数值分析模拟试卷1
数值分析模拟试卷1,2,3

数值分析模拟试卷1一、填空(共30分,每空3分) 1 设⎪⎪⎭⎫⎝⎛-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________.2 设,2,1,0,,53)(2==+=k kh x xx f k ,则],,[21++n n n x x x f =________,],,[321+++n n n n x x x x f ,=________.3 设⎪⎩⎪⎨⎧≤≤-++≤≤+=21,1210,)(2323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________.4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则⎰=10)(dx x xq k ________,=)(2x q ________.5 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001aaa a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的.二、(14分)设49,1,41,)(21023====x x x x x f ,(1)试求)(x f 在]49,41[上的三次Hermite 插值多项式)(x H 使满足2,1,0),()(==i x f x H i i ,)()(11x f x H '='.(2)写出余项)()()(x H x f x R -=的表达式.三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3241+=+,(1) 证明R x ∈∀0均有∙∞→=x x n x lim (∙x 为方程的根);(2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;(3)此迭代的收敛阶是多少?证明你的结论.四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?五、(15分) 设有常微分方程的初值问题⎩⎨⎧=='00)(),(y x y y x f y ,试用Taylor 展开原理构造形如)()(11011--++++=n n n n n f f h y y y ββα的方法,使其具有二阶精度,并推导其局部截断误差主项.六、(15分) 已知方程组b Ax =,其中⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=21,13.021b A , (1) 试讨论用Jacobi 迭代法和Gauss-Seidel 迭代法求解此方程组的收敛性. (2) 若有迭代公式)()()()1(b Axa xxk k k ++=+,试确定一个的取值范围,在这个范围内任取一个值均能使该迭代公式收敛. 七、(8分) 方程组,其中,A 是对称的且非奇异.设A 有误差,则原方程组变化为,其中为解的误差向量,试证明.其中1λ和2λ分别为A 的按模最大和最小的特征值.数值分析模拟试卷2填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________;4. 已知⎪⎪⎭⎫⎝⎛-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond______________________ ;5. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6. 求解线性方程组⎪⎩⎪⎨⎧=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;7. 为使两点数值求积公式:⎰-+≈111100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为=0x _____ , =1x _____,==10ωω__________. 8. 求积公式)]2()1([23)(30f f dx x f +≈⎰是否是插值型的__________,其代数精度为___________。
数值分析试题与答案

一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
数值分析练习题加答案(一)

数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。
因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。
二、求矩阵A 的条件数1)(A Cond (4分)。
其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。
数值分析题库1

第一章 绪论 2 第二章 函数插值 3 第三章 函数逼近 6 第四章 数值积分与数值微分 10 第五章 解线性方程组的直接解法 13 第六章 解线性方程组的迭代解法 14 第七章 非线性方程求根 16 第九章 常微分方程初值问题的数值解法 19
第一章 绪论
1.1 要使的相对误差不超过0.1%,应取几位有效
解 对y=f(x)的反函数进行三次插值,插值多项式为
+ + + =, 于是有
。
第三章 函数逼近
3.1证明定义于内积空间H上的函数是一种范数。
证明: 正定性当且仅当时; 齐次性 设为数域K上任一数 三角不等式 ;
于是有 故是H上的一种范数。
3.2求,在空间上的最佳平方逼近多项式,并给出 误差。
解: 第一步:构造内积空间上的一组正交基,其中内积: 第二步:计算的二次最佳平方逼近多项式 从第一步已经知道,利用公式得: 误差为:
数字?
解:
的首位数字。 设有 n位有效数字,由定理知相对误差限 令, 解得,即需取四位有效数字.
1.2 序列满足关系式,若,计算到,误差有多
大?这个算法稳定吗?
解:,于是 ,一般地,因此计算到其误差限为,可见这个计算过程是不稳定的。
1.3 计算球的体积,要使相对误差限为1%,问测 量半径R时允许的相对误差限是多少?
4.1、计算积分,若用复化梯公式,问区间应分多 少等份才能使截断误差不超过?若改用复化辛普 森公式,要达到同样的精度,区间应分多少等 份?
解:由于,,,故对复化梯公式,要求 ,
即,.取,即将区间分为等份时,用复化梯公式计算,截断误差不超过. 用复化辛普森公式,要求 ,
即,.取,即将区间等分为8等份时,复化辛普森公式可达精度.
数值分析练习1-3章

