乙位置,故此选项错误;D、你向北走433米,然后转90°再走250米,没有说清顺时针还是逆时针转,不能确定乙位置,故此选项错误;故选:B.【点睛】此题主要考查了如何利用方位角和距离确定位置,关键是掌握确定位置的方法.8.C解析:C【分析】根据角平分线的定义和角的和差计算即可.【详解】解:∵一副三角板所对应的角度是60°,45°,30°,90°,∴∠ABE=∠ABC+∠CBE=30°+90°=120°,∵BM平分∠ABE,∴∠ABM=12∠ABE=12×120°=60°,∴∠CBM=∠ABM−∠ABC=60°−30°=30°,故答案为:30°.【点睛】本题考查了角平分线的定义和角的计算.解题的关键是掌握角平分线的定义,明确一副三角板所对应的角度是60°,45°,30°,90°.9.B解析:B【分析】根据线段的性质及两点间距离的定义对各说法进行逐一分析即可.【详解】解:①符合两点之间线段最短,故本说法正确;②当ABC不共线时,点C不是线段AB的中点,故本说法错误;③射线OB与射线OC可能是两条不同的射线,故本说法错误;④连接两点的线段的长度叫做这两点的距离,故本说法错误;⑤符合两点确定一条直线,故本说法正确.故选:B .【点睛】本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键.10.D解析:D【分析】根据线段的性质分析得出答案.【详解】由题意中改直后A ,B 两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D .【点睛】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.11.C解析:C【分析】分类讨论,点B 在线段AC 上或在线段AC 外,即可得到结果.【详解】解:①如图所示:∵5AC =,2BC =,∴527AB AC BC =+=+=;②如图所示:∵5AC =,2BC =,∴523AB AC BC =-=-=.故选:C .【点睛】本题考查线段的和差问题,解题的关键是进行分类讨论,画出图象,求出线段的和或差. 12.A解析:A【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.二、填空题13.(1)∠DOE=90°;(2)∠AOE=155°【分析】(1)首先根据角平分线定义可得∠COD=∠AOC∠COE=∠BOC然后再根据角的和差关系可得答案;(2)首先计算出∠AOD的度数再利用∠AOE解析:(1)∠DOE=90°;(2)∠AOE =155°.【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC,∠COE=12∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠AOD的度数,再利用∠AOE =∠AOD+∠DOE可得答案.【详解】解:(1)∵OD平分∠AOC,OE平分∠COB,∴∠DOC=12∠AOC,∠COE=12∠COB,∴∠DOE =∠DOC +∠COE =12∠AOC +12∠COB =12(∠AOC +∠COB) =12∠AOB =12×180° =90°;(2)∵OD 平分∠AOC ,∠COD =65°,∴∠AOD =∠COD =65°,∴∠AOE =∠AOD +∠DOE=65°+90°=155°;【点睛】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.14.13cm 【分析】根据线段的长度和比的关系求AD 的长然后利用线段中点的定义求得DM 的长度从而求解BM 【详解】解:∵∴∵点M 是线段的中点∴∴∴线段的长为13cm 【点睛】本题考查线段的和差计算及中点的定义 解析:13cm【分析】根据线段的长度和比的关系求AD 的长,然后利用线段中点的定义求得DM 的长度,从而求解BM .【详解】解:∵:7:3,6cm AD DB DB ==,∴=637=14AD cm ÷⨯∵点M 是线段AD 的中点 ∴172DM AD cm == ∴7613BM MD BD cm =+=+=∴线段BM 的长为13cm .【点睛】 本题考查线段的和差计算及中点的定义,理解题意,找准线段间数量关系正确列式计算是解题关键.15.(1)(答案不唯一);(2);(3)①逐渐增大逐渐减小;②见解析【分析】(1)根据角平分线定义容易得出结论;(2)根据图形解答;(3)①由射线从射线开始绕着点顺时针旋转可知逐渐增大逐渐减小;②由∠A 解析:(1)2AOC ∠(答案不唯一);(2)AOP BOP ∠+∠;(3)①AMN ∠逐渐增大,BMN ∠逐渐减小;②180AMN BMN ∠+∠=︒,见解析.【分析】(1)根据角平分线定义容易得出结论;(2)根据图形解答;(3)①由射线MN 从射线MA 开始绕着点M 顺时针旋转可知AMN ∠逐渐增大,BMN ∠逐渐减小;②由∠AMB 是平角即可得出结论.【详解】解:(1)∵射线OC 是AOB ∠的平分线,∴22AOB AOC COB ∠=∠=∠,故答案为:2AOC ∠(或2COB ∠);(2)由图可知,AOB AOP BOP ∠=∠+∠,故答案为:AOP BOP ∠+∠;(3)①AMN ∠逐渐增大,BMN ∠逐渐减小;②180AMN BMN ∠+∠=︒.证明:∵180AMB ∠=︒,AMN BMN AMB ∠+∠=∠,∴180AMN BMN ∠+∠=︒.【点睛】本题考查了角平分线定义,角的有关计算,注意利用数形结合的思想.16.(1)50°;(2)【分析】(1)根据角平分线的定义即可得到结论;(2)根据角的和差即可得到结论【详解】解:(1)平分当时即则;(2)则【点睛】此题主要考查了几何图形中角度计算问题角平分线的定义以及解析:(1)50°;(2)140α︒-.【分析】(1)根据角平分线的定义即可得到结论;(2)根据角的和差即可得到结论.【详解】解:(1)OD 平分AOC ∠,1602AOD COD AOC ∴∠=∠=∠=︒, 当70α=︒时,即70DOE ∠=︒.则180EOB AOD DOE ∠=︒-∠-∠180607050=︒-︒-︒=︒;(2)2DOC AOD ∠=∠,120AOC ∠=︒,1=120401+2AOD ∴∠︒⨯=︒,80DOC ∠=︒, 80α<︒,则180EOB AOD DOE ∠=︒-∠-∠18040α=︒-︒-140α=︒-.【点睛】此题主要考查了几何图形中角度计算问题,角平分线的定义以及角的有关计算,熟记角平分线的定义是解决此题的关键.17.(1)(2)(3)【分析】(1)根据线段的中点及线段的和与差即可得出答案;(2)根据角的平分线及角的和与差即可得出答案;(3)根据角的平分线及角的和与差即可得出答案【详解】解:(1)点分别是和的中点解析:(1)7.5cm (2)135︒ (3)2αβ+【分析】(1)根据线段的中点及线段的和与差即可得出答案;(2)根据角的平分线及角的和与差即可得出答案;(3)根据角的平分线及角的和与差即可得出答案.【详解】解:(1)点M 、N 分别是AC 和BD 的中点, 11,22AM AC BN BD ∴==, 12cm AB =,3cm CD =,1239AC BD ∴+=-=cm ,()1937.522MN CD MC DN CD AC BD cm ∴=++=++=+=; (2)OM 和ON 分别是AOC ∠,BOD ∠的角平分线,,AOM MOC BON NOD ∴∠=∠∠=∠,11,22MOC AOC DON BOD ∴∠=∠∠=∠, 90180COD AOB ∠=︒∠=︒,,AOC COD BOD AOB ∠+∠+∠=∠,90AOC BOD ∴∠+∠=︒,45MOC NOD ∴∠+∠=︒,9045135MON MOC COD DON ∴∠=∠+∠+∠=︒+︒=︒;(3)∵OM 是AOC ∠的角平分线, ∴12MOC AOC ∠=∠, ∵ON 是BOD ∠的角平分线, ∴12NOD BOD ∠=∠, ∵AOB α∠=,COD β∠=,∴MON MOC COD NOD ∠=∠+∠-∠12AOC BOC BOD NOD =∠+∠+∠-∠1122AOC BOC BOD =∠+∠+∠ 11112222AOC BOC BOC BOD =∠+∠+∠+∠ 1()2AOB COD =∠+∠ 2αβ+=.【点睛】本题考查了线段的中点及线段的和与差以及角的平分线及角的和与差,根据图形找到线段与角的关系是解题的关键.18.(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P 点P 即为所求解析:(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线,射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P ,点P 即为所求.