数值分析模拟试题

合集下载

数值分析模拟试卷1,2,3

数值分析模拟试卷1,2,3

数值分析模拟试卷1一、填空(共30分,每空3分) 1 设⎪⎪⎭⎫⎝⎛-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________.2 设,2,1,0,,53)(2==+=k kh x xx f k ,则],,[21++n n n x x x f =________,],,[321+++n n n n x x x x f ,=________.3 设⎪⎩⎪⎨⎧≤≤-++≤≤+=21,1210,)(2323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________.4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则⎰=10)(dx x xq k ________,=)(2x q ________.5 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001aaa a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的.二、(14分)设49,1,41,)(21023====x x x x x f ,(1)试求)(x f 在]49,41[上的三次Hermite 插值多项式)(x H 使满足2,1,0),()(==i x f x H i i ,)()(11x f x H '='.(2)写出余项)()()(x H x f x R -=的表达式.三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3241+=+,(1) 证明R x ∈∀0均有∙∞→=x x n x lim (∙x 为方程的根);(2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;(3)此迭代的收敛阶是多少?证明你的结论.四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?五、(15分) 设有常微分方程的初值问题⎩⎨⎧=='00)(),(y x y y x f y ,试用Taylor 展开原理构造形如)()(11011--++++=n n n n n f f h y y y ββα的方法,使其具有二阶精度,并推导其局部截断误差主项.六、(15分) 已知方程组b Ax =,其中⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=21,13.021b A , (1) 试讨论用Jacobi 迭代法和Gauss-Seidel 迭代法求解此方程组的收敛性. (2) 若有迭代公式)()()()1(b Axa xxk k k ++=+,试确定一个的取值范围,在这个范围内任取一个值均能使该迭代公式收敛. 七、(8分) 方程组,其中,A 是对称的且非奇异.设A 有误差,则原方程组变化为,其中为解的误差向量,试证明.其中1λ和2λ分别为A 的按模最大和最小的特征值.数值分析模拟试卷2填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________;4. 已知⎪⎪⎭⎫⎝⎛-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond______________________ ;5. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6. 求解线性方程组⎪⎩⎪⎨⎧=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;7. 为使两点数值求积公式:⎰-+≈111100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为=0x _____ , =1x _____,==10ωω__________. 8. 求积公式)]2()1([23)(30f f dx x f +≈⎰是否是插值型的__________,其代数精度为___________。

数值分析试题及答案..(优选)

数值分析试题及答案..(优选)

一、单项选择题(每小题3分,共15分)1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。

A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案1.A2.D3.D4.C5.B二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。

5. 取步长0.1h =,用欧拉法解初值问题()211yy yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 18 4. ()()120f f < 5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩得 分 评卷人三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案1. 解[]0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---()12x L x -=-所以分段线性插值函数为()10.50.80.3x x L x x x ⎧-∈⎪=⎨-⎪⎩()1.50.8L =2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2?(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.计算题4.答案确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明题答案一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。

数值分析练习题加答案(一)

数值分析练习题加答案(一)

数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。

因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。

二、求矩阵A 的条件数1)(A Cond (4分)。

其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。

数值分析试卷及答案数值分析模拟试卷(五)

数值分析试卷及答案数值分析模拟试卷(五)

数值分析试卷及答案数值分析模拟试卷(五)数值分析模拟试卷(五)班级学号姓名一、填空题(每空2分,共30分) 1.已知数e=2.718281828...,取近似值 _=2.7182,那麽_具有的有效数字是 ____位;2.若,改变计算式=__________________,使计算结果更精确;3.已知, 则谱半径 __________;4.过节点的插值多项式为 ____________________;5.过四个互异节点的插值多项式p(_),只要满足__________ ,则p(_)是不超过二次的多项式;6.,;7.利用抛物(Simpson)公式求= __________;8.插值型求积公式的求积系数之和__________;9.已知等距节点的函数值(_i, yi)(i=0,1,2),由数值微分三点公式,__________;10.为使两点的数值求积公式:具有最高的代数精度,其求积节点应为 ___________________;11.用高斯—切比雪夫求积公式计算,当n=______时,能得到精确值;12.解初值问题近似解的欧拉公式局部截断误差为__________, 是____阶方法.二、(12分)已知方阵,试通过交换A的行,使其能实现(Doolittle)分解,并给出其分解;并用该分解求解方程组A_=b,其中.三、(10分)设,满足,试问如何利用构造一个收敛的简单迭代函数,使收敛?四、(14分)线性方程组, (1) 请写出解此方程组的赛德尔迭代法的迭代格式,并讨论收敛性;(2) ,给定松弛因子,写出解此方程组的SOR方法迭代格式,讨论收敛性.五、(10分)设函数f(_)在[0,1]上具有3阶连续导数,用基函数方法求一个次数不超过2的多项式H(_),满足,写出插值余项.六、(10分)用改进的欧拉公式求解初值问题,取步长k = 0.1,计算y(0.1),y(0.2)的近似值,小数点后保留5位.七、(8分)证明对任意的初值,迭代格式是计算的三阶方法.八、(6分) 若有n个不同实根证明。

