基本初等函数指数函数对数函数与幂函数章节综合学案练习(五)带答案人教版高中数学真题技巧总结提升

合集下载

基本初等函数指数函数对数函数与幂函数章节综合检测专题练习(一)附答案人教版高中数学真题技巧总结提升

基本初等函数指数函数对数函数与幂函数章节综合检测专题练习(一)附答案人教版高中数学真题技巧总结提升
5.对实数 与 ,定义新运算“ ”: 设函数 若函数 的图像与 轴恰有两个公共点,则实数 的取值范围是()(2020年高考天津卷理科8)
A. B.
C. D.
6.把一块边长是a的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线折转成一个无盖方底的盒子,盒子的容积最大时,切去的正方形边长是()
设n=k时,( )α1+α2+…+αn≤( )α1·( )α2…( )αn,
当n=k+1时,( )α1+α2+…+αn+αn+1
=[ ](α1+α2+…+αn)+αn+1
≤( )α1+α2+…+αn·( )αn+1
≤( )α1·( )α2…( )αn·( )αn+1。
所以,结论对一切n成立。
20.解:(I)充分性:若
2.当0<a<b<1时,下列不等式中正确的是()
A.(1-a) >(1-a)bB.(1+a)a>(1+b)b
C.(1-a)b>(1-a) D.(1-a)a>(1-b)b(2020上海7)
3.若 ,则( )
A. B. C. D. (2020江西文4)
4.在下列区间中,函数 的零点所在的区间为()
A. B. C. D. (2020全国文10)
A.
B.2C.
D.4
A
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
11.化简: ▲.
12.若方程 的解为 ,且 ,则 ▲;
13. 的值为
14.函数 的零点一定位于区间(相邻两个整数为端点)是.

基本初等函数指数函数对数函数与幂函数章节综合学案练习(三)含答案高中数学

基本初等函数指数函数对数函数与幂函数章节综合学案练习(三)含答案高中数学

高中数学专题复习《基本初等函数指数函数对数函数与幂函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.函数(0,1)xy a a a a =->≠的图象可能是(2020四川文)[答案]C[解析]采用特殊值验证法. 函数(0,1)xy a a a a =->≠恒过(1,0),只有C 选项符合.2.函数]1,0[)1(log )(在++=x a x f a x 上的最大值和最小值之和为a ,则a 的值为( )A .41B .21C .2D .4(2020湖北理)3.如果0<a<1,那么下列不等式中正确的是( )A .(1-a )31>(1-a )21 B .log 1-a (1+a )>0 C .(1-a )3>(1+a )2 D .(1-a )1+a >1(1994上海)4.若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是( )A .)1,41[B . )1,43[C .),49(+∞D .)49,1((2020天津理)5.已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101ab -<<< B .101b a -<<<C .101b a -<<<-D .1101a b --<<<(2020山东文12)6.把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线折转成一个无盖方底的盒子,盒子的容积最大时,切去的正方形边长是 ( ) 1-O yxA .3aB .4aC .5aD .6a 7.函数()(0)f x ax bx c a =++≠的图象关于直线2b x a=-对称。