数值分析练习1-3章第⼀章绪论⼀、填空题1、已知 71828.2e =,求x 的近似值a 的有效数位和相对误差:题号精确数xx 的近似数aa 的有效数位a 的相对误差⑴ e 2.7 ⑵ e 2.718 ⑶ e/100 0.027 ⑷e/1000.027182、设原始数据x 1,x 2,x 3和x 4的近似值(每位均为有效数字)如下:a 1=1.1021,a 2=0.031,a 3=385.6,a 4=56.430则⑴ a 1+a 2+a 4= ,相对误差界为;⑵ a 1a 2a 3= ,相对误差界为;⑶ a 2/a 4= ,相对误差界为。
⼆、为使20的近似值的相对误差⼩于0.01%,问应取多少位有效数字?三、当x 接近于0时,怎样计算xxsin cos 1-以及当x 充分⼤时,怎样计算x x -+1,才会使其结果的有效数字不会严重损失。
四、在数值计算中,为了减⼩误差,应该尽量避免的问题有哪些?并举出相应的实例.五、对于序列,1,0,9991=+=?n dx x x I nn ,试构造两种递推算法计算10I ,在你构造的算法中,那⼀种是稳定的,说明你的理由;第⼆章插值法1、在互异的n+1个点处满⾜插值条件P(x i )=y i ,(i=0,1,…n)的次数不⾼于n 的多项式是( )的(A)存在且唯⼀ (B)存在 (C)不存在 (D)不唯⼀2、当f(x)是次数不超过n 的多项式时,f(x)的插值多项式是 ( )(A)不确定 (B)次数为n (C)f(x)⾃⾝(D )次数超过n 3、插值基函数的和j jx l)(= ( )(A)0 (B)1 (C)2 (D)不确定4、设f(x)=x 3-x+5,则f[20,21,22,23]= ( ); f[20,21,22,23,24]= ( )(A)0 (B)1 (C)2 (D)不确定5、( )插值⽅法具有公式整齐、程序容易实现的优点,⽽( )插值⽅法计算灵活,如果节点个数变化时,不需要重新构造多项式,它们都是( )的⽅法(A)构造性 (B)解⽅程组 (C)拉格朗⽇ (D)⽜顿6、⼀般地,内插公式⽐外推公式( ),⾼次插值⽐低次插值( ),但当插值多项式的次数⾼于七、⼋次时,最好利⽤( )插值公式 (A)粗糙 (B)精确 (C)分段低次 (D)⾼次7、整体光滑度⾼,收敛性良好,且在外型设计、数值计算中应⽤⼴泛的分段插值⽅法为().(A)分段线性插值(B)分段抛物插值(C)分段三次埃尔⽶特插值(D)三次样条插值。
数值分析模拟试题(XAUT)(15套)

模拟试题一一、填空(每小题3分,共30分)1. 设2.40315x *=是真值 2.40194x =的近似值,则x *有 位有效数字。
2. 牛顿—柯特斯求积公式的系数和()0nn k k c =∑ 。
3 已知 12,()_________01A A ∞⎛⎫== ⎪⎝⎭则条件数cond 。
4 若332x -1x 1S(x)=1(x -1)+a(x -1)+b(x -1)+c 1x 220⎧≤≤⎪⎨≤≤⎪⎩是三次样条函数,则a =_______, b =______, c =______.5 以n + 1个 整 数 点k ( k =0,1,2,…,n ) 为 节 点 的 Lagrange 插 值 基函 数 为()k l x ( k =0,1,2,…,n ),则 nk k=0kl (x)=_____.∑6 序列{}n n=0y ∞满足递推关系:n n-1y =10y -1,(n =1,2,...),若0y 有误差, 这个计算过程____________稳定.7 若42f(x)=2x +x -3, 则f[1,2,3,4,5,6]=_____. 8 数值求积公式10311f(x)dx f()+f(1)434=⎰的代数精度是____________. 9.当x很大时,为防止损失有效数字,应该使= .10.已知A =⎢⎢⎢⎣⎡761 852 ⎥⎥⎥⎦⎤943,x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111,则=1Ax . 二、(10分) 用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据x 0 1.0 2.0 3.0 y 0.2 0.5 1.0 1.2三、(10分)2011A =050,b =3,203-1⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭用迭代公式(1)()()()(0,1,2,)k k k x x Ax b k α+=+-=求解,Ax b =问取什么实数α可使迭代收敛,什么α可使迭代收敛最快。
四、(10)设()f x 四阶连续可导,0,0,1,2,,i x x ih i =+=试建立如下数值微分公式''01212()2()()()f x f x f x f x h -+≈并推导该公式的截断误差。
数值分析练习题附答案

目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析模拟试卷(一)
一、填空题 (20分)
1).设* 2.40315x =是真值 2.40194x =的近似值,则*
x 有________位有效数字。
2).*x 的相对误差的___________倍。
3).梯形求积公式和复化梯形公式都是插值型求积公式_____(对或错)。
4).牛顿—柯特斯求积公式的系数和()0n
n k k C ==∑__________________。
二、计算题
1).(12分)用二次拉格朗日插值多项式2()sin0.34L x 计算的值。
插值节点和相应的函数值是(0,0),(0.30,0.2955),(0.40,0.3894)。
2).(12分)用二分法求方程3()10[1.0,1.5]f x x x =--=在 区间内的一个
根,误差限210ε-=。
3).(12分)选取常数a, b, 使得01
max x x e ax b ≤≤--达到最小。
4).(12分)求系数123,,A A A 和使求积公式
1
123111()(1)()()233f x dx A f A f A f -≈-+-+≤⎰对于次数的一切多项式都精确成立。
三、证明题
1).(10分)证明区间[a,b]上带权()()1,2,3n x P x n ρ= 的正交多项式的n 个根都是单根,且位于区间(a,b)内。
2).(10分)设(,)x A x μμ是的近似特征对,证明当取为的Rayleigh 商,即
2,T T x Ax r Ax x r x x μμ==-时残量的范数达到极小。