【详解】解:(1)如图,直线BC ,射线AD 即为所求作.(2)如图,线段BE 即为所求作.(3)如图,点P 即为所求作.理由:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了作图-复杂作图,两点之间线段最短,直线,射线,线段的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(1)8;(2)8;(3)【分析】(1)根据中点的性质求出ACBC 的长根据线段中点的定义计算即可;(2)根据线段的和差求出ACBC 的长根据线段中点的定义计算即可;(3)根据中点的性质求出ACBC 的长解析:(1)8;(2)8;(3)8cm【分析】(1)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可;(2)根据线段的和差求出AC 、BC 的长,根据线段中点的定义计算即可;(3)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可说明结论.【详解】解:(1)∵点C 恰为AB 的中点,16cm AB =, ∴18cm 2AC BC AB ===, ∴点M ,N 分别是AC 和BC 的中点, ∴114cm,4cm 22CM AC CN BC ====, ∴8cm MN MC CN =+=;(2)∵16cm AB =,6cm AC =,∴10cm BC =,∵点M ,N 分别是AC 和BC 的中点 ∴113cm,5cm 22MC AC CN CB ====, ∴8cm MN MC CN =+=;(3)猜想:不论AC 取何值(不超过16cm ),MN 的长总等于8cm .∵点M 、N 分别是AC 和BC 的中点,∴MC=12AC ,CN=12BC , ∴MN=12(AC+BC )=12AB=12×16=8cm , ∴不论AC 取何值(不超过16cm ),MN 的长不变【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.20.32【分析】本题需先设根据已知条件C 点将线段MB 分成的两段求出MB=4x 利用M 为AB 的中点列方程求出x 的长即可求出AB 的长;【详解】解:∵设则∴∴解得∵M 为AB 的中点∴【点睛】本题主要考查了两点间的 解析:32【分析】本题需先设MC x =,根据已知条件C 点将线段MB 分成:1:3MC CB =的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出AB 的长;【详解】解:∵ :1:3MC CB =,设MC x =,则3CB x =,∴4AM MB MC CB x ==+=,∴4520AC AM MC x x x =+=+==,解得4x =.∵M 为AB 的中点∴832AB x ==.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是解本题的关键;三、解答题21.(1)45°;(2)45°;(3)45°或135°【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE =∠COD +∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】解:(1)∵90AOB ∠=︒,70BOC ∠=︒∴9020AOC BOC ∠=︒-∠=︒,∵OD 、OE 分别平分AOC ∠和BOC ∠, ∴1102COD AOC ∠=∠=︒,1352COE BOC ∠=∠=︒, ∴45DOE COD COE ∠=∠+∠=︒;(2)DOE ∠的大小不变,理由是:∵90AOB ∠=︒,BOC α∠=∴90AOD α∠=︒-又∵OE ,OD 分别是BOC ∠与AOC ∠的平分线 ∴12EOC α∠=,()1902COD α∠=︒- ∴DOE EOC COD ∠=∠+∠()11904522αα=+︒-=︒. (3)DOE ∠的大小发生变化情况为,如图3,则DOE ∠为45°;如图4,则DOE ∠为135°,分两种情况:如图3所示,∵OD 、OE 分别平分AOC ∠和BOC ∠, ∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴()1452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒; 如图4所示,∵OE ,OD 分别是BOC ∠与AOC ∠的平分线∴EOC BOE ∠=∠,COD AOD ∠=∠又∵90AOB ∠=︒∴270AOD DOC COE EOB ∠+∠+∠+∠=︒∴22270DOC COE ∠+∠=︒∴135DOC COE ∠+∠=︒∴135DOE ∠=︒.【点睛】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.容易出错的地方是解(3)小题漏掉其中的一种情况.22.见解析【分析】在射线AE 上依次截取AB=a ,BC=CD=b ,在DA 上截取DM=c ,则AM 满足条件.【详解】解:如图,AM 为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23.(1)见解析;(2)见解析;(3)4cm BD =【分析】(1)根据3AC AB =,画出图形即可;(2)根据3AD AB =,画出图形即可;(3)根据线段等分的性质,可得AB 的长,根据线段的和差,可得BD 的长.【详解】解:(1)点C 如图所示;(2)点D 如图所示;(3)由题意可得,3AC AB =,则4CB AB =.∵8cm CB =,∴2cm AB =.∵3AD AB =,∴24cm BD AB ==.【点睛】本题考查作图-复杂作图,线段和差定义等知识,解题的关键是理解题意,属于常考题型. 24.(1)20cm ;(2)10cm【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC ,再由CD=BC-BD ,可得出答案.【详解】解:(1)∵60cm AB =,AD 与DB 的长度之比2:1, ∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.25.(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭ ()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,∵OD 平分AOC ∠, ∴60AOD COD ∠=∠=︒,∴601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.26.(1)18°;(2)130°;(3)110°;(4)90°+12x° 【分析】(1)先求出∠AOC 的度数,然后根据角平分线的定义求解即可;(2)先根据角平分线的定义求出∠AOE 和∠BOF 的度数,然后可求∠EOF 的度数; (3)由40COD ∠=︒,可知∠AOC+∠BOD=140°,然后根据角平分线的定义可求出∠COE+∠DOF 的值,进而可求∠EOF 的值;(4)仿照(3)的步骤求解即可;【详解】解:(1)∵144BOC ∠=︒,∴∠AOC=180°-144°=36°,∵OE 平分AOC ∠,∴∠COE=12∠AOC=18°, 故答案为:18°;(2)∵OE 、OF 分别平分AOC ∠、BOD ∠,40AOC ∠=︒,60BOD ∠=︒, ∴∠AOE=1220AOC ∠=︒,∠BOF=1230BOD ∠=︒, ∴∠EOF=180°-20°-30°=130°;(3)∵40COD ∠=︒,∴∠AOC+∠BOD=180°-40°=140°,∵OE 、OF 分别平分AOC ∠、BOD ∠,∴∠COE=12AOC ∠,∠DOF=12BOD ∠,∴∠COE+∠DOF=12(AOC ∠+BOD ∠)=70°, ∴∠EOF=∠COE+∠DOF+∠COD=70°+40°=110°; (4)∵COD x ∠=︒,∴∠AOC+∠BOD=180°-x°,∵OE 、OF 分别平分AOC ∠、BOD ∠, ∴∠COE=12AOC ∠,∠DOF=12BOD ∠, ∴∠COE+∠DOF=12(AOC ∠+BOD ∠)=90°-12x°, ∴∠EOF=∠COE+∠DOF+∠COD=90°-12x°+x°=90°+12x°. 【点睛】本题考查了角的和差,以及角平分线的定义,正确识图是解答本题的关键.。