高中数学 第四章 指数函数、对数函数与幂函数 4.5 增长速度的比较学案(含解析)新人教B版必修第二

高中数学 第四章 指数函数、对数函数与幂函数 4.5 增长速度的比较学案(含解析)新人教B版必修第二

4.5 增长速度的比较学习目标1.能利用函数的平均变化率,说明函数的增长速度.2.比较对数函数、一次函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.自主预习情境引入杰米是百万富翁,一天,他碰到一件奇怪的事,一个叫韦伯的人对他说:“我想和你订个合同,我将在整整一个月中(这个月有31天),每天给你10万元,而你第一天只需给我1分钱,以后你每天给我的钱是前一天的两倍.”杰米说:“真的?你说话算数?”合同开始生效了,杰米欣喜若狂.第一天杰米支出1分钱,收入10万元.第二天杰米支出2分钱,收入10万元,到了第10天,杰米共得100万元,而总共才付出10元2角3分.到了第20天,杰米共得200万元,而韦伯才得1万多元.杰米想:要是合同订二、三个月该多好!可从21天起,情况发生了转变.第22天杰米支出2万多,收入10万,到第28天,杰米支出134万多,收入10万.结果,杰米在一个月(31)天内得到310万元的同时,共付给韦伯2千1百多万元!杰米破产了.问题1写出杰米每天收入y(单位:分)与天数x的函数关系式.问题2写出杰米每天支出y(单位:分)与天数x的函数关系式.三种常见函数模型的增长差异对比三类函数的增长速度,熟记图像变化规律函数性质y=a x(a>1)y=log a x(a>1)y=kx(k>0)在(0,+∞)上的增减性图像的变化随x的增大逐渐变“陡”随x的增大逐渐趋于稳定随k值而不同形象描述指数爆炸对数增长直线上升增长速度y=a x(a>1)的增长速度最终都会大大超过y=kx(k>0)的增长速度;总存在一个x0,当x>x0时,恒有log a x<kx增长结果存在一个x0,当x>x0时,有课堂探究题型一幂函数的增长速度y=xα,当α>1,x>0时,随x的增加,y增加的越来越快,当0<α<1,x>0时,随x的增加,y增加的越来越慢.例1已知函数y=x2,分别计算函数在区间[1,2]与[2,3]上的平均变化率,并说明当自变量每增加1个单位时,函数值变化的规律.训练1已知函数y=x12,分别计算函数在区间[0,1]与[1,2]上的平均变化率,并说明,当自变量每增加一个单位时,函数值变化的规律.题型二指数(对数)函数的增长速度y=a x,当a>1时,随x的增加,y值增加的越来越快,可以远远超过y=xα(α>1)的增长速度;y=log a x,当a>1,x>0时,y随x的增加而增加,但增加的速度越来越慢例2分别计算函数y=3x在区间[1,2]与[2,3]上的平均变化率,并说明函数值变化的规律.训练2计算函数y=log3x在区间[1,2]与 [2,3]上的平均变化率,并以此说明函数值变化的规律.题型三不同函数在同一区间上平均变化率的比较例3已知函数f(x)=2x,g(x)=x,h(x)=log2x,分别计算这三个函数在区间[a,a+1](a>1)上的平均变化率,并比较它们的大小.训练3已知函数y=log3x在[a,a+1](0<a<1)上的平均变化率小于1,求a的取值范围.核心素养专练1.下列函数中随x 的增长而增长最快的是( ) A.y=e xB.y=ln xC.y=x1 000D.y=2x2.已知函数f (x )在任意区间上的平均变化率为5,则当自变量减少2个单位时,函数值 单位.3.甲、乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点参考答案自主预习问题1 y=107x (x ∈N *) 问题2 y=2x-1(x ∈N *) 填表略增函数 增函数 增函数 a x >kx>log a x课堂探究例1 解:因为Δx Δx =x 22-x 12x2-x1=x 2+x 1,所以y=x 2在区间[1,2]上的平均变化率为3,在区间[2,3]上的平均变化率为5,不难看出,当自变量大于零时,自变量每增加1个单位,区间的左端点值越大,函数值增加越快.训练1 解:因为ΔxΔx =x 212-x 112x2-x1=1x 212+x 112,所以y=x 12在[0,1]上的平均变化率为1,在[1,2]上的平均变化率为√2-1,可以看出自变量每增加1个单位,区间左端点值越大,函数值增加越慢.例2 解:因为Δx Δx =3x 2-3x 1x2-x 1,所以函数y=3x在区间[1,2]上的平均变化率为32-312-1=6,在[2,3]上的平均变化率为33-323-2=18,可以看出,当自变量每增加1个单位时,区间左端点值越大,函数值增加越快.训练2 解:因为Δx Δx=log 3x 2-log 3x 1x 2-x 1,所以y=log 3x 在区间[1,2]上的平均变化率为log 32-log 312-1=log 32.在区间[2,3]上的平均变化率为log 33-log 323-2=log 332,∵函数y=log 3x 在区间[1,2]与[2,3]上均是增函数,又log 32>log 332,∴函数值y 增加的速度越来越慢.例3 解:因为Δx Δx =2x +1-2x(x +1)-x =2a,Δx Δx =(x +1)-x(x +1)-x=1, Δx Δx=log 2(x +1)-log 2x(x +1)-x=log 2(1+1x ),又因为a>1时,有2a>21=2>1, log 2(1+1x )<log 2(1+11)=1,因此在区间[a ,a+1]上,f (x )的平均变化率最大,h (x )的最小. 训练3 解:∵Δx Δx=log 3(x +1)-log 3x (x +1)-x=log 3(1+1x )<1,∴log 3(1+1x )<log 33,∴0<1+1x <3,又0<a<1, ∴12<a<1,即a 的取值范围为(12,1).核心素养专练1.A2.减少10个 解析:设f (x )=5x+b ,x ∈R,则f (x-2)-f (x )=5×(x-2)+b-(5x+b )=-10.3.D 解析:由图知,甲、乙两人s 与t 的关系均为直线上升,路程s 的增长速度不变,即甲、乙均为匀速运动,但甲的速度快.又甲、乙的路程s 取值范围相同,即跑了相同的路程,故甲用时少,先到终点.学习目标1.复习平均变化率的定义,理解其意义及几何意义.(直观想象)2.能利用平均变化率比较幂指对函数增长的快慢.(逻辑推理)3.了解在实际生活中不同增长规律的函数模型.(数学建模)自主预习平均变化率1.试求出y=3x+4在[3,5]上的平均变化率.提示:平均变化率为y的改变量与x的改变量之比.2.(1)函数值的改变量与自变量的改变量的比称为.(2)函数y=f(x)在区间[x1,x2](x1<x2时)或[x2,x1](x1>x2时)上的平均变化率为.(3)平均变化率也可理解为:自变量每增加1个单位,函数值平均将增加个单位,因此,可用平均变化率来比较函数值变化的快慢.3.函数y=4x的平均变化率为a1,函数y=x-3的平均变化率为a2,则a1,a2的大小关系是()A.a1>a2B.a1<a2C.a1=a2D.无法确定4.y=x2+1在[1,1+Δx]上的平均变化率是()A.2B.2xC.2+ΔxD.2+(Δx)2课堂探究有一套房子,价格为200万元,假设房价每年上涨10%,某人每年固定能攒下40万元,如果他想买这套房子,在不贷款、收入不增加的前提下,这个人需要多少年才能攒够钱买这套房子?A.5年B.7年C.8年D.9年E.永远也买不起问题1:凭直觉,你认为上述问题的答案是什么?为什么?问题2:房价的增长速度一直都比攒钱的增长速度快吗?怎么刻画它们的增长速度呢?问题3:函数y=f(x)在区间[x1,x2](x1<x2时)上的平均变化率怎么表示?问题4:平均变化率有怎样的意义?问题5:平均变化率的几何意义是什么?探究1:函数平均变化率的计算例1求函数y=2x在[1,2]与[2,3]上的平均变化率,并说明,当自变量每增加1个单位时,函数值变化的规律.