数值分析模拟试卷(二)

数值分析模拟试卷(二)
迭代矩阵 B 特征方程为
2
………11 分
2 12 1 4 1 2
1 1 0 , ( B ) 1 4 2
………15 分
所以 SOR 方法迭代格式收敛. 四、由拉格朗日插值得二次多项式
1 p 2 ( x) ( x 2 3 x) 2
又设 H ( x) p2 ( x) Ax ( x 1)( x 2) 由于 H (1) f (1) 3 ,解出 A 所以 H ( x) p 2 ( x) 余项 R(x)=

1
x3 1 x(1 x)
0
dx ,问当节点数 n 取何值时,能得到
二:
1、0;
一、填空题(每空 3 分,共 30 分) 2、发散; 3、 f ( x ) 0 ;
*
4、16,90; 6、 3 3 ; 8、b-a;
5、是,因为在 x0 1.5 附近,迭代函数是压缩映射; 7、
0i 2 0 j 2 j i

b a
f ( x)dx

k 0
n
Ak f ( x k ) 的求积系数之和
A
k 0
n
k
__________ .
2 2 1 二、 (15 分)已知方阵 A 1 1 1 , 3 2 1
(1) 证明: A 不能被分解成一个单位下三角阵 L 和一个上三角阵 U 的乘积; (2) 试通过交换 A 的行,使其能实现(Doolittle)分解,并给出其分解; (3) 用上述分解求解方程组 AX=b,其中 b (3.5,2,4) .
………4 分
5 2
………9 分 ………12 分
5 5 7 x( x 1)( x 2) x 3 7 x 2 x 2 2 2

数值分析模拟试题(XAUT)(15套)

数值分析模拟试题(XAUT)(15套)

模拟试题一一、填空(每小题3分,共30分)1. 设2.40315x *=是真值 2.40194x =的近似值,则x *有 位有效数字。

2. 牛顿—柯特斯求积公式的系数和()0nn k k c =∑ 。

3 已知 12,()_________01A A ∞⎛⎫== ⎪⎝⎭则条件数cond 。

4 若332x -1x 1S(x)=1(x -1)+a(x -1)+b(x -1)+c 1x 220⎧≤≤⎪⎨≤≤⎪⎩是三次样条函数,则a =_______, b =______, c =______.5 以n + 1个 整 数 点k ( k =0,1,2,…,n ) 为 节 点 的 Lagrange 插 值 基函 数 为()k l x ( k =0,1,2,…,n ),则 nk k=0kl (x)=_____.∑6 序列{}n n=0y ∞满足递推关系:n n-1y =10y -1,(n =1,2,...),若0y 有误差, 这个计算过程____________稳定.7 若42f(x)=2x +x -3, 则f[1,2,3,4,5,6]=_____. 8 数值求积公式10311f(x)dx f()+f(1)434=⎰的代数精度是____________. 9.当x很大时,为防止损失有效数字,应该使= .10.已知A =⎢⎢⎢⎣⎡761 852 ⎥⎥⎥⎦⎤943,x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111,则=1Ax . 二、(10分) 用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据x 0 1.0 2.0 3.0 y 0.2 0.5 1.0 1.2三、(10分)2011A =050,b =3,203-1⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭用迭代公式(1)()()()(0,1,2,)k k k x x Ax b k α+=+-=求解,Ax b =问取什么实数α可使迭代收敛,什么α可使迭代收敛最快。

四、(10)设()f x 四阶连续可导,0,0,1,2,,i x x ih i =+=试建立如下数值微分公式''01212()2()()()f x f x f x f x h -+≈并推导该公式的截断误差。

数值分析模拟试卷(九)(共五则)

数值分析模拟试卷(九)(共五则)