难点解析鲁教版(五四制)六年级数学下册第五章基本平面图形章节测试试题(含答案及详细解析)

难点解析鲁教版(五四制)六年级数学下册第五章基本平面图形章节测试试题(含答案及详细解析)

六年级数学下册第五章基本平面图形章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各角中,为锐角的是( )A .12平角B .15周角C .32直角D .12周角 2、钟表上1时30分时,时针与分针所成的角是( )A .150︒B .120︒C .135︒D .以上答案都不对3、已知2532'∠=︒A ,则A ∠的补角等于( )A .6428'︒B .6468'︒C .15428'︒D .15468'︒4、如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB BC =,如果||||||a c b >>,那么下列结论正确的是( )A .0a b c <<<B .0a b c <<<C .0a b c <<<D .0a b c <<<5、已知∠α=125°19′,则∠α的补角等于( )A .144°41′B .144°81′C .54°41′D .54°81′6、将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是()A.B.C.D.7、一副三角板按如图所示的方式摆放,则∠1补角的度数为()A.45︒B.135︒C.75︒D.165︒8、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为()A.3 B.4 C.6 D.89、如图,一副三角板(直角顶点重合)摆放在桌面上,若150∠=,则AODBOC︒∠等于()A.30︒B.45︒C.50︒D.60︒10、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为()A.直线外一点与直线上点之间的连线段有无数条B.过一点有无数条直线C.两点确定一条直线D.两点之间线段最短第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,C,D,E为线段AB上三点,DE=15AB=2,E是DB的中点,AC=13CD,则CD的长为_________.2、如图,点C在线段AB上,点D是线段AB的中点,AB=10cm,AC=7cm,则CD=______cm.3、已知A、B、C三点在同一直线上,AB=21,BC=9,点E、F分别为线段AB、BC的中点,那么EF 等于___.4、如图,将三个形状、大小完全一样的正方形的一个顶点重合放置,若4126GAF'∠=︒,2524BAC'∠=︒,则DAE=∠_____.︒=______°.5、4236'三、解答题(5小题,每小题10分,共计50分)1、已知∠AOB,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线.(1)如图,若∠AOB=120°,OC平分∠AOB,①补全图形;②填空:∠MON的度数为.(2)探求∠MON和∠AOB的等量关系.2、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.3、如图,点C为线段AB的中点,点E为线段AB上的点,D为AE的中点,若AB=15,CE=4.5,求线段DE.4、如图,已知线段AB(1)请按下列要求作图:①延长线段AB到C,使BC AB=;②延长线段BA到D,使AD AC=;(2)在(1)条件下,请直接回答线段BD与线段AC之间的数量关系;(3)在(1)条件下,如果AB=2cm,请求出线段BD和CD的长度.5、如图,已知∠AOB=150°,∠AOC=30°,OE是∠AOB内部的一条射线,OF平分∠AOE,且OF在OC的右侧.(1)若∠COF=25°,求∠EOB的度数;(2)若∠COF=n°,求∠EOB的度数.(用含n的式子表示)-参考答案-一、单选题1、B【分析】求出各个选项的角的度数,再判断即可.【详解】解:A. 12平角=90°,不符合题意;B. 15周角=72°,符合题意;C. 32直角=135°,不符合题意;D. 12周角=180°,不符合题意;故选:B.【点睛】本题考查了角的度量,解题关键是明确周角、平角、直角的度数.2、C【解析】【分析】钟表上12个大格把一个周角12等分,每个大格30°,1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.【详解】解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴1点30分分针与时针的夹角是4.5×30°=135°.故选:C.本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形. 3、C【解析】【分析】补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.【详解】解:∵2532'∠=︒A ,∴A ∠的补角等于1801802532=15428A ︒''-∠=-,故选:C .【点睛】本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.4、C【解析】【分析】根据||||||a c b >>得到三点与原点的距离大小,利用AB BC =得到原点的位置即可判断三个数的大小.【详解】 解:a c b >>, ∴点A 到原点的距离最大,点C 其次,点B 最小,又AB BC =,∴原点O 的位置是在点B 、C 之间且靠近点B 的地方,∴<<<,a b c故选:C.【点睛】此题考查了利用数轴比较数的大小,理解绝对值的几何意义,确定出原点的位置是解题的关键.5、C【解析】【分析】两个角的和为180,︒则这两个角互为补角,根据互为补角的含义列式计算即可.【详解】解:∠α=125°19′,∴∠α的补角等于180125195441故选C【点睛】本题考查的是互补的含义,掌握“两个角的和为180,︒则这两个角互为补角”是解本题的关键.6、C【解析】【分析】A、由图形可得两角互余,不合题意;B、由图形得出两角的关系,即可做出判断;C、根据图形可得出两角都为45°的邻补角,可得出两角相等;D、由图形得出两角的关系,即可做出判断.【详解】解:A、由图形得:α+β=90°,不合题意;B、由图形得:β+γ=90°,α+γ=60°,可得β﹣α=30°,不合题意;C、由图形可得:α=β=180°﹣45°=135°,符合题意;D、由图形得:α+45°=90°,β+30°=90°,可得α=45°,β=60°,不合题意.故选:C.【点睛】本题考查了等角的余角相等,三角尺中角度的计算,掌握三角尺中各角的度数是解题的关键.7、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.8、B【解析】【分析】根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.【详解】解:E、F分别是线段AC、AB的中点,AC=2AE=2CE,AB=2AF=2BF,EF=AE﹣AF=22AE﹣2AF=AC﹣AB=2EF=4,BC=AC﹣AB=4,故选:B.【点睛】本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.9、A【解析】【分析】由三角板中直角三角尺的特征计算即可.【详解】△和AOB为直角三角尺∵COD∴90AOB︒∠=∠=,90COD︒∴BOC COD BOC AOB∠-∠=∠-∠∴1509060∠=∠=︒-︒=︒AOC BOD∴906030∠=∠-∠=︒-︒=︒AOD BOA BOD故选:A .【点睛】本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.10、D【解析】【分析】根据题意可知,原因为两点之间线段最短,据此分析即可【详解】解:校园中常常看到“在草坪上斜踩出一条小路”, 其原因为两点之间线段最短故选D【点睛】本题考查了线段的性质,掌握两点之间线段最短是解题的关键.二、填空题1、92【解析】【分析】根据线段成比例求出10AB =,再根据中点的性质求出24BD DE ==,即可得出6AD AB BD =-=,再根据线段成比例即可求出CD 的长.【详解】 解:DE =15AB =2 10AB ∴=E 是DB 的中点24BD DE ∴==1046AD AB BD ∴=-=-=AC =13CD3942CD AD ∴== 故答案为:92. 【点睛】此题考查了线段长度的问题,解题的关键是掌握线段成比例的性质以及中点的性质.2、2【解析】【分析】根据点D 是线段AB 的中点,可得15cm 2AD AB == ,即可求解. 【详解】解:∵点D 是线段AB 的中点,AB =10cm , ∴15cm 2AD AB == , ∵AC =7cm ,∴752cm CD AC AD =-=-= .故答案为:2【点睛】本题主要考查了中点的定义,线段的和与差,熟练掌握把一条线段分成相等的两段的点,叫做线段的中点是解题的关键.3、6或15##15或6【解析】【分析】分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可.【详解】解:如图,当点B在线段AC上时,∵AB=21,BC=9,E、F分别为AB,BC的中点,∴EB=12AB=10.5,BF=12BC=4.5,∴EF=EB+FB=10.5+4.5=15;如图,当点C在线段AB上时,∴EF=EB-FB=10.5-4.5=6,故答案为:6或15.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想、分情况讨论思想是解题的关键.4、2310'︒【解析】【分析】首先求得DAF∠和∠EAC,然后根据90DAE DAF EAC即可求解.【详解】解:∵将三个形状、大小完全一样的正方形的一个顶点重合放置,∴FAC∠=∠GAD=∠EAB=90°,4126GAF'∠=︒,2524BAC'∠=︒,∴909041264834,DAF GAF909025246436,EAC BAC∴90483464369011310902310,DAE DAF EAC故答案为:2310'︒【点睛】本题考查的是角的和差关系,角度的加法运算,掌握“角的和差关系与角度的加法运算”是解本题的关键.5、42.6【解析】【分析】根据角度进制的转化求解即可,601'=︒.【详解】解:36 360.660'==︒∴4236'︒=42.6︒故答案为:42.6 【点睛】本题考查了角度进制的转化,掌握角度进制是解题的关键.三、解答题1、 (1)①见解析;②80︒ (2)23MON AOB ∠=∠,见解析 【解析】【分析】(1)①根据∠AOB =120°,OC 平分∠AOB ,先求出∠BOC =∠AOC =60︒, 在根据OM 是∠AOC 靠近OA 的三等分线,求出∠AOM =20︒,根据ON 是∠BOC 靠近OB 的三等分线,∠BON =20︒,然后在∠AOB 内部,先画∠AOC =60°,在∠AOC 内部,画∠AOM =20°,在∠BOC 内部,画∠BON 即可;②根据∠AOM =20︒,∠BON =20︒,∠AOB =120°,可求∠MON =∠AOB -∠AOM -∠BON =120°-20°-20°=80°即可;(2)根据OM 是∠AOC 靠近OA 的三等分线, ON 是∠BOC 靠近OB 的三等分线.可求∠AOM =13AOC ∠,∠BON=13BOC ∠,可得()MON AOB AOM BON ∠=∠-∠+∠ 23AOB =∠. (1)①∵∠AOB =120°,OC 平分∠AOB ,∴∠BOC =∠AOC =6201AOB ∠=︒, ∵OM 是∠AOC 靠近OA 的三等分线,∴∠AOM =11602033AOC ∠=⨯︒=︒, ∵ON 是∠BOC 靠近OB 的三等分线,∴∠BON =11602033BOC ∠=⨯︒=︒, 在∠AOB 内部,先画∠AOC =60°,在∠AOC 内部,画∠AOM =20°,在∠BOC 内部,画∠BON ,补全图形;②∵∠AOM =20︒,∠BON =20︒,∠AOB =120°,∴∠MON =∠AOB -∠AOM -∠BON =120°-20°-20°=80°,∴∠MON 的度数是80°,故答案为:80°(2)∠MON =23∠AOB .∵OM 是∠AOC 靠近OA 的三等分线, ON 是∠BOC 靠近OB 的三等分线.∴∠AOM =13AOC ∠,∠BON=13BOC ∠, ∴()MON AOB AOM BON ∠=∠-∠+∠ ,1()3AOB AOC BOC =∠-∠+∠, 13AOB AOB =∠-∠, 23AOB =∠. 【点睛】本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.2、 (1)∠AOC =40°,∠BOC =80°(2)40°(3)∠COD的度数为32°或176°【解析】【分析】(1)根据∠AOC:∠BOC=1:2,即可求解;(2)先求出∠COM,再求出∠CON,相加即可求解;(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.【小题1】解:∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=13∠AOB=13×120°=40°,∠BOC=23∠AOB=23×120°=80°;【小题2】∵OM平分∠AOC,∴∠COM=12∠AOC=12×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=14∠BOC=14×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;【小题3】如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=32x︒,∵∠AOB=120°,∴x+32x=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC-∠BOD=80°-48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=32y︒,∵∠AOB=120°,∴32y +y +120°=360°解得:y =96°,∴∠COD =∠BOD +∠BOC=96°+80°=176°,综上所述,∠COD 的度数为32°或176°.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.3、6【解析】【分析】利用线段中点的含义先求解,,AC BC 再利用线段的和差关系求解,AE 结合D 为AE 的中点,从而可得答案.【详解】 解: AB =15,点C 为线段AB 的中点, 17.5,2BC AC AB 4.5,CE 7.5 4.512,AE AC CED 为AE 的中点, 1 6.2DE AE 【点睛】本题考查的是线段的和差关系,线段的中点的含义,理解线段的和差关系逐步求解需要的线段的长度是解本题的关键.4、 (1)①画图见解析;②画图见解析(2)BD =1.5AC ;(3)6BD =cm ,8CD =cm【解析】【分析】(1)①先延长,AB 再作BC AB =即可;②先延长,BA 再作AD AC =即可;(2)先证明2,3,AC AB BD AB 从而可得答案;(3)由,2,BD AD AB CD AD 结合2,AD AB = 从而可得答案.(1)解:如图所示,BC 、AD 即为所求;(2)解:,AB BC =2,AC AB ∴=,AD AC2,AD AB3,BD AD AB AB 131.5.2BD AC AC (3)解:∵AB =2cm ,∴AC =2AB =4cm ,∴AD =4cm ,∴BD =4+2=6cm ,∴CD =2AD =8cm .【点睛】本题考查的是作一条线段等于已知线段,线段的和差运算,熟练的利用作图得到的已知信息求解未知信息是解本题的关键.5、 (1)40EOB ∠=︒(2)902EOB n ∠=︒-︒【解析】【分析】(1)求出55AOF ∠=︒,再由角平分线计算求出110AOE ∠=︒,结合图形即可求出EOB ∠;(2)求出30AOF n ∠=︒+︒,再由角平分线计算求出260AOE n ∠=︒+︒,结合图形即可求出EOB ∠.(1)∵25COF ∠=︒,30AOC ∠=︒,∴55AOF ∠=︒,∵OF 平分AOE ∠,∴110AOE ∠=︒,∵150AOB ∠=︒,∴15011040EOB AOB AOE ∠=∠-∠︒-︒=︒=; (2)∵COF n ∠=︒,30AOC ∠=︒,∴30AOF n ∠=︒+︒,∵OF 平分AOE ∠,∴260AOE n ∠=︒+︒,∵150AOB ∠=︒,∴()150260902EOB AOB AOE n n ∠=∠-∠=︒-︒+︒=︒-︒.【点睛】题目主要考查利用角平分线进行角度间的计算,理解题意,找准各角之间的数量关系是解题关键.。