变式训练求函数y=log2x在[1,2]与[2,3]上的平均变化率,并说明,当自变量每增加1个单位时,函数值变化的规律.探究2:函数增长速度的比较例2已知函数f(x)=2x,g(x)=x,h(x)=log2x,分别计算这三个函数在[a,a+1](a>1)上的平均变化率,并比较它们的大小.要点归纳:平均变化率大小比较常用方法引申:①当0<a<1时,g(x)的平均变化率还一定比h(x)大吗?②比较三个函数的平均变化率的变化趋势,你能得到什么结论?③能否举一些生活中指数增长、线性增长、对数增长的例子?例3回扣情境与问题我们再来研究本节课开始的问题:有一套房子,价格为200万元,假设房价每年上涨10%,某人每年固定能攒下40万元,如果他想买这套房子,在不贷款、收入不增加的前提下,这个人需要多少年才能攒够钱买这套房子()A.5年B.7年C.8年D.9年E.永远也买不起核心素养专练A组1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为()A.0.40B.0.41C.0.43D.0.442.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图像是()3.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x1.99 3 4 5.1 6.12y1.5 4.04 7.5 12 18.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是())xA.y=2x-2B.y=(12(x2-1)C.y=log2xD.y=124.(多选)在某种金属材料的耐高温实验中,温度y(℃)随着时间t(min)变化的情况由计算机记录后显示的图像如图所示.现给出下列说法,其中正确的说法是()A.前5 min温度增加的速度越来越快B.前5 min温度增加的速度越来越慢C.5 min以后温度保持匀速增加D.5 min以后温度保持不变5.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图像,A对应;B对应;C对应;D对应.6.同一坐标系中,画出函数y=x+5和y=2x的图像,并比较x+5与2x的大小.B 组7.某国2016年至2019年国内生产总值(单位:万亿元)如下表所示:年份2016 2017 2018 2019 x (年份代码)123生产总值y (万亿元)8.206 78.944 29.593 310.239 8(1)画出函数图像,猜想y 与x 之间的函数关系,近似地写出一个函数关系式;(2)利用得出的关系式求生产总值,与表中实际生产总值比较; (3)利用关系式预测2033年该国的国内生产总值.参考答案自主预习1.32.(1)平均变化率 (2)Δx Δx =x (x 2)-x (x 1)x 2-x 1(3)ΔxΔx3.A4.C 课堂探究问题:略例1 解:因为Δx Δx =2x 2-2x 1x2-x 1=2x 1(2x 2-x 1-1)x 2-x 1,所以y=2x在[1,2]上的平均变化率为21(22-1-1)2-1=2.y=2x在[2,3]上的平均变化率为22(23-2-1)3-2=4.变式训练 解:因为Δx Δx=log 2x 2-log 2x 1x 2-x 1=log 2x 2x 1x2-x 1,所以g (x )=log 2x 在[1,2]上的平均变化率为log 2212-1=log 22=1.g (x )=log 2x 在[2,3]上的平均变化率为log 2323-2=log 232.例2 解:因为Δx Δx =2x +1-2x(x +1)-x =2a,Δx Δx =(x +1)-x (x +1)-x=1,Δx Δx=log 2(x +1)-log 2x(x +1)-x=log 2(1+1x ),又因为a>1时,2a>21=2>1,log 2(1+1x )<log 2(1+11)=1,因此在区间[a ,a+1](a>1)上,f (x )的平均变化率最大,h (x )的最小.引申:略例3 解析:设经过x 年后,房价为p (x )万元,这个人攒下的钱共有r (x )万元,则这两个函数的解析式分别为:p (x )=200×1.1x,r (x )=40x ,(x ∈N).在区间[a ,a+1],a ∈N 上,Δx Δx =200×1.1x +1-200×1.1x(x +1)-x=20×1.1a ,Δx Δx =40(x +1)-40x(x +1)-x=40.令Δx Δx >ΔxΔx ,得20×1.1a >40,所以a>log 1.12≈7.3.即a ≥8时,房价的增长速度比攒钱的增长速度快.我们也可以列表,直观看一下两个函数值(取整数,单位:万元)的变化情况:x 1 2 3 4 5 6 7 8 9 p (x ) 220 242 266 293 322 354 390 429 472 r (x ) 40 80 120 160 200 240 280 320 360x 的值每增加1,r (x )的值稳定地增长40,而p (x )的值的增加量则逐渐变大,并且越来越快.经过8年后,p (x )的值的年增加量将接近40,以后则均大于40.在前8年里,攒钱的总数始终小于房价,所以,这个人永远也买不起房子. 核心素养专练1.B 解析:Δy=f (x+Δx )-f (x )=f (2+0.1)-f (2)=(2.1)2+1-(22+1)=0.41.故选B. 2.C 解析:小明匀速运动时,所得图像为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.3.D 解析:法一:相邻的自变量之差大约为1,相邻的函数值之差大约为2.5,3.5,4.5,6,基本上是逐渐增加的,二次函数曲线拟合程度最好,故选D.法二:比较四个函数值的大小,可以采用特殊值代入法.可取x=4,经检验易知选D. 4.BD 解析:因为温度y 关于时间t 的图像是先凸后平,所以前5 min 每当t 增加一个单位,相应的增量Δy 越来越小,而5 min 后y 关于t 的增量保持为0,则BD 正确.5.(4) (1) (3) (2) 解析:A 容器下粗上细,水高度的变化先慢后快,故与(4)对应;B 容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D 容器都是柱形的,水高度的变化速度都应是直线型,但C 容器细,D 容器粗,故水高度的变化为C 容器快,与(3)对应,D 容器慢,与(2)对应.6.解:如图,根据函数y=x+5与y=2x的图像增长差异,得当x<3时,x+5>2x;当x=3时,x+5=2x;当x>5时,x+5<2x.7.解:(1)画出函数图像,如图所示.从函数的图像可以看出,画出的点近似地落在一条直线上,设所求的函数关系式为y=kx+b(k≠0).把直线经过的两点(0,8.206 7)和(3,10.239 8)代入上式,解得k=0.677 7,b=8.206 7.所以函数关系式为y=0.677 7x+8.206 7.(2)由得到的函数关系式计算出2017年和2018年的国内生产总值分别为0.677 7×1+8.206 7=8.884 4(万亿元),0.677 7×2+8.206 7=9.562 1(万亿元).与实际的生产总值相比,误差不超过0.1万亿元.(3)2033年,即x=17时,由(1)得y=0.677 7×17+8.206 7=19.727 6,即预测2033年该国的国内生产总值约为19.727 6万亿元.。

基本初等函数指数对数与幂函数章节综合学案练习(六)附答案新人教版高中数学名师一点通

基本初等函数指数对数与幂函数章节综合学案练习(六)附答案新人教版高中数学名师一点通
②当x<0时, ,方程即 ,即 ,
a) 时,无解,b) 时, ;
综上: 时, ;
时, 或 .
(2)
①当 时,a) 时, , ,∴
b) 时, ,