数值分析模拟试卷(九)(共五则)第一篇:数值分析模拟试卷(九)数值分析模拟试卷(九)班级学号姓名一、填空题(每空3分,共30分)1.设,则差商 __________ ;2.在用松弛法(SOR)解线性方程组时,若松弛因子满足,则迭代法______ ;3.要使求的Newton迭代法至少三阶收敛,需要满足______ ;4.设,用Newton迭代法求具有二阶收敛的迭代格式为_______________ ;求具有二阶收敛的迭代格式为__________________;5.已知,则________,_____;6.若,改变计算式=__________________,使计算结果更为精确;7.过节点的插值多项式为____________ ;8.利用抛物(Simpson)公式求= .二、(14分)已知方阵,(1)证明:A不能被分解成一个单位下三角阵L和一个上三角阵U的乘积;(2)给出A的选主元的Doolittle分解,并求出排列阵;(3)用上述分解求解方程组,其中.三、(12分)设函数在区间[0,1]上具有四阶连续导数,确定一个次数不超过3的多项式,满足,并写出插值余项.四、(10分)证明对任意的初值,迭代格式均收敛于方程的根,且具有线性收敛速度.五、(12分)试确定常数A,B,C和a,使得数值积分公式有尽可能高的代数精度.所得的数值积分公式代数精度是多少?是否为Gauss型的?六、(12分)(1)试导出切比雪夫(Chebyshev)正交多项式的三项递推关系式:(2)用高斯—切比雪夫求积公式计算积分,问当节点数取何值时,能得到积分的精确值?七、(10分)、推导常微分方程的初值问题的数值解公式:.第二篇:数值分析模拟试卷(三)数值分析模拟试卷(三)班级学号姓名一、填空题(共20分,每题2分)1、设x*=2.3149578…,取5位有效数字,则所得的近似值x=_______________ ;.2、设一阶差商,则二阶差商__________ ;3、数值微分中,已知等距节点的函数值,则由三点的求导公式,有_______________ ;4、求方程的近似根,用迭代公式,取初始值,那么x1= _________ ;5、解初始值问题近似解的梯形公式是yk+1 = _________ ;6、,则A的谱半径______ ,cond(A)=______ ;7、设,则______ ,______ ;8、若线性代数方程组AX=b 的系数矩阵A为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都_______ ;9、解常微分方程初值问题的欧拉(Euler)方法的局部截断误差为_____ 10、设,当____________时,必有分解式A=LLT,其中L为下三角阵.二、计算题(共60分,每题15分)1、(1)设试求f(x)在上的三次Hermite插值多项式使满足;(2)写出余项的表达式.2、已知,满足,试问如何利用构造一个收敛的简单迭代函数,使… 收敛? 3、试确定常数A,B,C和a,使得数值积分公式有尽可能高的代数精度.所得的数值积分公式代数精度是多少?是否为Gauss型的?4、推导常微分方程的初值问题的数值解公式:三、证明题(共20分,每题10分)1、设,(1)写出解 f(x)=0的Newton迭代格式;(2)证明此迭代格式是线性收敛的. 2、设R=I-CA,如果,证明:(1)A、C都是非奇异的矩阵;(2)第三篇:地下水数值模拟研究进展和发展趋势地下水数值模拟研究进展与发展趋势摘要:地下水数值模拟的应用研究进展国外对地下水数值模拟的研究和应用较早,且理论、技术等各方面相对成熟,目前已经从“水量问题”的应用研究逐步过渡到“水质问题”的应用研究上,以解决各种更复杂的地下水问题。

最新(完美版)数值分析模拟试题 (5)

最新(完美版)数值分析模拟试题 (5)

数值分析模拟试题2解答一、 填空题(每小题3分,共15分)1. a = 3 , b = 3 , c = 0 .2.()nkk klx x ==∑ 3. 不稳定4. [1,2,3,4,5,6]0f =5. ,,,m n n m y Ax y A R x R y R ⨯=+∈∈∈ 二、 简单计算题(每小题6分,共18分) 三、 1解:2. 解:1121513A --⎡⎤=⎢⎥⎣⎦,1111()414cond A A A -==⨯=。

3. 解:令()1f x =,左=右=1; ()f x x =,左=右=1/2; 2()f x x =,左=右=1/2; 3()f x x =,左≠右; 故求积公式的代数精度为2。