2020—2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合培优训练(附答案)

2020—2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合培优训练(附答案)

鲁教版2021年度六年级数学下册《第五章基本平面图形》单元综合培优训练(附答案)1.如图,在直线l上有A、B、C三点,则图中线段共有()A.1条B.2条C.3条D.4条2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm4.如图(一),为一条拉直的细线,A、B两点在上,且:=1:3,:=3:5.若先固定B点,将折向,使得重叠在上,如图(二),再从图(二)的A 点及与A点重叠处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为何?()A.1:1:1B.1:1:2C.1:2:2D.1:2:55.如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处7.1°等于()A.10′B.12′C.60′D.100′8.如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAMC.∠BAM=2∠CAM D.2∠CAM=∠BAC9.直线上有2020个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.10.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.11.数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O 的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n.(n≥3,n是整数)处,那么线段A n A的长度为(n≥3,n是整数).12.如图,线段的长度大约是厘米(精确到0.1厘米).13.在锐角∠AOB内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得锐角个.14.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?15.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.16.先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.17.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B 位于O点南偏东60°,请在图中画出射线OA,OB,并计算∠AOB的度数.18.用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.参考答案1.解:图中线段有AB、AC、BC这3条,故选:C.2.解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.3.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:C.4.解:设OP的长度为8a,∵OA:AP=1:3,OB:BP=3:5,∴OA=2a,AP=6a,OB=3a,BP=5a,又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A点及与A点重迭处一起剪开,使得细线分成三段,∴这三段从小到大的长度分别是:2a、2a、4a,∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,故选:B.5.解:∵钟面分成12个大格,每格的度数为30°,∴钟表上10点整时,时针与分针所成的角是60°.故选:B.6.解:由图可得,目标A在南偏东75°方向5km处,故选:D.7.解:1°等于60′.故选:C.8.解:∵AM为∠BAC的平分线,∴∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.故选:C.9.解:第一次:2020+(2020﹣1)=2×2020﹣1,第二次:2×2020﹣1+2×2020﹣1﹣1=4×2020﹣3,第三次:4×2020﹣3+4×2020﹣3﹣1=8×2020﹣7.∴经过3次这样的操作后,直线上共有8×2020﹣7=16153个点.故答案为:16153.10.解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.11.解:由于OA=4,所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段A n A的长度为4﹣(n≥3,n是整数).故答案为:4﹣.12.解:线段的长度大约是2.3(或2.4)厘米,故答案为:2.3(或2.4).13.解:∵在锐角∠AOB内部,画1条射线,可得1+2=3个锐角;在锐角∠AOB内部,画2条射线,可得1+2+3=6个锐角;在锐角∠AOB内部,画3条射线,可得1+2+3+4=10个锐角;…∴从一个角的内部引出n条射线所得到的锐角的个数是1+2+3+…+(n+1)=×(n+1)×(n+2),∴画10条不同射线,可得锐角×(10+1)×(10+2)=66.故答案为:66.14.解:(1)18正好转3圈,3×6;17则3×6﹣1;“17”在射线OE上;(2)射线OA上数字的排列规律:6n﹣5射线OB上数字的排列规律:6n﹣4射线OC上数字的排列规律:6n﹣3射线OD上数字的排列规律:6n﹣2射线OE上数字的排列规律:6n﹣1射线OF上数字的排列规律:6n(3)2007÷6=334…3.故“2007”在射线OC上.15.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.16.解:(1)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置.(2)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣617|的最小值就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.17.解:∵∠1=45°,∠2=60°,∴∠AOB=180°﹣(45°+60°)=75°.18.证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°。

(好题)初中数学七年级数学上册第四单元《基本平面图形》检测卷(包含答案解析)(2)

(好题)初中数学七年级数学上册第四单元《基本平面图形》检测卷(包含答案解析)(2)