ⅰ当 即 时,对 , ,∴ 在 上递增,
∴ ,综合a)b) 有最小值为 与a有关,不符合
ⅱ当 即 时,由 得 ,且当 时, ,当 时, ,∴ 在 上递减,在 上递增,所以 ,综合a)b) 有最小值为 与a无关,符合要求.
11.计算 =▲.
12.函数 的单调减区间是
13.若 ,则 ▲.
14. =
15.用分数指数幂表示下列各式:
(1) (2) (3)
16.已知 可以表示成一个奇函数 与一个偶函数 之和,若关于 的不等式 对于 恒成立,则实数 的最小值是.
评卷人
得分
三、解答题
17.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.若每辆车的月租金每增加50元,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
A. B. C. D.
8.设函数f(x)=1-x2+log (x-1),则下列说法正确的是( )
(A)f(x)是增函数,没有最大值,有最小值
(B)f(x)是增函数,没有最大值、最小值
(C)f(x)是减函数,有最大值,没有最小值
(D)f(x)是减函数,没有最大值、最小值
9.设f(x)=|log3x|,若f(x)>f( ),则x的取值范围是()
所以租出了 辆车;………………………………………………6分
(2)设每辆车的月租金定为 元,则租赁公司的月收益为
,整理得
所以当 时, 最大,其最大值为

基本初等函数指数函数对数函数与幂函数章节综合学案练习(二)含答案人教版高中数学高考真题汇编

基本初等函数指数函数对数函数与幂函数章节综合学案练习(二)含答案人教版高中数学高考真题汇编

高中数学专题复习《基本初等函数指数函数对数函数与幂函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、选择题1.若函数()121x f x =+,则该函数在(),-∞+∞上是( ) A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值 D .单调递增有最大值 (2020上海理)2.函数f (x )=2xe x +-的零点所在的一个区间是( )(A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2)(2020天津文4)3.函数41()2x xf x +=的图象( )(A ) 关于原点对称 (B ) 关于直线y =x 对称 (C ) 关于x 轴对称 (D ) 关于y 轴对称(2020重庆理)4.已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101a b --<<<(2020山东文12)5.函数22)(3-+=x x f x 在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )36.设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是(A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a7.设定义在R 上函数f (x )满足f (x +6)=f (x ),在(0,3)内单调递减,且y =f (x )的图象关于直线x =3对称,则下面正确的结论是.( )(A )f (3.5)<f (1.5)<f (6.5) (B )f (1.5)<f (3.5)<f (6.5)1-Oy x(C )f (6.5)<f (3.5)<f (1.5) (D )f (3.5)<f (6.5)<f (1.5) 8.利用计算器,列出自变量和函数值的对应值如下表:x-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 …x y 2= 0.3298 0.3789 0.4352 0.5 0.5743 0.6597 0.7578 0.8705 1 …2x y =2.561.961.4410.640.360.160.040 …那么方程22x x =有一个根位于下列区间的A .( 1.6, 1.2)--B .( 1.2,0.8)--C .(0.8,0.6)--D .(0.6,0.2)--9.设y=f(x)是一次函数,f(0)=1,且f(1),f(4),f(13)成等比数列,则∑=nk k f 1)2(=( )A,n(2n+3) B,n(n+4) C,2n(2n+3) D,2n(2n+4) (石家庄一模)10.设a>1,对于实数x,y 满足:|x|-log ay1=0,则y 关于x 的函数图象为( )(石家庄一模)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.生物学指出:生态系统中,在输入一个营养级的能量中,大约只有10%-20%的能量能够流动到下一个营养级,在H 1→H 2→H 3→H 4→H 5→H 6这条生物链中,若能使H 6获得10KJ 的能量,则需要H 1提供的最少的足够的能量是……………………………………………………………………………………( )(A )104KJ ; (B )105KJ ; (C )106KJ ; (D )107KJ .12.令113221log ,2,23a b c ===,则,,a b c 的大小关系为13.已知偶函数223()()mm f x x m Z --=∈在(0,+∞)上单调递减.⑴求函数()f x 的解析式;⑵若(21)()f a f a +=,求实数a 的值.14. 若函数0()(>--=a a x a x f x且)1≠a 有两个零点,则实数a 的取值范围是▲ .15.若函数()1(0,1)xf x a a a =->≠的定义域和值域都是]2,0[ , 则实数a 等于__________.16.函数23xy t =⋅+的图象不经过第二象限,则t 的取值范围是 . 评卷人得分三、解答题17.如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上,且对角线MN 过C 点,已知|AB|=3米,|AD|=2米, (Ⅰ)设AN 的长为x 米,用x 表示矩形AMPN 的面积,并写出其定义域? (Ⅱ)要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内?18.某品牌茶壶的原售价为80元/个,今有甲、乙两家茶具店销售这种茶壶,甲ABCDMNP店用如下方法促销:如果只购买一个茶壶,其价格为78元/个;如果一次购买两个茶壶,其价格为76元/个;… …,一次购买的茶壶数每增加一个,那么茶壶的价格减少2元/个,但茶壶的售价不得低于44元/个;乙店一律按原价的75℅销售。

基本初等函数指数函数对数函数与幂函数章节综合学案练习(六)附答案人教版高中数学真题技巧总结提升

基本初等函数指数函数对数函数与幂函数章节综合学案练习(六)附答案人教版高中数学真题技巧总结提升
评卷人
得分
三、解答题
17.某船舶公司买了一批游轮投入客运,按市场分析每艘游轮的总利润y(单位:10万元)与营运年数x 为二次函数关系式(如下图所示),则每艘游轮营运多少年,其营运的年平均利润最大?
18.已知 ,求 .
19.已知 ,比较 的大小.
20.设函数 .
( )解不等式 ;
( )若关于 的不等 在 恒成立,试求 的取值范围.
5.当0<a<b<1时,下列不等式中正确的是()
A.(1-a) >(1-a)bB.(1+a)a>(1+b)b
C.(1-a)b>(1-a) D.(1-a)a>(1-b)b(2020上海7)
6.函数y=-ex的图象( )
A与y=ex的图象关于y轴对称. B与y=ex的图象关于坐标原点对称.
C与y=e-x的图象关于y轴对称. D与y=e-x的图象关于坐标原点对称.(2020四川理)
A,10 B,16 C,18 D,32
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
11.函数 的定义域为▲.
12.函数f(x)= 的值域为.
13.已知 则 (用 表示)
14.计算
15.函数 ,若 ,则 的取值范围是
16.已知 是偶函数,当 时, ,且当 时, 恒成立,则 的最小值是。
(A) (B) (C) (D) (2020天津理)
2.下列大小关系正确的是()
(A) (B)
(C) (D) (2020山东文)
3.函数 的图象()
(A)关于原点对称(B)关于直线y=x对称(C)关于x轴对称(D)关于y轴对称(2020重庆理)
4.若 是方程式 的解,则 属于区间()

基本初等函数指数对数与幂函数章节综合学案练习(二)附答案人教版高中数学

(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为.
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.(07湖北)
评卷人
得分
三、解答题
17.(本小题满分14分)
根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率 与日产量 (件)之间近似地满足关系式 (日产品废品率 ×100%).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润 日正品赢利额 日废品亏损额)
(1)将该车间日利润 (千元)表示为日产量 (件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?
18. 在南海的渔政管理中,我海监船C在我作业渔船A的北20东方向上,渔政船310在A的北40西方向上的B处,测得渔政船310距C为62海里.上级指示,海监船原地监测,渔政船310紧急前往A处,走了40海里后,到达D处,此时测得渔政船310距C为42海里,问我渔政船310还要航行多少海里才能到达A处?
当 时, ,函数 在 上单调减.
所以当 时, 取得极大值,也是最大值,
又 是整数, , ,所以当 时, 有最大值 .……10分
当 时, ,所以函数 在 上单调减,
所以当 时, 取得极大值 ,也是最大值.
由于 ,所以当该车间的日产量为10件时,日利润最大.
答:当该车间的日产量为10件时,日利润最大,最大日利润是 千元.……14分
但 ,这是不可能的。这说明 是满足条件的最小正数。
这样不等式 恒成立,
即 恒成立,
∴ ,最小正数 =4。……………………16分