三、(12分)解、设123(,,)A u u u =,123(0,2,0),(2,1,2),(0,2,1),T T T u u u ===11111(0,2,0),/(0,1,0),T T v u v v ε====2221121222(,)(2,0,2),/T T v u u u v v εεεε=-=-===,434tan ,cos ,sin 35510003/54/504/53/5x C S G θθθ=======⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦333113223121(,)(,)2(1,0,1)2T v u u u u εεεεε=--=-=-,333/1,0,1)T v v ε==-于是可得11212212322u u u εεε⎧⎪=⎪⎪=+⎨⎪⎪=++⎪⎩即21201/1/10001/01/001/A QR ⎡⎡⎤-⎢⎢==⎢⎥⎢⎢⎥⎢⎣⎦⎣四、(10分)解:依题目可设11H()()()x h x h x =+2'2111'121'2211'121()(),()2(),(1)1,23(1)2()0,()(23)()(1),()(32),(1)1()(1)h x x ax b h x x ax b ax h a b a b h a b a h x x x h x x x h x x x h h x x x λλλ=+=++=+=⎧=-⎧⎪⎨⎨==++=⎪⎩⎩∴=-+=-=-==∴=-令由解得令由从而222311()()()(23)(1)2H x h x h x x x x x x x =+=-++-=- 五、 (10分)解:将01(),()f x f x 分别于2x 处作Taylor 展开,可得2302221231222248()()2'()''()'''()(1)23!()()'()''()'''()(2)23!h h f x f x hf x f x f h h f x f x hf x f x f ξξ=-+-=-+-(1)-4*(2)除以2h 并化简,可得2(3)0122()4()3()'()()23f x f x f x h f x f h ξ-+≈+六、(10分)解:1111011(1111()()2222tf t f x dx f dt ---++===⎰⎰⎰⎰))23(1)2231()21()23(1)2231((622--++-+≈f f f π12220111111122(()())622422960.3600x dx ππ+-≈⨯++⨯=≈⎰故 七、(15分)解:设所求曲线为12()()()s x a x b x ϕϕ=+,其中212(),()x x x x ϕϕ==12000.2110.5,,,24 1.039 1.2Y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Φ=Φ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则法方程为1112121222(,)(,)(,)(,)(,)(,)Y a Y b ΦΦΦΦΦ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥ΦΦΦΦΦ⎣⎦⎣⎦⎣⎦即1436 6.1,369815.3a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦解之得0.61840.0711a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦于是所求曲线为2()0.61840.0711s x x x =-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析模拟试题
一、填空题(每小题3分,共30分)
1、已知近似值* 2.4560x =是由真值x 经四舍五入得到,则相对误差限为 。

2
、为减少舍入误差的影响,应将10改写成 。

3、设(1,1,2,3)T x =-,则12_______,_______,_______x x x ∞===。

4、设1123A -⎡⎤=⎢⎥⎣⎦,则1________,________F A A ==,A 的谱半径()A ρ=。

5、用Gauss-Seidel 迭代法解方程组1212423
x ax ax x +=⎧⎨+=-⎩,其中a 为实数,则该方法收敛的充要
条件是a 满足 。

6、迭代法12213k k k x x x +=+收敛于*x =,此迭代格式是 阶收敛的。

7、设01(),(),,()n l x l x l x 是以01,,
,n x x x 为节点的Lagrange 插值基函数,则0()n
i
i l x ==∑。

8、设3()321f x x x =++,则差商[0,1,2,3]_____,[0,1,2,3,4]_____f f ==。

9、数值积分的辛普森公式为()b a f x dx ≈⎰。

10、数值积分公式0()()n b k k a k f x dx A f x =≈∑⎰中,0n
k k A ==∑。

二、设函数2()(3)x x a x ϕ=+-,由迭代公式1()k k x x ϕ+=产生的序列为{}k x ,试讨论
⑴当a 为何值时,序列{}k x 收敛;
⑵当a 取何值时,收敛速度最快,并指出迭代法收敛的阶。

(12分)
三、设4()[0,2]f x C ∈,且(0)2,(1)1,(2)0,'(1)0f f f f ==-==,试求函数()f x 的三次
插值多项式()P x ,并求余项表达式。

(14分)
四、用矩阵的直接三角分解法(即LU 分解)解方程组Ax b =,其中
1225132,62114A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
(10分) 五、已知线性方程组123121
3253 12 730x x x x x x x -+=⎧⎪-+=-⎨⎪+=⎩,写出解方程组的Jacobi 迭代格式,并
判断迭代法是否收敛。

(10分)
六、已知数值求积公式1
0()(0)(1)'(0)'(1)xf x dx Af Bf Cf Df ≈+++⎰,试确定其中的待
定参数,使其代数精度尽可能高,并指出具体的代数精度。

(12分)
七、设向量12[,,,]T n x x x x =,试证明:
⑴2x x ∞∞≤≤
;⑵212x x ≤≤。

(12分)。

相关文档
最新文档