一、选择题1.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm2.两条长度分别为20cm 和24cm 的线段有一端点重合,且在一条直线上,则此两条线段的中点之间的距离为( )A .2cmB .22cmC .2cm 或22cmD .4cm 或20cm 3.若线段,,AP BP AB 满足AP BP AB +>,则关于P 点的位置,下列说法正确的是( ) A .P 点一定在直线AB 上B .P 点一定在直线AB 外C .P 点一定在线段AB 上D .P 点一定在线段AB 外 4.如图,将一副三角板叠在一起使直角顶点重合于点O ,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是( )A .∠BOA >∠DOCB .∠BOA ﹣∠DOC =90° C .∠BOA +∠DOC =180°D .∠BOC ≠∠DOA5.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120︒B .130︒C .140︒D .150︒ 6.永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A ,B 两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是( )A .两点确定一条直线B .垂线段最短C .过一点有且只有一条直线与已知直线垂直D .两点之间,线段最短7.某一时刻钟表上时针和分针所成的夹角是105°,那么这一时刻可能是( ) A .8点30分B .9点30分C .10点30分D .以上答案都不对8.如图,OA OB ⊥,若15516'∠=︒,则∠2的度数是( )A .3544︒'B .3484︒'C .3474︒'D .3444︒' 9.点A ,B ,C 在同一条直线上,6cm AB =,2cm BC =,M 为AB 中点,N 为BC 中点,则MN 的长度为( )A .2cmB .4cmC .2cm 或4cmD .不能确定 10.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( )A .①②B .②③C .①④D .③④11.如图,A 点在B 点的北偏东40°方向,C 点在B 点的北偏东75°方向,A 点在C 点的北偏西50°方向,则∠BAC 的度数是( )A .85°B .80°C .90°D .95° 12.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是( ) A . B . C . D .二、填空题13.如图,已知C ,D 两点将线段AB 分成三部分,且这三部分的长度之比为2:3:4,点M 为线段AB 的中点,BD=8cm ,求线段DM 的长.14.如图,B 、C 是线段AD 上的任意两点,M 是AB 的中点,N 是CD 的中点,如果MN =3cm ,BC =1.5cm ,求AD 的长.15.已知直线AB 与射线OC 相交于点O .(1)如图,90AOC ∠=︒,射线OD 平分AOC ∠,求BOD ∠的度数;(2)如图,120AOC ∠=︒,射线OD 在AOC ∠的内部,射线OE 在BOC ∠的内部,且4BOD BOE ∠=∠,2COD COE ∠=∠.若射线OF 使12COF COE ∠=∠,请在图中作出射线OF ,并求出BOF ∠的度数.16.如图,OB,OC 是AOD 内部的两条射线,OM 平分AOB ,ON 平分COD ,BOC=40,(1)若20AOM ∠=︒,求AOC ∠的度数;(2)若118AOD ∠=︒,求MON ∠的度数.17.如图,已知120AOB ∠=︒,30BOC ∠=︒,OD 是AOC ∠的角平分线,求BOD ∠的度数.18.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷519.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1.(1)求BD 的长.(2)求CD 的长.20.如图,OC 在BOD ∠内.(1)如果AOC ∠和BOD ∠都是直角.①若60BOC ∠=︒,求AOD ∠的度数;②猜想BOC ∠与AOD ∠的数量关系;(2)如果AOC BOD x ∠=∠=︒,AOD y ∠=︒,求BOC ∠的度数(用含x 、y 的式子表示).三、解答题21.将一副三角板按图甲的位置放置,(1)∠AOD ∠BOC (选填“<”或“>”或“=”);(2) 猜想∠AOC 和∠BOD 在数量上的关系是 .(3)若将这副三角板按图乙所示摆放,三角板的直角顶点重合在点O 处.(1)(2)中的结论还成立吗?请说明理由.22.如图,已知C ,D 两点将线段AB 分成三部分,且这三部分的长度之比为2:3:4,点M 为线段AB 的中点,BD=8cm ,求线段DM 的长.23.如图,平面上有三个点A 、B 、C ,根据下列要求画图.(1)画直线AB 、AC ;(2)作射线BC ;(3)在线段AB 上取点E 、在线段AC 上取点F ,连接EF ,并延长EF .24.如图,已知直线AB ,CD 相交于点O ,OE ,OF 为射线,∠AOE=90°,OF 平分∠BOC , (1)若∠EOF=30°,求∠BOD 的度数;(2)试问∠EOF 与∠BOD 有什么数量关系?请说明理由.25.如图,点,C D 在线段AB 上,点M 是线段AC 的中点,点N 是线段DB 的中点,若8,3MN CD ==,求线段AB 的长.26.已知:80AOB COD ∠=∠=︒(1)如图1,AOC BOD ∠=∠吗?请说明理由.(2)如图2,直线MN 平分AOD ∠,直线MN 平分BOC ∠吗?请说明理由. (3)若150BOD ∠=︒,20BOE ∠=︒,求COE ∠的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用线段和的定义和线段中点的意义计算即可.【详解】∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,∴AD=DC=1AC=3,2∴BD=BC+CD=4+3=7,故选B.【点睛】本题考查了线段和的意义和线段中点的意义,熟练掌握两个概念并灵活运用进行线段的计算是解题的关键.2.C解析:C【分析】设较长的线段为AB,较短的线段为BC,根据中点定义求出BM、BN的长度,然后分①BC 不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM−BN,分别代入数据进行计算即可得解.【详解】解:如图,设较长的线段为AB=24cm,较短的线段为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM−BN=12−10=2cm,综上所述,两条线段的中点间的距离是2cm或22cm;故选:C.【点睛】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.3.D解析:D【分析】根据P点在线段AB上时,AP+BP=AB,进行判断即可.【详解】解:A. P点在线段AB上时,AP+BP=AB,此时点P在直线AB上,故错误;B. P点在线段AB延长线上时,AP BP AB+>,故错误;C. P点在线段AB上时,AP+BP=AB,故错误;D. P点在线段AB上时,AP+BP=AB,P点一定在线段AB外时,AP BP AB+>,故正确;故选:D.【点睛】本题考查了点和直线、线段的位置关系,解题关键是抓住当P点在线段AB上时,AP+BP=AB这一结论,进行判断.4.C解析:C【分析】根据角的和差关系以及角的大小比较的方法,并结合图形计算后即可得出结论.【详解】解:A.∠BOA与∠DOC的大小不确定,故此结论不成立;B.∠BOA−∠DOC的值不固定,故此结论不成立;C.∵是直角三角板,∴∠BOD=∠AOC=90°,∴∠BOC+∠DOC+∠DOC+∠DOA=180°,即∠DOC+∠BOA=180°,故此结论成立;D.∵是直角三角板,∴∠BOD=∠AOC=90°,∴∠BOD −∠COD=∠AOC −∠DOC,即∠BOC=∠DOA,故此结论不成立;故选:C.【点睛】本题考查了角的比较与运算,正确根据图形进行角的运算与比较是解题的关键.5.B解析:B【分析】此时时针超过8点,分针指向4,根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.【详解】解:时针超过20分所走的度数为20×0.5=10°,分针与8点之间的夹角为4×30=120°,∴此时时钟面上的时针与分针的夹角是120+10=130°.故选:B.【点睛】本题考查钟面角的计算,用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.6.D解析:D【分析】根据线段的性质分析得出答案.【详解】由题意中改直后A,B两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D.【点睛】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.7.B解析:B【分析】根据时间得到分针和时针所在位置,算出夹角度数,判断选项的正确性.【详解】︒⨯+︒=︒;A选项,分针指向6,时针指向8和9的中间,夹角是3021575︒⨯+︒=︒;B选项,分针指向6,时针指向9和10的中间,夹角是30315105︒⨯+︒=︒C选项,分针指向6,时针指向10和11的中间,夹角是30415135D选项错误,因为B是正确的.故选:B.【点睛】本题考查角度求解,解题的关键是掌握钟面角度的求解方法.8.D解析:D【分析】根据OA⊥OB,得到∠AOB=90°∠AOB=∠1+∠2=90°,即可求出.【详解】解:∵OA⊥OB∴∠AOB=90°∵∠AOB=∠ 1+∠ 2=90°∠ 1=55°16′∴∠ 2=90°-55°16′=34°44′故选:D【点睛】此题主要考查了角度的计算,熟记度分秒之间是六十进制是解题的关键.9.C解析:C【分析】分点C在直线AB上和直线AB的延长线上两种情况,分别利用线段中点的定义和线段的和差解答即可.【详解】解:①当点C在直线AB上时∵M为AB中点,N为BC中点∴AM=BM=12AB=3,BN=CN=12BC=1,∴MN=BM-BN=3-1=2;②当点C在直线AB延长上时∵M为AB中点,N为BC中点∴AM=CM=12AB=3,BN=CN=12BC=1,∴MN=BM+BN=3+1=4综上,MN的长度为2cm或4cm.故答案为C.【点睛】本题主要考查了线段中点的定义以及线段的和差运算,掌握分类讨论思想成为解答本题的关键.10.B解析:B【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确;③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.11.C解析:C【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】∵∠DBA =40°,∠DBC =75°,∴∠ABC =∠DBC−∠DBA =75°−40°=35°,∵DB ∥EC ,∴∠DBC +∠ECB =180°,∴∠ECB =180°−∠DBC =180°−75°=105°,∴∠ACB =∠ECB−∠ACE =105°−50°=55°,∴∠BAC =180°−∠ACB−∠ABC =180°−55°−35°=90°.【点睛】本题考查了方向角.解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.12.D解析:D【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A .正六边形每个内角为120°,能够整除360°,不合题意;B .正三角形每个内角为60°,能够整除360°,不合题意;C .正方形每个内角为90°,能够整除360°,不合题意;D .正五边形每个内角为108°,不能整除360°,符合题意.故选:D .【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.二、填空题13.【分析】根据按比例分配的意义线段中点的意义及线段的和差运算解答【详解】解:由图可知:AC:CD:DB=2:3:4∴∵BD=8cm ∴cm ∵点M 为线段AB 的中点∴BM=18cm ∴DM=BM-BD=9-8解析:=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB ,∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.14.AD 的长为45cm 【分析】由已知条件可知MN =MB+CN+BC 又因为M 是AB 的中点N 是CD 中点则AB+CD =2(MB+CN )故AD =AB+CD+BC 可求【详解】解:∵MN =MB+BC+CN ∵MN =3解析:AD 的长为4.5cm .