2023北京重点校高一(上)期末数学汇编:指数函数与对数函数章节综合

2023北京重点校高一(上)期末数学汇编指数函数与对数函数章节综合一、单选题1.(2023秋·北京东城·高一统考期末)已知函数()|lg(1)|f x x =+,对a ,b 满足1a b -<<且()()f a f b =,则下面结论一定正确的是()A .0a b +=B .1ab =C .0ab a b --=D .0ab a b ++=2.(2023秋·北京东城·高一统考期末)下列函数中,在区间(0,)+∞上单调递减的是()A.y =B .ln y x=C .12xy ⎛⎫= ⎪⎝⎭D .3y x =3.(2023秋·北京东城·高一统考期末)记地球与太阳的平均距离为R ,地球公转周期为T ,万有引力常量为G ,根据万有引力定律和牛顿运动定律知:太阳的质量2324π(kg)R M GT =.已知32lg 20.3,lg π0.5,lg 28.7R GT ≈≈≈,由上面的数据可以计算出太阳的质量约为()A .30210kg⨯B .292g10k ⨯C .30310kg⨯D .29310kg⨯4.(2023秋·北京西城·高一北京八中校考期末)下列函数在其定义域内是增函数的是()A .2xy =B .2log y x=-C .1y x=-D .23y x =5.(2023秋·北京西城·高一统考期末)设2log 3a =,则122a +=()A .8B .11C .12D .186.(2023秋·北京西城·高一统考期末)近年来,踩踏事件时有发生,给人们的生命财产安全造成了巨大损失.在人员密集区域,人员疏散是控制事故的关键,而能见度x (单位:米)是影响疏散的重要因素.在特定条件下,疏散的影响程度k 与能见度x 满足函数关系:0.2,0.11.4,0.1101,10bx k ax x x <⎧⎪=+≤≤⎨⎪>⎩(,a b 是常数).如图记录了两次实验的数据,根据上述函数模型和实验数据,b 的值是(参考数据:lg30.48≈)()A .0.24-B .0.48-C .0.24D .0.487.(2023秋·北京西城·高一统考期末)若a b >,则下列不等式一定成立的是()A .11a b<B .22a b >C .e e a b--<D .ln ln a b>8.(2023秋·北京西城·高一北京八中校考期末)若函数1()x f x a -=的图象经过点(4,2),则函数g (x )=log a 11x +的图象是()A .B .C .D .9.(2023秋·北京西城·高一北京八中校考期末)已知函数()12xf x =,()221f x x =+,()()1log 1a g x x a =>,()()20g x kx k =>,则下列结论正确的是()A .函数()1f x 和()2f x 的图象有且只有一个公共点B .0x ∃∈R ,当0x x >时,恒有()()12g x g x >C .当2a =时,()00,x ∃∈+∞,()()1010f x g x <D .当1a k=时,方程()()12g x g x =有解10.(2023秋·北京西城·高一北京八中校考期末)已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c<a<b D .b<c<a11.(2023秋·北京朝阳·高一统考期末)定义在R 上的偶函数()y f x =满足(1)()f x f x -=-,且在[0,1]上单调递增,2023,(2022)2a f b f c f ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系是()A .a b c >>B .a c b >>C .b c a>>D .c b a>>12.(2023秋·北京朝阳·高一统考期末)某厂以x 千克/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得利润210031x x ⎛⎫+- ⎪⎝⎭元,要使生产100千克该产品获得的利润最大,该厂应选取的生产速度是()A .2千克/小时B .3千克/小时C .4千克/小时D .6千克/小时13.(2023秋·北京海淀·高一统考期末)已知0.10.644,2,log 0.6a b c ===,则,,a b c 的大小关系为()A .c<a<bB .c b a<<C .a b c <<D .b a c<<二、填空题14.(2023秋·北京东城·高一统考期末)221log 42-⎛⎫+= ⎪⎝⎭__________.15.(2023秋·北京东城·高一统考期末)函数()()ln 12f x x =-的定义域是__________.16.(2023秋·北京西城·高一统考期末)写出一个同时满足下列两个条件的函数()f x =_____________.①对12,(0,)x x ∀∈+∞,有()()()1212f x x f x f x =+;②当(4,)x ∈+∞时,()1f x >恒成立.17.(2023秋·北京西城·高一统考期末)函数2()log (1)f x x =-+的定义域是_____________.18.(2023秋·北京西城·高一北京八中校考期末)40.252lg83lg5⨯++=________.19.(2023秋·北京西城·高一北京八中校考期末)已知函数()()12,1,,1x a x x f x a x -⎧-≤=⎨>⎩(0a >且1a ≠).给出下列四个结论:①存在实数a ,使得()f x 有最小值;②对任意实数a (0a >且1a ≠),()f x 都不是R 上的减函数;③存在实数a ,使得()f x 的值域为R ;④若3a >,则存在()00,x ∞∈+,使得()()00f x f x =-.其中所有正确结论的序号是___________.20.(2023秋·北京西城·高一北京八中校考期末)函数()()0.5log 1f x x =-的定义域是___________.21.(2023秋·北京西城·高一北京八中校考期末)已知函数()21,23,21x x f x x x ⎧-≤⎪=⎨>⎪-⎩,若方程()f x a =有三个不同的实数根,则实数a 的取值范围是___________.22.(2023秋·北京朝阳·高一统考期末)已知下列五个函数:21,,ln ,,e x y x y y x y x y x=====,从中选出两个函数分别记为()f x 和()g x ,若()()()F x f x g x =+的图象如图所示,则()F x =______________.三、解答题23.(2023秋·北京东城·高一统考期末)已知函数()22(0)x x f x a a -=+⋅≠.(1)若()f x 为偶函数,求a 的值;(2)从以下三个条件中选择两个作为已知条件,记所有满足条件a 的值构成集合A ,若A ≠∅,求A .条件①:()f x 是增函数;条件②:对于,()0x f x ∀∈>R 恒成立;条件③:0[1,1]x ∃∈-,使得()04f x ≤.24.(2023秋·北京东城·高一统考期末)函数()f x 的定义域为(0,)+∞,若对任意的,(0,)s t ∈+∞,均有()()()f s t f s f t +>+.(1)若(1)0f >,证明:(2)0f >;(2)若对(0,),()0x f x ∀∈+∞>,证明:()f x 在(0,)+∞上为增函数;(3)若(1)0f =,直接写出一个满足已知条件的()f x 的解析式.25.(2023秋·北京西城·高一统考期末)某商贸公司售卖某种水果.经市场调研可知:在未来20天内,这种水果每箱的销售利润r (单位:元)与时间t (120,t t ≤≤∈N ,单位:天)之间的函数关系式为1104r t =+,且日销售量p (单位:箱)与时间t 之间的函数关系式为1202p t =-.(1)求第几天的日销售利润最大?最大值是多少?(2)在未来的这20天中,在保证每天不赔本的情况下,公司决定每销售1箱该水果就捐赠()m m *∈N 元给“精准扶贫”对象,为保证销售积极性,要求捐赠之后每天的利润随时间t 的增大而增大,求m 的取值范围.26.(2023秋·北京西城·高一统考期末)函数()|1lg |f x x c =--,其中c ∈R .(1)若0c =,求()f x 的零点;(2)若函数()f x 有两个零点()1212,x x x x <,求124x x +的取值范围.27.(2023秋·北京西城·高一北京八中校考期末)已知函数()21log 1x f x x -=+.(1)若()1f a =,求a 的值;(2)判断函数()f x 的奇偶性,并证明你的结论;(3)若()f x m ≥对于[)3,x ∈+∞恒成立,求实数m 的范围.28.(2023秋·北京海淀·高一统考期末)已知0a >且1a ≠,函数()x x x xa a f xb a a ---=++在R 上是单调减函数,且满足下列三个条件中的两个.①函数()f x 为奇函数;②()315f =-;③()315f -=-.(1)从中选择的两个条件的序号为_____,依所选择的条件求得b =____,=a ____;(2)利用单调性定义证明函数()2g t t t=-在()0,∞+上单调递减;(3)在(1)的情况下,若方程()4xf x m =+在[]0,1上有且只有一个实根,求实数m 的取值范围.四、双空题29.(2023秋·北京西城·高一统考期末)已知函数()2,0,0x a x f x ax x ⎧+≥=⎨<⎩,若4a =-,则()0f x >的解集为___________;若x ∀∈R ,()0f x >,则a 的取值范围为_____________.30.(2023秋·北京海淀·高一统考期末)已知()221,0,0x x f x x ax x ⎧-<=⎨-≥⎩,当2a =时,()f x 的单调减区间为__________;若()f x 存在最小值,则实数a 的取值范围是__________.参考答案1.D【分析】由对数函数的运算性质可知()()lg 1lg 1a b -+=+移项化简即可得.【详解】因为函数()|lg(1)|f x x =+,对a ,b 满足1a b -<<且()()f a f b =,所以()()lg 1lg 1a b -+=+,则()()lg 1lg 10a b +++=所以()()lg 110a b ⎡⎤++=⎣⎦,即()()111a b ++=,解得0ab a b ++=故选:D 2.C【分析】根据指数函数,对数函数,幂函数的单调性即可得到答案.【详解】根据幂函数图像与性质可知,对A 选项y =(0,)+∞单调递增,故A 错误,对D 选项3y x =在(0,)+∞单调性递增,故D 错误,根据指数函数图像与性质可知12xy ⎛⎫= ⎪⎝⎭在(0,)+∞单调递减,故C 正确,根据对数函数图像与性质可知ln y x =在(0,)+∞单调性递增.故选:C.3.A【分析】利用对数运算性质计算即可.【详解】因为32lg 20.3,lg π0.5,lg 28.7R GT ≈≈≈,所以由2324πR M GT=得:2332224πlg lg lg 4l lg πg R R M GT GT ⎭+⎛⎫==+ ⎪⎝322lg 22lg π20.320.528.730.3lg R GT =≈+⨯+=++⨯,即30.3300.30.330lg 30.310101010M M +≈⇒≈==⨯,又0.3lg 20.3102≈⇒≈,所以30210kg M ≈⨯.故选:A.4.A【分析】根据指数函数、对数函数、幂函数的单调性依次判断即可.【详解】选项A :2x y =在定义域(,)-∞+∞上是增函数,正确;选项B :2log y x =在定义域(0,)+∞上是增函数,所以2log y x =-在定义域(0,)+∞上是减函数,错误;选项C :1y x =-的定义域为(,0)(0,)-∞+∞ ,1y x=-在(,0)-∞和(0,)+∞上是增函数,当120x x <<时,1211x x ->-,C 错误;选项D :23y x =的定义域为(,)-∞+∞,因为203>,由幂函数的性质可得23y x =在(0,)+∞上单调递增,又因为23y x =是偶函数,由对称性可得23y x =在(,0)-∞单调递减,D 错误;故选:A 5.D【分析】计算22log 9a =,122222a a +=⨯,代入计算即可.【详解】2log 3a =,则2222log 3log 9a ==,22log 91228a a+=⨯=⨯=⨯=,故选:D.6.A【分析】分别代入两点坐标得0.1 1.2b a ⋅=-,100.4b a ⋅=-,两式相比得结合对数运算得lg32b =-,解出b 值即可.【详解】当0.1x =时,0.1 1.40.20.1 1.2b b a a ⋅+=⇒⋅=-①,当10x =时,10 1.41100.4b b a a ⋅+=⇒⋅=-②,①比②得0.113310100bb b ⎛⎫=⇒⇒ ⎪⎝⎭,()22103103bb --∴=⇒=,lg30.48lg320.2422b b ∴=-⇒=-≈-=-故选:A.7.C【分析】利用特殊值判断AB ,由不等式的性质及指数函数的单调性判断C ,由特殊值及对数的意义判断D.【详解】当1,1a b ==-时,11a b>,故A 错误;当1,1a b ==-时,22a b =,故B 错误;由a b a b >⇒-<-,因为e x y =为增函数,所以e e a b --<,故C 正确;当1,1a b ==-时,ln b 无意义,故ln ln a b >不成立,故D 错误.故选:C 8.D【分析】根据函数1()x f x a -=的图象经过点(4,2)可求出a 的值,把a 的值代入函数()g x 的解析式,从而根据函数()g x 的定义域及单调性排除选项.【详解】由题意可知f (4)=2,即a 3=2,所以a.所以)1()11g x x x ==-++,因为函数()g x 的定义域为()1,-+∞,且函数()g x 在定义域内单调递减,所以排除选项A ,B ,C.故选:D.9.D【分析】对于A ,易知两个函数都过()0,1,结合特值和图象可得函数()1f x 和()2f x 的图像有两个公共点;对于B ,由函数的增长速度可判断;对于C ,当2a =时,作图可知x ∀∈R ,有()()11f x g x >恒成立;对于D ,当1a k =时,易知两个函数都过点1,1k ⎛⎫ ⎪⎝⎭,即方程()()12g x g x =有解;【详解】对于A ,指数函数()12xf x =与一次函数()221f x x =+都过()0,1,且()()121213f f =<=,()()123837f f =>=,故还会出现一个交点,如图所示,所以函数()1f x 和()2f x 的图像有两个公共点,故A 错误;对于B ,()()1log 1a g x x a =>,()()200g x kx k =>=均单调递增,由对数函数的性质可得对数函数的增长速度越来越慢,逐渐趋近0,一次函数的增长速度固定,所以不存在0x ∈R ,当0x x >时,恒有()()12g x g x >,故B 错误;对于C ,当2a =时,指数函数()12xf x =与对数函数()21log g x x =互为反函数,两函数图像关于直线y x =对称,如图所示,由图可知,x ∀∈R ,有()()11f x g x >恒成立,故C 错误;对于D ,当1a k =时,()11log k g x x =,()()20g x kx k =>,由1a >知,11k >,且两个函数都过点1,1k ⎛⎫ ⎪⎝⎭,即方程()()12g x g x =有解,故D 正确;故选:D【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解10.B【分析】运用中间量0比较,a c ,运用中间量1比较,b c【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.11.A【分析】由(1)()f x f x -=-得(2)()f x f x -=,则()f x 的周期为2,结合函数的奇偶性,即可化简a ,b ,c ,最后根据单调性比较大小.【详解】由(1)()f x f x -=-得(2)(1)()f x f x f x -=--=,∴()f x 的周期为2,又()f x 为偶函数,则202311110122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(2022)(0)c f f ==,∵102<<=,()f x 在[0,1]上单调递增,∴c b a <<.故选:A 12.C【分析】生产100千克该产品获得的利润为()100210031f x x x x ⎛⎫=⋅+- ⎪⎝⎭,令1t x =,由换元法求二次函数最大值即可.【详解】由题意得,生产100千克该产品获得的利润为()2210021211100311000031000023f x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=⋅+-=+-=-++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,110x ≤≤,令1t x =,1110t ≤≤,则()()22251000023200010641f t t t t ⎡⎤⎛⎫=-++=--⎢⎥ ⎪⎝⎢⎣-⎭⎥⎦,故当14t =时,()f t 最大,此时4x =.故选:C 13.A【分析】化简a ,通过讨论函数()2xf x =和()4log g x x =的单调性和取值范围即可得出,,a b c 的大小关系.【详解】解:由题意,0.10.242a ==,在()2xf x =中,函数单调递增,且()0f x >,∴0.20.6022b a <<==,在()4log g x x =中,函数单调递增,且当01x <<时,()0g x <,∴4log 0.60c =<,∴c<a<b ,故选:A.14.6【分析】根据给定条件,利用指数运算、对数运算计算作答.【详解】222221()log 42log 24262-+=+=+=.故答案为:615.1,2⎛⎫-∞ ⎪⎝⎭【分析】根据对数真数大于零可构造不等式求得结果.【详解】由120x ->得:12x <,()f x \的定义域为1,2⎛⎫-∞ ⎪⎝⎭.故答案为:1,2⎛⎫-∞ ⎪⎝⎭.16.2l og x (答案不唯一)【分析】由()f x 满足的两个条件可以联想到对数函数,再根据对数函数的性质时行判断即可得答案.【详解】解:因为由()f x 满足的两个条件可以联想到对数函数,当2()log f x x =时,对12,(0,)x x ∀∈+∞,()12212212212log ()log log ()()f x x x x x x f x f x ==+=+,满足条件①;当(4,)x ∈+∞时,2()log 421f x >=>,满足条件②.故答案为:2l og x (答案不唯一)17.[0,1)【分析】根据对数型函数的定义域,结合二次根式的性质进行求解即可.【详解】由题意可知:10010x x x ->⎧⇒≤<⎨≥⎩,所以该函数的定义域为[0,1),故答案为:[0,1)18.7【分析】利用指数运算及对数运算法则进行计算.【详解】()40.252lg83lg50.25163lg 2lg5437⨯++=⨯++=+=故答案为:719.①②④【分析】通过举反例判断①.,利用分段函数的单调性判断②③,求出()2y a x =-关于y 轴的对称函数为()2y a x =-,利用()2y a x =-与y 1x a -=的图像在()1,∞+上有交点判断④.【详解】当2a =时,()10,1,2,1x x f x x -≤⎧=⎨>⎩当1x >时,121x ->,所以()f x 有最小值0,①正确;若()f x 是R 上的减函数,则112020101211a a a a a a a --<>⎧⎧⎪⎪<<⇒<<⎨⎨⎪⎪-≥=≤⎩⎩,无解,所以②正确;当01a <<时,1x y a -=单减,且当1x >时,值域为()0,1,而此时()2y a x =-单增,最大值为2a -,所以函数()f x 值域不为R ;当12a <<时,()2y a x =-单增,1x y a -=单增,若()f x 的值域为R ,则1121a a --≥=,所以1a ≤,与12a <<矛盾;所以不存在实数a ,使得()f x 的值域为R ;由①可知,当2a =时,函数()f x 值域不为R ;当2a >时,()2y a x =-单减,最小值为2a -,1x y a -=单增,且11x a ->,所以函数()f x 值域不为R ,综上③错误;又()2y a x =-关于y 轴的对称函数为()2y a x =-,若3a >,则11211a a -->==,但指数函数1x y a -=的增长速度快于函数()2y a x =-的增长速度,所以必存在()01,x ∞∈+,使得()0102x a x a --=,即()()00f x f x =-成立,所以④正确.故答案为:①②④20.()1,+∞【分析】根据对数函数定义求对数函数的定义域.【详解】解:要使函数()()0.5log 1f x x =-有意义就要10x ->,即1x >,所以函数()()0.5log 1f x x =-的定义域是()1,+∞.故答案为:()1,+∞21.(0,1)【解析】转化条件为直线y a =与函数()y f x =的图象有3个交点,数形结合即可得解.【详解】方程()f x a =有三个不同的实数根,所以直线y a =与函数()y f x =的图象有3个交点,在直角坐标系中作出()f x 的图象,如图,若要使直线y a =与函数()y f x =的图象有3个交点,数形结合可得,(0,1)a ∈.故答案为:(0,1).22.1e x x+【分析】观察图象确定函数()F x 的定义域和奇偶性和特殊点,由此确定()F x 的解析式.【详解】由已知()()()F x f x g x =+,()()21,,,,ln ,e x f x g x y x y y x y x y x ⎧⎫∈=====⎨⎬⎩⎭,观察图象可得()F x 的定义域为()(),00,∞-+∞U ,所以()f x 或()g x 中必有一个函数为1y x=,且另一个函数不可能为ln y x =,又()F x 的图象不关于原点对称,所以1()F x x x ≠+,所以21()F x x x =+或1()e x F x x=+,若21()F x x x =+,则1(1)101F -=+=-与函数()F x 图象矛盾,所以1()e x F x x =+,故答案为:1e x x+.23.(1)1a =;(2)选①②,不存在A ;选①③,(,0)A =-∞;选②③,(0,4]A =.【分析】(1)由偶函数的定义求解;(2)选①②,0a <时,由复合函数单调性得()f x 是增函数,0a >时,由单调性的定义得函数的单调性,然后在0a <时,由()0f x =有解,说明不满足②a 不存在;选①③,同选①②,由单调性得0a <,然后则函数的最大值不大于4得a 的范围,综合后得结论;选②③,先确定()0f x >恒成立时a 的范围,再换元确定新函数的单调性得最大值的可能值,从而可得参数范围.【详解】(1)()f x 是偶函数,则()()2222x x x x f x a f x a ---=+⋅==+⋅,(1)(220x x a ---=)恒成立,∴10a -=,即1a =;(2)若选①②,()22xxaf x =+(0a ≠),若0a <,则()f x 是增函数,由202xxa+=得4log ()x a =-,因此()0f x >不恒成立,不合题意,若0a >,设2x t =,则0t >,()()af xg t t t==+0>恒成立,设120t t <<,则121212121212()()()()t t t t a a a g t g t t t t t t t ---=+--=,120t t -<,当120t t <<120t t a -<,12()()0g t g t ->,12()()g t g t >,()g t是减函数,12t t <<时,120t t a ->,12()()0g t g t -<,12()()g t g t <,()g t 是增函数,又2x t =是增函数,因此()f x 在定义域内不是增函数,不合题意.