【分析】由已知条件可知,MN =MB+CN+BC ,又因为M 是AB 的中点,N 是CD 中点,则AB+CD =2(MB+CN ),故AD =AB+CD+BC 可求.【详解】解:∵MN =MB+BC+CN ,∵MN =3cm ,BC =1.5cm ,∴MB+CN =3﹣1.5=1.5cm ,∴AD =AB+BC+CD =2(MB+CN )+BC=2×1.5+1.5=4.5cm .答:AD 的长为4.5cm .【点睛】本题考查了线段的计算,线段中点的意义,线段和的意义,线段差的意义,熟练掌握线段的中点的意义,灵活运用线段和与线段差表示线段是解题的关键.15.(1);(2)45°或75°【分析】(1)由可求由OD 是的平分线得可求;(2)由可求∠BOC=60º由设∠BOE=xº可得∠BOD=4x°∠DOE=3x°由可求可得∠COE=∠BOE=由可求当OF 在解析:(1)135︒;(2)45°或75°.【分析】(1)由90AOC ∠=︒可求90BOC ∠=°,由OD 是AOC ∠的平分线得=45AOD DOC ∠∠=︒,可求=+135BOD DOC BOC ∠∠∠=︒;(2)由120AOC ∠=︒,可求∠BOC=60º,由4BOD BOE ∠=∠,设∠BOE=xº可得∠BOD=4x°,∠DOE=3x°由2COD COE ∠=∠, 可求2,COD x COE x ∠=︒∠=︒,可得∠COE=∠BOE=30由12COF COE ∠=∠,可求15COF ∠=︒,当OF 在∠EOC 内部时,当OF 在∠DOC 内部时利用角和差计算即可.【详解】证明:(1)∵90AOC ∠=︒∴18090BOC AOC ∠=︒-∠=︒∵OD 是AOC ∠的平分线,∴AOD DOC ∠=∠. ∴=45AOD DOC ∠∠=︒,∴=+4590135BOD DOC BOC ∠∠∠=︒+︒=︒;(2)∵120AOC ∠=︒,∴∠BOC=180º-∠AOC=60º,∵4BOD BOE ∠=∠,设∠BOE=xº,∴∠BOD=4x°,∠DOE=3x°,∵2COD COE ∠=∠,+=3COD COE DOE x ∠∠∠=︒,∴2,COD x COE x ∠=︒∠=︒,∴∠COE=∠BOE=11BOC=60=3022∠⨯︒︒, ∵12COF COE ∠=∠, ∴11=30=1522COF COE ∠=∠⨯︒︒,当OF 在∠EOC 内部时,=601545BOF BOC COF ∠∠-∠=︒-︒=︒,当OF 在∠DOC 内部时,=+60+1575BOF BOC COF ∠∠∠=︒︒=︒,BOF ∠的度数为45°或75°.【点睛】本题考查了角平分线的定义及角的和差,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.16.(1)∠AOC=80°;(2)∠MON=79°【分析】(1)根据角平分线的定义可得相加可得∠MON 的度数;(2)先求得根据角平分线的定义可得相加可得∠MON 的度数【详解】(1)∵平分∴∴;(2)∵∵解析:(1)∠AOC=80°;(2)∠MON=79°.【分析】(1)根据角平分线的定义可得40AOB ∠=︒,相加可得∠MON 的度数;(2)先求得78COD AOB ∠+∠=︒,根据角平分线的定义可得39CON BOM ∠+∠=︒,相加可得∠MON 的度数.【详解】(1)∵20AOM ∠=︒,OM 平分AOB ∠,∴240AOB AOM ∠=∠=︒,∴404080AOC AOB BOC ∠=∠+∠=︒+︒=︒;(2)∵1184078COD AOB AOD BOC ∠+∠=∠-∠=︒-︒=︒,∵OM 平分AOB ∠,ON 平分COD ∠, ∴11()783922CON BOM COD AOB ∠+∠=∠+∠=⨯︒=︒, ∴()403979MON BOC CON BOM ∠=∠+∠+∠=︒+︒=︒. 【点睛】本题是有关角的计算,考查了角平分线的定义及角的和差倍分,注意利用数形结合的思想.17.75°【分析】根据角的和差性质计算得∠AOC ;根据角平分线的性质计算得;再根据角的和差性质计算即可得到答案【详解】∵∠AOB =120°∠BOC =30°∴∠AOC =∠AOB-∠BOC =90°又∵OD 是解析:75°【分析】根据角的和差性质计算,得∠AOC ;根据角平分线的性质计算,得COD ∠;再根据角的和差性质计算,即可得到答案.【详解】∵∠AOB =120°,∠BOC =30°∴∠AOC =∠AOB -∠BOC =90°又∵OD 是∠AOC 的角平分线, ∴1452COD AOC ∠=∠=︒ ∴∠BOD =∠COD+∠BOC =45°+30°=75°.【点睛】本题考查了角的和差和角平分线的知识;解题的关键是熟练掌握角的和差和角平分线的性质,从而完成求解.18.(1)94°45′48″;(2)17【分析】(1)根据度分秒的加法相同的单位相加满60时向上以单位进1可得答案;(2)原式先计算乘方再计算乘除最后进行加减运算即可【详解】解:(1)58°32′36″解析:(1) 94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案; (2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算. 19.(1)20cm ;(2)10cm 【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC 再由CD=BC-BD 可得出答案【详解】解:(1)∵AD 与DB 的长度之比2:1∴(2解析:(1)20cm ;(2)10cm【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC ,再由CD=BC-BD ,可得出答案.【详解】解:(1)∵60cm AB =,AD 与DB 的长度之比2:1, ∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.20.(1)①;②;(2)【分析】(1)①根据直角的定义先求出∠AOB 再根据角的和差关系即可得出答案;②先得到再得出代入求出即可;(2)类比②可得:∠AOD+∠BOC=∠BOD+∠AOC 依此代入计算即可求解析:(1)①120AOD ∠=︒;②180BOC AOD ∠+∠=︒;(2)()2BOC x y ∠=-︒【分析】(1)①根据直角的定义先求出∠AOB ,再根据角的和差关系即可得出答案; ②先得到90AOD BOD AOB AOB ∠=∠+∠=︒+∠,再得出9090BOC AOD BOC AOB AOC ∠+∠=∠+︒+∠=︒+∠,代入求出即可; (2)类比②可得:∠AOD+∠BOC=∠BOD+∠AOC ,依此代入计算即可求解.【详解】解:(1)①∵AOC ∠和BOD ∠都是直角,60BOC ∠=︒,∴30AOB ∠=︒,∴120AOD AOB BOD ∠=∠+∠=︒;②猜想180BOC AOD ∠+∠=︒.证明:∵90BOD ∠=︒,∴90AOD BOD AOB AOB ∠=∠+∠=︒+∠,∵90AOC ∠=︒,∴90909090180BOC AOD BOC AOB AOC ∠+∠=∠+︒+∠=︒+∠=︒+︒=︒; (2)类比②可得:AOD BOC BOD AOC ∠+∠=∠+∠,∵BOD AOC x ∠=∠=︒,∴2AOD BOC BOD AOC x ∠+∠=∠+∠=︒,∵AOD y ∠=︒,∴()2BOC x y ∠=-︒.【点睛】本题考查了角的有关计算,主要考查学生根据图形进行计算的能力,题目比较好,但有一定的难度.三、解答题21.(1)∠AOD=∠BOC ;(2)∠AOC+∠BOD=180°;(3)任然成立,理由如见解析【分析】(1)根据角的和差关系解答,(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD 和∠BOC 的关系,根据图形,表示出∠BOD+∠AOC=∠BOD+∠AOB+∠COB 整理即可得到原关系仍然成立.【详解】解:(1)∠AOD 和∠BOC 相等,∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD ,∴∠AOD=∠COB ;(2)∠AOC 和∠BOD 互补 .∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°,∴∠AOC 和∠BOD 互补;⑶成立.∵∠AOB=∠COD=90°,∴∠AOB-∠BOD=∠COD-∠BOD ,∴∠AOD=∠COB ,∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=∠BOD+∠AOB+∠COB ,=90°+∠BOD+∠COB ,=90°+∠DOC ,=90°+90°,=180°.【点睛】本题主要考查角的和、差关系,互余互补的角关系,理清角的和或差,互余与互补关系是解题的关键.22.=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB =, ∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.23.见解析【分析】(1)画直线AB、AC注意两端延伸;(2)以B点为端点,向点C方向延伸;(3)根据几何语言画出对应的几何图形即可.【详解】解:(1)直线AB、AC为所作;(2)射线BC为所作;(3)EF为所作.【点睛】本题考查了直线、线段、射线的画法,解决此类题目的关键是熟悉基本几何图形的性质,能区别直线、线段、射线.24.(1)∠BOD=60°;(2)∠BOD=2∠EOF,理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF平分∠BOC求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB、∠BOC分别用α的代数式表示,最后∠BOD=180°-∠BOC即可求解.【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°,∵∠EOF=30°,∴∠FOB=90°-30°=60°,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°;(2)设∠EOF=α,则∠FOB=90°-α,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α,即∠BOD=2∠EOF.【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.25.13【分析】根据已知条件得出2,2==AC MC BD DN ,再求出22+=+AC BD MC DN =10,根据AB AC BD CD =++求出A B 的长即可;【详解】解: 8,3MN CD ==835,MC DN ∴+=-=点M 是AC 的中点,点N 是BD 的中点2,2,AC MC BD DN ∴==22,AC BD MC DN ∴+=+()2MC DN =+25=⨯10=.AB AC BD CD ∴=++103=+13=【点睛】本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力. 26.(1)AOC BOD ∠=∠,见解析;(2)直线MN 平分BOC ∠,见解析;(3)150°或110°【分析】(1)根据角的和差关系可得结论;(2)根据角平分线的定义求解即可;(3)分OE 在AOB ∠内部和外部两种情况进行求解即可.【详解】解:(1)AOC BOD ∠=∠.理由如下:80AOB COD ∠=∠=︒AOB AOD COD AOD ∴∠+∠=∠+∠即BOD AOC ∠=∠(2)直线MN 平分BOC ∠.理由如下:180AOB MOA NOB ∠+∠+∠=︒,180COD MOD NOC ∠+∠+∠=︒又80AOB COD ∠=∠=︒100MOA NOB MOD NOC ∠+∠=∠+∠=︒∴直线MN 平分AOD ∠MOA MOD ∠=∠∴NOB NOC ∠=∠∴即直线MN 平分BOC ∠.(3)150BOD ∠=︒,80AOB COD ∠=∠=︒ 70AOD ∴∠=︒,130COB ∠=︒①当OE 在AOB ∠内部时,如图所示:13020150COE BOC BOE ∠=∠+∠=︒+︒=︒ ②当OE 在AOB ∠外部时,如图所示:13020110COE BOC BOE ∠=∠-∠=︒-︒=︒ 综上所述,COE ∠的度数为150°或110°.【点睛】本题考查了解度的计算,角平分线的定义,正确识别图形是解题的关键.。