故不存在a 满足题意;若选①③,若0a <,则()22xxaf x =+是增函数,若0a >,设2x t =,则0t >,()()af xg t t t ==+0>恒成立,设120t t <<,则121212121212()()()()t t t t a a a g t g t t t t t t t ---=+--=,120t t -<,当120t t <<120t t a -<,12()()0g t g t ->,12()()g t g t >,()g t是减函数,12t t <<时,120t t a ->,12()()0g t g t -<,12()()g t g t <,()g t 是增函数,又2x t =是增函数,因此()f x 在定义域内不是增函数,不合题意.故不存在a 满足题意;要满足①,则0a <,所以[1,1]x ∈-时,min 1()(1)22f x f a =-=+,由1242a +≤得74a ≤,综上,a<0;所以(,0)A =-∞.若选②③,若0a <,则由4()20log ()2xxaf x x a =+=⇔=-,()0f x >不恒成立,只有0a >时,()202xx af x =+>恒成立,设2x t =,则0t >,又0a >时,[1,1]x ∈-⇒12[,2]2xt =∈,()()a f x g t t t ==+,()()af xg t t t==+0>恒成立,设120t t <<,则121212121212()()()()t t t t a a a g t g t t t t t t t ---=+--=,120t t -<,当120t t <<120t t a -<,12()()0g t g t ->,12()()g t g t >,()g t 是减函数,12t t <<时,120t t a ->,12()()0g t g t -<,12()()g t g t <,()g t 是增函数,12≤即14a ≤时,()min 11()2422g x g a ==+≤,所以104a <≤;2≥即4a ≥时,()min (2)242ag x g ==+≤,所以4a =;若122<<,即144a <<时,()min 4g x g ==≤,所以144a <<;综上04a <≤,所以(0,4]A =.24.(1)证明过程见解析(2)证明过程见解析(3)()e e xf x =-,()0,x ∈+∞(答案不唯一)【分析】(1)赋值法得到()(2)210f f >>;(2)赋值法,令()2120,,s x t x x =∈+∞=-,且12x x >,从而得到1212()()()0f x f x f x x ->->,证明出函数的单调性;(3)从任意的,(0,)s t ∈+∞,均有()()()f s t f s f t +>+,可得到函数增长速度越来越快,故下凸函数符合要求,构造出符合要求的函数,并进行证明【详解】(1)令1s t ==,则()(2)(1)(1)21f f f +=,因为(1)0f >,所以()(2)210f f >>;(2)令()2120,,s x t x x =∈+∞=-,且12x x >,则()120,t x x =-∈+∞,所以212212()()()f x x x f x f x x +->+-,故1212()()()f x f x f x x ->-,因为对(0,),()0x f x ∀∈+∞>,所以()120f x x ->,故1212()()()0f x f x f x x ->->,即12()()f x f x >,()f x 在(0,)+∞上为增函数;(3)构造()e e xf x =-,()0,x ∈+∞,满足()10f =,且满足对任意的,(0,)s t ∈+∞,()()()f s t f s f t +>+,理由如下:()()e e e e e e e e e e e 1e 1e 1()()()s t s t s t s t s t f s t f s f t +++--===--+-+--+--+-,因为,(0,)s t ∈+∞,故e 10,e 10s t ->->,()()0()()()e 1e 1e 1s tf s t f s f t --++--->=,故对任意的,(0,)s t ∈+∞,()()()f s t f s f t +>+.25.(1)第10天的销售利润最大,最大值是1250元.(2)510m ≤≤,且*N m ∈.【分析】(1)通过计算得21()(10)12502f t rp t ==--+,根据二次函数最值即可得到答案;(2)计算21()(102)12001202g t t m t m =-+++-,根据题意得到不等式10219.5m +>,且1104m t +≤对于120,N t t *∈≤≤均成立以及N m *∈,最后取交集即可.【详解】(1)设第t 日的销售利润为()f t ,则1()(10)(1202)4f t rp t t ==+-211012002t t =-++21(10)12502t =--+.120,t t ≤≤∈N ,当10t =时,max ()1250f t =.所以第10天的销售利润最大,最大值是1250元.(2)设捐赠之后第t 日的销售利润为()g t ,则1()(10)(1202)4g t t m t =+--21(102)12001202t m t m =-+++-.依题意,m 应满足以下条件:①N m *∈;②192010219.52m ++>=,即 4.75m >;③1104m t +≤对于120,N t t ∈≤≤均成立,即10.25m ≤.综上510m ≤≤,且*N m ∈.26.(1)10x =(2)[)40+¥,【分析】(1)令()0f x =,即可求解零点,(2)令()|1lg |=0f x x c =--得111210,10c c x x -++==,进而结合基本不等式即可求解.【详解】(1)当0c =时,()|1lg |f x x =-,令()0f x =,则lg 1x =,故10x =,所以()f x 的零点为10x =.(2)令()|1lg |=0f x x c =--,则|1lg |x c -=,()0c >,故1lg x c -=±,由于12x x <,所以111210,10c c x x -++==,因此1112441010=40101010c c c c x x -++-+=⨯+⨯+⨯,由于100,100c c ->>,由基本不等式可得124=40101010c c x x -+⨯+⨯≥,当且仅当4010=1010c c -⨯⨯,即lg 2c =时取等号,故12440x x +≥,所以124x x +的取值范围为[)40+¥,27.(1)3-(2)奇函数,证明见解析(3)(],1-∞-【分析】(1)代入x a =,得到21log 11a a -=+,利用对数的运算即可求解;(2)先判断奇偶性,然后分析定义域并计算()(),f x f x -的数量关系,由此完成证明;(3)将已知转化为()min m f x ⎡⎤≤⎣⎦,求出()f x 在[)3,+∞的最小值,即可得解.【详解】(1)()1f a = ,21log 11a a -∴=+,即121a a -=+,解得3a =-,所以a 的值为3-(2)()f x 为奇函数,证明如下:由10110x x x -⎧>⎪+⎨⎪+≠⎩,解得:1x >或1x <-,所以定义域为()(),11,-∞-⋃+∞关于原点对称,又()()122221111log log log log 1111x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪-+-++⎝⎭,所以()f x 为奇函数;(3)因为()2221122log log log 1111x x f x x x x -+-⎛⎫===- ⎪+++⎝⎭,又外部函数2log y u =为增函数,内部函数211y x =-+在[)3,+∞上为增函数,由复合函数的单调性知函数()f x 在[)3,+∞上为增函数,所以()()2min 3113log log 1312f x f -====-+,又()f x m ≥对于[)3,x ∈+∞恒成立,所以()min m f x ⎡⎤≤⎣⎦,所以1m ≤-,所以实数m 的范围是(],1-∞-28.(1)①②;0;12(2)证明见解析(3)23,15⎡⎤--⎢⎥⎣⎦【分析】(1)通过分析可知一定满足①②,从而列出方程组,求出0b =,12a =;(2)定义法判断函数的单调性步骤:取值,作差,变形,判号;(3)参变分离得到()24141xx m =-++,[]0,1x ∈,换元后转化为2m t t=-在[]2,5上有唯一解,结合(2)中函数单调性,求出()2g t t t=-的值域,从而得到m 的取值范围.【详解】(1)因为函数()x xx xa a f xb a a ---=++在R 上是单调减函数,故②()315f =-;③()315f -=-不会同时成立,两者选一个,故函数一定满足①函数()f x 为奇函数,由于函数定义域为R ,所以有()00f =,则()10f <,()10f ->,故一定满足②,选择①②;()()0x x x xx x x xa a a a f x f xb b a a a a -------+=+++=++,()11315a a fb a a ---=+=-+,解得:0b =,12a =;(2)任取()12,0,x x ∈+∞,且12x x <,则()()()21211221122221g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=---=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,由于120x x <<,所以121220,10x x x x -+><,所以()()210g x g x -<,即()()21g x g x <,所以函数()2g t t t=-在()0,∞+上单调递减.(3)由(1)可得()1414xxf x =-+,所以方程为14414x x x m -=++,即()1424411441x xx x xm =-=-+++,令41=+x t ,由于[]0,1x ∈,所以[]2,5t ∈,则问题转化为2m t t=-在[]2,5上有唯一解.由(2)知,函数()2g t t t=-在[]2,5上单调递减,所以()()min max 2232()55,()221552g t g g t g ==-=-==-=-,所以,实数m 的取值范围是23,15⎡⎤--⎢⎥⎣⎦.29.{|0x x <或}2x >;10a -<<.【分析】代入4a =-,分0x ≥和0x <两种情况,分别求解()0f x >,最后取并集即可得出()0f x >的解集;原题等价于“当0x ≥时,20x a +>恒成立”以及“当0x <时,0ax >恒成立”同时满足,分别求出a 的取值范围,最后取公共部分即可得到.【详解】当4a =-时,()24,04,0x x f x x x ⎧-≥=⎨-<⎩.当0x ≥时,由()0f x >可得240x ->,解得2x >;当0x <时,由()0f x >可得40x ->,解得0x <.综上所述,()0f x >的解集为{|0x x <或}2x >.“若x ∀∈R ,()0f x >”等价于“当0x ≥时,20x a +>恒成立”以及“当0x <时,0ax >恒成立”同时满足.当0x ≥时,20x a +>恒成立,因为当0x ≥时,2x y a =+单调递增,所以应满足0210a a +=+>,即1a >-;当0x <时,0ax >恒成立,则a<0.则由“当0x ≥时,20x a +>恒成立”以及“当0x <时,0ax >恒成立”同时满足可得,10a -<<.故答案为:{|0x x <或}2x >;10a -<<.30.()0,1[)2,+∞【分析】空一:分开求解单调性;空二:分02a ≤和02a>两种情况讨论.【详解】当2a =时,()221,02,0x x f x x x x ⎧-<=⎨-≥⎩当0x <时函数()21xf x =-单调递增,当0x ≥时函数()()22211f x x x x =---=,所以函数()f x 在()0,1上单调递减,在()1,+∞单调递增,所以函数()f x 的单调减区间为()0,1因为函数()2221,021,0,0,024x xx x f x a a x ax x x x ⎧<⎧-<⎪==⎨⎨⎛⎫-≥--≥⎩⎪ ⎪⎝⎭⎩002aa ≤⇒≤并且()00f =,所以函数()f x 在R 上单调递增,没有最小值;002a a >⇒>,要想函数()f x 有最小值则满足214a-≤-即2a ≥故答案为:()0,1,[)2,+∞。

高中数学 第四章 指数函数、对数函数与幂函数综合测试训练(含解析)新人教B版必修第二册-新人教B版高

第四章综合测试(时间:120分钟 满分150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若n ∈N ,a ∈R ,给出下列式子:①4-42n;②4-42n +1;③5a 4;④4a 5.其中恒有意义的式子的个数是( B )A .1B .2C .3D .4 [解析] 根据根指数是偶数时,被开方数非负,可知②无意义;当a <0时,④无意义;恒有意义的是①③.故选B .2.函数y =log 12x -3的定义域为( C )A .(-∞,18]B .[18,+∞)C .(0,18]D .(0,8][解析] 要使函数y =log 12x -3有意义,应满足log 12x -3≥0, ∴log 12x ≥3,∴⎩⎪⎨⎪⎧x >0x ≤⎝ ⎛⎭⎪⎫123=18,∴0<x ≤18,故选C .3.下列不等式中正确的是( C ) A .lg 0.1>lg 0.2 B .0.20.1<0.20.2C .0.20.1>lg 0.1D .0.10.2<lg 0.2[解析] lg 0.1<0,0.20.1>0,∴0.20.1>lg 0.1,故选C . 4.已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >0⎝ ⎛⎭⎪⎫12xx ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=( D ) A .-18B .18C .-8D .8[解析] f ⎝ ⎛⎭⎪⎫127=log 3127=log 33-3=-3,f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=f (-3)=⎝ ⎛⎭⎪⎫12-3=8,故选D .5.若a >b >1,0<c <1,则( C ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c[解析] 令a =4,b =2,c =12,则a c =412 =2,b c =212 =2,∴a c >b c,排除A ;ab c =42,ba c =4,∴ab c >ba c ,排除B ;log a c =log 412=-12,log b c =log 212=-1,∴log a c >log b c ,排除D ,故选C .6.已知f (x )是函数y =log 2x 的反函数,则y =f (1-x )的图像是( C )[解析] 因为函数y =log 2x 的反函数是y =2x ,所以f (x )=2x .故f (1-x )=21-x,因为此函数在R 上是减函数,且过点(0,2).因此选C .7.下列函数中,满足“f (x +y )=f (x )f (y )”的增函数是( B ) A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝ ⎛⎭⎪⎫12x[解析] 对于函数f (x )=x 3,f (x +y )=(x +y )3,f (x )f (y )=x 3·y 3,而(x +y )3≠x 3y 3,所以f (x )=x 3不满足f (x +y )=f (x )f (y ),故A 错误; 对于函数f (x )=3x,f (x +y )=3x +y=3x ·3y =f (x )f (y ),因此f (x )=3x满足f (x +y )=f (x )f (y ),且f (x )=3x是增函数,故B 正确;对于函数f (x )=x 12 ,f (x +y )=(x +y )12 ,f (x )f (y )=x 12 y 12 =(xy )12 ,而(x +y )12 ≠(xy )12 ,所以f (x )=x 12 不满足f (x +y )=f (x )f (y ),故C错误;对于函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x +y )=⎝ ⎛⎭⎪⎫12x +y =⎝ ⎛⎭⎪⎫12x ·⎝ ⎛⎭⎪⎫12y=f (x )·f (y ),因此f (x )=⎝ ⎛⎭⎪⎫12x 满足f (x +y )=f (x )f (y ),但f (x )=⎝ ⎛⎭⎪⎫12x不是增函数,故D 错误.8.设函数f (x )=⎩⎪⎨⎪⎧3x -1x <12xx ≥1,则满足f [f (a )]=2f (a )的a 的取值X 围是( C )A .[23,1]B .[0,1]C .[23,+∞)D .[1,+∞)[解析] 由f [f (a )]=2f (a )可得f (a )≥1,故有⎩⎪⎨⎪⎧a <13a -1≥1或⎩⎪⎨⎪⎧a ≥12a≥1,二者取并集即得a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞,故选C .二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知实数a ,b 满足等式3a=6b,给出下列四个关系式:①a =b ;②0<b <a ;③a <b <0;④b <0<A .其中可能成立的是( ABC )A .①B .②C .③D .④[解析] 在同一个坐标系中画出函数y =3x,y =6x的图象如图所示.由图像,可知当a =b =0时,3a=6b,故①可能成立;作出直线y =k ,如图所示,当k >1时,若3a=6b,则0<b <a ,故②可能成立;当0<k <1时,若3a=6b,则a <b <0,故③可能成立.故选ABC .10.对于0<a <1,下列四个不等式中成立的是( BD )A .log a (1+a )<log a ⎝⎛⎭⎪⎫1+1a B .log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1aC .a1+a<a1+1aD .a1+a>a1+1a[解析] 因为0<a <1,所以a <1a ,从而1+a <1+1a,所以log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1a .又因为0<a <1,所以a1+a>a1+1a.11.设函数f (x )=2x,对于任意的x 1,x 2(x 1≠x 2),下列命题中正确的是( ACD ) A .f (x 1+x 2)=f (x 1)·f (x 2)B .f (x 1·x 2)=f (x 1)+f (x 2) C .f x 1-f x 2x 1-x 2>0D .f ⎝ ⎛⎭⎪⎫x 1+x 22<f x 1+f x 22[解析] 2x 1·2x 2=2x 1+x 2,所以A 成立,2x 1+2x 2≠2x 1·x 2,所以B 不成立,函数f (x )=2x,在R 上是单调递增函数,若x 1>x 2则f (x 1)>f (x 2),则f x 1-f x 2x 1-x 2>0,若x 1<x 2,则f (x 1)<f (x 2),则f x 1-f x 2x 1-x 2>0,故C 正确;f ⎝⎛⎭⎪⎫x 1+x 22<f x 1+f x 22说明函数是凹函数,而函数f (x )=2x是凹函数,故ACD 正确.12.关于函数f (x )=|ln |2-x ||,下列描述正确的有( ABD ) A .函数f (x )在区间(1,2)上单调递增 B .函数y =f (x )的图像关于直线x =2对称 C .若x 1≠x 2,但f (x 1)=f (x 2),则x 1+x 2=4 D .函数f (x )有且仅有两个零点[解析] 函数f (x )=|ln |2-x ||的图像如图所示:由图可得:函数f (x )在区间(1,2)上单调递增,A 正确;函数y =f (x )的图像关于直线x =2对称,B 正确;若x 1≠x 2,但f (x 1)=f (x 2),则当x 1,x 2>2时,x 1+x 2>4,C 错误;函数f (x )有且仅有两个零点,D 正确.三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.设函数f (x )=x -a (其中a 为常数)的反函数为f -1(x ),若函数f -1(x )的图像经过点(0,1),则方程f -1(x )=2的解为__1__.[解析] 由y =f (x )=x -a ,得x -a =y 2(y ≥0)把点(0,1)代入得a =1. 所以f -1(x )=x 2+1(x ≥0).由f -1(x )=2,得x 2+1=2,即x =1.14.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2log 32x-1,x ≥2,则f [f (2)] =__2__.[解析] 因为f (2)=log 3(22-1)=1, 所以f [f (2)]=f (1)=2e1-1=2.15.已知函数f (x )=b -2x2x +1为定义在区间[-2a,3a -1]上的奇函数,则a =__1__,f ⎝ ⎛⎭⎪⎫12=__22-3__.[解析] 因为f (x )是定义在[-2a,3a -1]上的奇函数. 所以定义域关于原点对称, 即-2a +3a -1=0,所以a =1, 因为函数f (x )=b -2x2x +1为奇函数, 所以f (-x )=b -2-x 2-x +1=b ·2x -11+2x =-b -2x1+2x ,即b ·2x-1=-b +2x,所以b =1, 所以f (x )=1-2x1+2x ,所以f ⎝ ⎛⎭⎪⎫12=1-212 1+212 =1-21+2=22-3.16.下列说法中,正确的是__①④__. ①任取a >0,均有3a >2a, ②当a >0,且a ≠1,有a 3>a 2, ③y =(3)-x是增函数,④在同一坐标系中,y =2x与y =2-x的图像关于y 轴对称. [解析] ∵幂函数y =x a ,当a >0时, 在(0,+∞)上是增函数, ∵3>2,∴3a>2a,故①正确;当a =0.1时,0.13<0.12,故②错; 函数y =(3)-x=⎝⎛⎭⎪⎫33x是减函数,故③错; 在同一坐标系中,y =2x 与y =2-x=(12)x 的图像关于y 轴对轴,故④正确.四、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值. (1)⎝ ⎛⎭⎪⎫23-2+(1-2)0+⎝ ⎛⎭⎪⎫27823 ; (2)2lg 2+lg 31+12lg 0.36+13lg 8.[解析] (1)⎝ ⎛⎭⎪⎫23-2+(1-2)0+⎝ ⎛⎭⎪⎫27823 =94+1+94=112.(2)2lg 2+lg 31+12lg 0.36+13lg 8=lg 4+lg 31+lg 0.6+lg 2=lg 12lg 12=1.18.(本小题满分12分)已知函数f (x )=2x -1+a (a 为常数,且a ∈R )恒过点(1,2).(1)求a 的值;(2)若f (x )≥2x,求x 的取值X 围.[解析] (1)f (1)=20+a =1+a =2,解得a =1. (2)由f (x )=2x -1+1=2x 2+1≥2x ,得2x2≤1,即2x -1≤1=20,即x -1≤0,解得x ≤1,因此,实数x 的取值X 围是(-∞,1].19.(本小题满分12分)求函数y =(2x )2-2×2x+5,x ∈[-1,2]的最大值和最小值. [解析] 设2x=t ,因为x ∈[-1,2],所以2x=t ∈⎣⎢⎡⎦⎥⎤12,4则y =t 2-2t +5为二次函数,图像开口向上,对称轴为t =1, 当t =1时,y 取最小值4,当t =4时,y 取最大值13.20.(本小题满分12分)已知幂函数y =f (x )的图像过点(8,m )和(9,3). (1)求m 的值;(2)若函数g (x )=log a f (x )(a >0,a ≠1)在区间[16,36]上的最大值比最小值大1,某某数a 的值.[解析] (1)由题意,y =f (x )是幂函数,设f (x )=x α,图像过点(8,m )和(9,3)可得9α=3,所以α=12,故f (x )=x 12 ,所以m =f (8)=22,故m 的值为22.(2)函数g (x )=log a f (x ),即为g (x )=log a x , 因为x 在区间[16,36]上,所以x ∈[4,6], ①当0<a <1时,g (x )min =log a 6,g (x )max =log a 4, 由log a 4-log a 6=log a 23=1,解得a =23.②当a >1时,g (x )min =log a 4,g (x )max =log a 6,由log a 6-log a 4=log a 32=1,解得a =32,综上可得,实数a 的值为23或32.21.(本小题满分12分)一片森林原来的面积为a ,计算每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到森林面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已被砍伐了多少年? (3)今后最多还能砍伐多少年?[解析] (1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12,解得x =1-(12)110 .(2)设经过m 年剩余面积为原来的22, 则a (1-x )m=22a , 即(12)m 10 =(12)12 ,m 10=12,解得m =5, 故到今年为止,该森林已被砍伐5年. (3)设从今年开始,以后最多能砍伐n 年,则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, (12)n 10 ≥(12)32 ,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.22.(本小题满分12分)已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值X 围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,某某数a 的取值X 围. [解析] (1)函数f (x )是R 上的奇函数,则f (0)=0,求得a =0. 又此时f (x )=-x 是R 上的奇函数,所以a =0为所求. (2)函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0).故只要a ≥0即可.(3)由已知函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ).最小值是f (1)=log 2⎝ ⎛⎭⎪⎫12+a .由题设log 2(1+a )-log 2⎝ ⎛⎭⎪⎫12+a ≥2⇒⎩⎪⎨⎪⎧a +12>0a +1≥4a +2.故-12<a ≤-13为所求.。

基本初等函数指数对数与幂函数章节综合学案练习(一)附答案新教材高中数学

A B
C D
9.已知函数
>0,则 的值
A、一定大于零B、一定小于零C、等于零D、正负都有可能
10.设 ,函数 在区间 上的最大值与最小值之差为 ,则 ()(07全国Ⅰ)
A.
B.2C.
D.4
A
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
11.如图,点O为作简谐振动的物体的平衡位置,取向右方向为正方向,若振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处时开始计时.则该物体5s时刻的位移为▲cm.
(iii) .
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.C
解析: ,则 或 , ,又 ,
所以共有6个解.选C.
2.D
解析:由 ,得 或 ;其中,由 ,得 ,故 .又因为 ,所以 .所以零点的个数为 个.故选D.
3.C
4.B
5.D
6.A
【解析】要使原函数有意义,只须 ,即 ,解得 ,故选A.
A.4B.5C.6D.7
2.(2020湖北文)函数 在区间 上的零点个数为( )
A.2B.3C.4D.5
D
3.若 ,则( )
A.a<b<c B.c<b<a C.c<a<b D.b<a<c(2020全国3理)
4.若函数 在区间 内单调递增,则a的取值范围是( )
(A) (B) (C) (D) (2020天津理)
因为 ,所以区间 关于直线 对称。
因为减区间为 ,增区间为 ,所以单调增区间的长度和为 。
20如果 ,不妨设 ,则 ,
于是当 时, ,从而
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题复习
《基本初等函数指数函数对数函数与幂函数》单
元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上

第I卷(选择题)
请点击修改第I卷的文字说明
评卷人 得分
一、选择题

1.函数)1lg()(xxf的定义域是( )
A.),2( B. ),1( C. ),1[ D. ),2[(2020
广东文2)

2.已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是
( )

相关文档
最新文档