七年级数学《基本平面图形》单元测试题(含答案)

七年级数学《基本平面图形》单元测试题(含答案)

第五章《基本平面图形》单元测试题(后附答案)班级:_________ 姓名:___________题号一二171819202122附加总分分数一、选择题1.如图1,l是一条笔直的公路,在公路的两侧各有一个村庄A,B,两个村庄准备集资修建一个公交车站,经过协商,要求车站到两个村庄的路程和最短,小聪帮助设计了公交车站修建点M,则小聪设计的理由是()A.两点确定一条直线B.两点确定一条线段C.经过三点也可以确定一条直线D.两点之间线段最短图1 图22.下列表示方法正确的是()3.在下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的图形是( )4.下图所示的图形中,其中两条线能相交的是( )5.下列图形中,是正六边形的是( )OBABOOABDCOCAACBEABDC1111AA BDC····BA BDC···CA BDC··DA BDC··A BC D6.已知线段AB=5cm ,在直线AB 上画线段AC=3cm ,则线段BC 的长为( ) A .8cm B .2 cm C . 2 cm 或8 cm D .不能确定7.已知点M 是∠AOB 内一点,作射线OM ,则下列不能说明OM 是∠AOB 的平分线的是( ) A.∠AOM=∠BOM B.∠AOB=2∠AOM C.∠BOM =21∠AOB D.∠AOM+∠BOM=∠AOB 8. 如图,圆的四条半径分别是OA ,OB ,OC ,OD ,其中点O ,A ,B 在同一条直线上,∠AOD =90°,∠AOC =3∠BOC ,那么圆被四条半径分成的四个扇形的面积的比是( )A. 1∶2∶2∶3B. 3∶2∶2∶3C. 4∶2∶2∶3D. 1∶2∶2∶1 9.现在的时间是9点30分,时钟面上的时针与分针的夹角是( ) A.100° B.105° C.110° D.120°10. 如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB=BC=3CD ,若A ,D 两点表示的数的分别为﹣5和6,点E 为BD 的中点,那么点E 表示的整数是( ) A.﹣1 B.0 C.1 D.2二、填空题11.把一根木条固定在墙上,至少要钉2颗钉子,这是根据 . 12.点O 是线段AB 的中点,OA=2cm,则AB=_______cm .13如图4所示,把一块三角尺的直角顶点放在一条直线l 上,若∠1=20º,则∠2的度数为 .图414.如图5,点A ,O ,B 在一条直线上,且∠BOC =130°,OD 平分∠AOC ,则图中∠BOD= 度.15.从六边形的一个顶点出发可以引出 条对角线,可将六边形分为 个三角形,六边形共有_____条对角线.16.我市某校某班有5名代课老师,过新年时,若每两人都互相握一次手,则共需要握 次手.三、解答题17. (每小题4分,共8分)计算:(1)将24.29°化为度、分、秒; (2)将36°40′30″化为度.18. (8分)如图6,把一个圆分成三个扇形,求出这三个扇形的圆心角度数.图619. (8分) 如图9,已知线段AB,请用尺规按下列要求作图:(1)延长线段AB到C,使BC=AB;延长线段BA到D,使AD=AC.(2)若AB=2cm,则AC=cm,BD=cm,CD=cm.图920. (8分) .如右图,∠BAD=90°,射线AC平分∠BAE.(1)当∠CAD=40°时,∠BAC=_______°.(2)当∠DAE=46°时,求∠CAD的度数.理由如下:由∠BAD=90°与∠DAE=46°,可得∠BAE =______________=_______°.由射线AC平分∠BAE,可得∠CAE =∠BAC =______________= _______°.所以∠CAD =_____________=_______°.21. (9分) 如图11,点P 是线段AB 上的一点,点M ,N 分别是线段AP ,PB 的中点. (1)如图①,若点P 是线段AB 的中点,且MP =4cm ,求线段AB 的长; (2)如图②,若点P 是线段AB 上的任一点,且AB =12cm ,求线段MN 的长.① ② 图1122. (11分)如图,已知数轴上点A 表示的数为8,B 是数轴上的一点,AB=12,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数 ,点P 表示的数 (用含t 的代数式表示);(2)若M 为AP 的中点,N 为PB 的中点.点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.附加题1.(6分) 如图1,在锐角∠AOB 内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得 个锐角.图12. (14分) 小知识:如图,我们称两臂长度相等(即CB CA =)的圆规为等臂圆规. 当等臂圆规的两脚摆放在一条直线上时,若张角︒=∠x ACB ,则底角︒-=∠=∠)290(xCBA CAB .请运用上述知识解决问题:如图,n 个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:112160AC A ∠=︒,22380A C A ∠=︒, 33440A C A ∠=︒,44520A C A ∠=︒,…(1)①由题意可得∠A 1A 2C 1= º;②若2A M 平分321A A C ∠,则22C MA ∠= º; (2)n n n C A A 1+∠= º(用含n 的代数式表示,n ≥1);(3)当3≥n 时,设11n n n A A C --∠的度数为a ,11n n n A A C +-∠的平分线N A n 与n n A C 构成的角的度数为β,那么α与β之间的等量关系是 ,请说明理由. (提示:可以借助下面的局部示意图)参考答案一、1.C2.D3.A4.C5.B6.C 提示:如图1所示,当点C 在线段AB 上时,BC=AB -AC=5-3=2(cm );如图2所示,当点C 在线段AB 外时,BC=AB+AC=5+3=8(cm ).图1 图2 7.D8.B 提示:9点30分时,时针与分针的夹角是3×30°+12×30°=105°. 9. A 10. D二、11. 两点确定一条直线 121. 4 13. 70° 14. 3 4 915. 155° 提示:∠BOD=∠BOC+∠COD=∠BOC+12∠AOC=∠BOC+12(180°-∠BOC )=130°+12(180°-130°)=155°.16. 10三、17. 解:(1) 24.29°=24°+0.29⨯60′=24°+17.4′= 24°+17′+0.4⨯60″=24°+17′+24″= 24°17′24″(2) 36°40′30″=36°+40′+30″=36°+40′+601⨯30′=36°+40.5′=36°+601⨯40.5°=36°+0.675°=36.675°. 18.解:因为一个周角为360°,所以分成三个扇形的圆心角分别是:360°×25%=90°,360°×30%=108°,360°×45%=162°. 19.(1)如图4所示:图4 (2)4 6 8 20.(1)50 (2)理由如下:由∠BAD=90°与 ∠DAE=46°,可得∠BAE =_90°+46°(或∠BAD+∠DAE )=136°. 由射线AC 平分∠BAE ,可得 ∠CAE =∠BAC =136°÷2(或∠BAE ÷2)=68°. 所以 ∠CAD =90°-68°(∠BAD -∠CAE )= 22 °.21.解:(1)因为M 是线段AP 的中点,MP=4 cm ,所以AP=2MP=2×4=8(cm ).ACB CAB又因为点P 是线段AB 的中点,所以AB=2AP=2×8=16(cm ). (2)因为点M 是线段AP 的中点,点N 是线段PB 的中点,所以MP=AP ,PN=PB. 所以MN=MP+PN=AP+PB=(AP+PB )=AB.因为AB =12 cm ,所以MN=6 cm. 22. (1)﹣4 8﹣6t(2)①如图1,点P 在AB 中间,因为AM=PM ,BN=PN ,所以MN=AB=6;图1②如图2,点P 在B 点左侧,PM=PA=(PB+AB ),PN=PB ,所以MN=PM ﹣PN=PA ﹣PB=AB=6. 综上所述,MN 在点P 运动过程中长度无变化.图2 1. 662. 解:(1)①10 ②35 (2)(90-1802n ) (3)α-β=45° 理由:不妨设∠C n -1=k.根据题意可知2n kC ∠=.由小知识可知11n n n A A C --∠=902kα=︒-.所以11n n n A A C +-∠=180α︒-=902k︒+.由小知识可知1n n n A A C +∠= 904k︒-.因为 N A n 平分11n n n A A C +-∠,所以 1∠=1211n n n A A C +-∠=454k ︒+.因为1n n n A A C +∠=1n n C A N ∠+∠,所以 904k ︒-=454kβ︒++.所以 902k︒-=45β︒+.所以α=45β︒+. 所以45αβ-=︒.212121212121。

七年级上册数学单元测试卷-第四章 基本平面图形-北师大版(含答案)

七年级上册数学单元测试卷-第四章 基本平面图形-北师大版(含答案)

七年级上册数学单元测试卷-第四章基本平面图形-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,如果射线OA表示在阳光下你的身影的方向,那么你的身影的方向是( )A.北偏东60°B.南偏西60°C.北偏东30°D.南偏西30°2、小明根据下列语句,分别画出了图形(a)、(b)、(c)、(d)并将图形的标号填在了相应的“语句”后面的横线上,其中正确的是()①直线l经过点A、B、C三点,并且点C在点A与B之间②点C在线段AB的反向延长线③点P是直线a外一点,过点P的直线b与直线a相交于点Q④直线l、m、n相交于点DA.①、②、③、④B.①、②、④C.①、③、④D.②、③3、如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°4、如果、、三点共线,线段,,那么、两点间的距离是()A.1B.11C.5.5D.11或15、对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A. B. C. D.6、如图,点D,E,F分别为△ABC各边的中点,下列说法正确的是( )A.DE=DFB.EF= ABC.S△ABD =S△ACDD.AD平分∠BAC7、下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴&nbsp;D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴8、钟表在4点10分时,它的时针和分针所形成的锐角度数是()A.75°B.65°C.85°D.90°9、下列说法中正确的是()A.若|a|=﹣a,则 a 一定是负数B.单项式 x 3y 2z 的系数为 1,次数是6 C.若 AP=BP,则点 P 是线段 AB 的中点 D.若∠AOC= ∠AOB,则射线 OC 是∠AOB 的平分线10、下列说法:①两点之间,直线最短;②若AC=BC,且A,B,C三点共线,则点C是线段AB的中点;③经过一点有且只有一条直线与已知直线垂直;④经过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个11、如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10 +5D.3512、如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πrB.2πrC.πrD.2r13、当分针指向12,时针这时恰好与分针成120°的角,此时是()A.9点钟B.8点钟C.4点钟D.8点钟或4点钟14、下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧15、如图,点C是AB的中点,点D是BC的中点,现给出下列等式:①CD=AC-DB,②CD= AB,③CD=AD-BC,④BD=2AD-AB.其中正确的等式编号是()A. B. C. D.二、填空题(共10题,共计30分)16、一列火车在A、B两站间往返行驶,之间还有4个车站,至多共有________种不同的价格的车票.17、如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:DC=1:2,则DB的长度为________.18、如图,将一副直角三角板如图放置,若,则________度.19、[知识背景]:三角形是数学中常见的基本图形,它的三个角之和为180°.等腰三角形是一种特殊的三角形,如果一个三角形有两边相等,那么这个三角形是等腰三角形,相等的两边所对的角也相等.如图1,在三角形ABC中,如果AB=AC,那么∠B=∠C.同样,如果∠B=∠C,则AB=AC,即这个三角形也是等腰三角形.[知识应用]:如图2,在三角形ABC中,∠ACB=90°,∠ABC=30°,将三角形ABC绕点C 逆时针旋转α(0°<α<60°)度(即∠ECB=α度),得到对应的三角形DEC,CE交AB于点H,连接BE,若三角形BEH为等腰三角形,则α=________°.20、如果一个多边形从一个顶点出发的对角线将这个多边形分成7个三角形,则这个多边形共有________ 条对角线.21、在灯塔处观测到轮船位于北偏西的方向,同时轮船在南偏东的方向,那么的大小为________.22、,,________23、如图:若CD=4cm,BD=7cm,B是AC的中点,则AC的长为________.24、如图,点A、B、C是直线l上的三个点,图中共有线段条数是________25、如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM(________)∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=________∠AMN,∠FNM=________∠DNM (角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF(________)由此我们可以得出一个结论:两条平行线被第三条直线所截,一对________角的平分线互相________.三、解答题(共5题,共计25分)26、计算:(1)13°29’+78°37‘(2)62°5’-21°39‘ (3)22°16′×5 (4)42°15′÷527、如图所示,军舰A在军舰B的正东方向上,且同时发现了一艘敌舰,其中A舰发现它在北偏东15°的方向上,B舰发现它在东北方向上,(1)试画出这艘敌舰的位置(用字母C表示).(2)求∠BCA=?28、如图,已知∠AOD和∠BOC都是直角,∠AOC=38°,OE平分∠BOD,求∠COE的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本平面图形单元检测
时间:90分钟满分:100分
一、选择题(本题共10小题,每小题3分,共30分)
1.平面上有四点,经过其中的两点画直线最多可画出( ).
A.三条B.四条C.五条D.六条
2.在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ).
A.①②B.①③C.②④D.③④
3.平面上有三点A,B,C,如果AB=8,AC=5,BC=3,那么( ).
A.点C在线段AB上B.点C在线段AB的延长线上
C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外
4.下列各角中,是钝角的是( ).
A
.1
4
周角 B.
2
3
周角 C.
2
3
平角 D.
1
4
平角
5.如图,O为直线AB上一点,∠COB=26°30′,则∠1=( ).
A.153°30′B.163°30′C.173°30′D.183°30′6.在下列说法中,正确的个数是( ).
①钟表上九点一刻时,时针和分针形成的角是平角;
②钟表上六点整时,时针和分针形成的角是平角;
③钟表上十二点整时,时针和分针形成的角是周角;④钟表上差一刻六点时,时针和分针形成的角是直角;
⑤钟表上九点整时,时针和分针形成的角是直角.
A.
1 B.
2 C.
3 D.4
7.如图,C是AB的中点,D是BC的中点,下面等式不正确的是( ).
A.CD=AC-DB B.CD=AD-BC
C.CD=
1
2
AB-BD D.CD=
1
3
AB
8.如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于( ).
A.3 cm B.6 cm C.11 cm D.14 cm
9.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)
用(a,b)表示,则从景点A到景点C用时最少
....的路线是( ).
A.A→E→C B.A→B→C C.A→E→B→C D.A→B→E→C
10.如图所示,云泰酒厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在金斗大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该厂的接送车打算在这个路段上只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( ).
A.点A B.点B C.AB之间D.BC之间
二、填空题(本题共4小题,每小题4分,共16分)
11.如图所示,线段AB 比折线AMB __________,理由是:
____________________.
12.如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =10,AC =6,则CD =
__________.
13.现在是9点20分,此时钟面上的时针与分针的夹角是__________.
14.如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南——淄博——潍坊——青岛,那么要为这次列车制作的火车票有__________种.
三、解答题(本题共4小题,共54分)
15.(12分)计算:
(1)将24.29°化为度、分、秒; (2)将36°40′30″化为度.
16.(7分)
请以给定的图形“
”(两个圆,两个三角形,两条线段)构思独特而且又有
意义的图形,并且写上一句贴切的解说词.
17.(8分) 已知线段a ,b (如图),画出线段AB ,使AB=a+2b .
18.(8分)已知在平面内,∠AOB =70°,∠BOC =40°,求∠AOC 的度数.
19.(9分)如图,已知AB 和CD 的公共部分BD

13AB =1
4
CD .线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD 的长.
20.(10分)某摄制组从A 市到B 市有一天的路程,由于堵车,中午才赶到一个小镇,只行驶了原计
划的三分之一(原计划行驶到C 地),过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 地到这里路程的二分之一就到达目的地了,问A ,B 两市相距多少千米?
基本平面图形单元检测答案1答案:D
2答案:D
3答案:A
4答案:C 点拨:
因为
2
3
平角=
2
3
×180°=120°,所以
2
3
平角是钝角,故选C.
5答案:A 点拨:∠1=180°-26°30′=153°30′.
6答案:C 点拨:说法①④错误.
7答案:D
8答案:B
9答案:D 点拨:分别计算各选项中的用时可知,从景点A到景点C用时最少的线路是
A→B→E→C,故选D.
10答案:A
11答案:短两点之间,线段最短
12答案:2 点拨:∵AB=10,AC=6,∴BC=AB-AC=10-6=4.又∵点D是线段BC的中
点,
∴CD=
1
2
BC=2.
13答案:160°点拨:可画出钟表的示意图帮助解答(如图).观察图可知,9点20分时,时针
和分针的夹角是5个大格加时针从9点开始转过的角度,所以9点20分时,时针和分针的夹角是
5×30°+20×0.5°=160°.
14答案:10 点拨:由泰山到青岛的某一次列车的车票的种数是:泰山——济南,泰山——淄
博,泰山——潍坊,泰山——青岛;济南——淄博,济南——潍坊,济南——青岛;淄博——潍坊,
淄博——青岛;潍坊——青岛,共10种.
15解:(1)先将0.29°化为17.4′,再将0.4′化为24″.
24.29°=24°+0.29×60′
=24°+17′+0.4×60″=24°+17′+24″
=24°17′24″.
(2)先将30″化为0.5′,再将40.5′化为0.675°.
∵1′=
1
60
⎛⎫


⎝⎭
,1″=
1
60
⎛⎫
'

⎝⎭

∴30″=
1
60
⎛⎫
'

⎝⎭
×30=0.5′,40.5′=
1
60
⎛⎫


⎝⎭
×40.5=0.675°.
∴36°40′30″=36.675°.
16解:以下答案供参考.
17解:如图所示:
18解:(1)当∠BOC在∠AOB的外部时,如图1所示,∠AOC=∠AOB+∠BOC=70°+40°=110°;
(2)当∠BOC在∠AOB的内部时,如图2所示,∠AOC=∠AOB-∠BOC=70°-40°=30°.
故∠AOC的度数为110°或30°.
19解:设BD =x cm ,则AB =3x cm ,CD =4x cm. 因为E ,F 分别是线段AB ,CD 的中点, 所以EB =
12AB =1.5x ,FD =1
2
CD =2x . 又EF =10 cm ,EF =EB +FD -BD , 所以1.5x +2x -x =10. 解得x =4.
所以3x =12,4x =16.
所以AB 长12 cm ,CD 长16 cm.
20解:如图,设小镇为D ,傍晚汽车在E 处休息,由题意知,DE =400千米,AD =
1
2
DC ,EB =
12CE ,AD +EB =12(DC +CE )=12DE =1
2
×400=200(千米). 所以AB =AD +EB +DE =600(千米).
答:A ,B 两市相距600千米.。

相关文档
最新文档