研究生《数值分析》练习题

合集下载

研究生《数值分析》练习题

研究生《数值分析》练习题

硕士研究生 《数值分析》练习题一、判断题1、用Newton 切线法求解非线性线性方程可以任选初值。

(F )2、求解非线性线性方程,Newton 切线法比弦截法迭代次数多。

(F )3、若n n A R ⨯∈非奇异,用Jacobi 迭代法求解线性方程组Ax b =必收敛。

(F )4、Lagrange 插值法与Newton 插值法得到同一个插值多项式。

( )二、填空题1、近似数 3.14108937a =关于π具 位有效数字。

2、双点弦截法具有 1.618 阶收敛速度。

3、求方程x x e =根的单点弦截法迭代公式是 。

4、设2112A ⎛⎫=⎪ ⎪⎝⎭,则()A ρ= 3 。

5、对于()0,n n f R x R ∀∈∀∈,迭代公式()()1k k x Gx f +=+产生的迭代向量序列收敛的充分必要条件是 ()1G ρ 。

6、拟合三点()()()0,1,1,3,2,2A B C的直线是y = 。

7、由下数据表确定的代数插值多项式的不超过 次。

三、分析与计算题1、设()14,2,3515TA x -⎡⎤==-⎢⎥-⎣⎦,求∞=,2,1,,p x A p p 和()1A cond 。

2、1001012,20253A x -⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,试计算pp xA ,,p=1,2,∞,和1)(A c o n d 。

3、线性方程组,0Ax b b =≠用Jacobi 迭代法是否收敛,为什么?其中122111221A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭4、设有线性方程组123122*********x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,对于初值()()00,0,0T x =,试问用Gauss-Seidel 迭代所产生的向量序列(){}k x 是否收敛,为什么? 5、已知函数表如下:⑴ ()111.75ln11.75L ≈、估计截断误差并说明结果有几位有效数字; ⑵ ()211.75ln11.75N ≈、估计截断误差并说明结果有几位有效数字。

研究生数值分析试卷.docx

研究生数值分析试卷.docx

2005-2006学年第一学期硕士研究生期末考试试题(A 卷)科目名称:数值分析学生所在院: _______ 学号: _________ 姓名: _______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

一、 (15分)设求方程12-3x + 2cosx = 0根的迭代法(1) 证明对0兀0 w /?,均有lim 林,其中T 为方程的根.kT8 (2) 此迭代法收敛阶是多少?证明你的结论.二、 (12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。

x } + 2X 2 - 2X 3 = 1,v 兀]+ 兀2 +兀3 = _1,2兀]+ 2兀2 +兀3 = °・a 0、a 0 ,说明对任意实数。

工0,方程组AX=b 都是0 Q,非病态的。

(范数用||・|L )四、(15分)已知y = f (x )的数据如下:求/(%)的Hermite 插值多项式H 3 (%),并给出截断误差/?(兀)=f (x ) - H 3 (x )。

五、(10分)在某个低温过程屮,函数y 依赖丁•温度兀(°C )的试验数据为已知经验公式的形式为『=仮+方兀2 ,试用最小二乘法求出a , b o 六、(12分)确定常数a, b 的值,使积分(2a 三、(8分)若矩阵A = 0J(a, /?) = !] [ax2取得最小值。

七、(14分)已知Legendre (勒让德)止交多项式厶(x )有递推关系式:'L 曲(兀)=^77 心(兀)一 -—Ln-1(兀)(斤=1, 2,…)试确定两点的高斯一勒让德(G —L )求积公式£ f (x )djc = £ f\x }) + A 2 .f (兀2)的求积系数和节点,并用此公式近似计算积分go ) = y ()儿+1 =儿+力(^心+-^2) k\=f (Xn ,yJ 忍=fg + h,y n +hk {)(1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。

研究生数值分析试题

研究生数值分析试题
第三章 线性方程组的直接解法自测题
一、选择题(四个选项中仅有一项符合题目要求,每小题 3 分,共计 15 分)
1、一般用高斯消元法解线性代数方程组要采用的技术是(

(1)调换方程位置; (2)选主元; (3)直接求解; (4)化简方程组。
⎛ 2 2 3⎞ ⎛ 1 0 0 ⎞⎛2 2 3⎞
2、设矩阵
A
为初值迭代一步。
四、(12 分)应用牛顿法于方程
f (x) =
xn
−a
Байду номын сангаас
=
0和
f (x) =1−
a xn
= 0 ,分别导出求 n
a

迭代公式,并求极限 lim n a − xk+1 。 k→∞ ( n a − xk )2
五 、 ( 12 ) 方 程 x3 − 6 x − 8 = 0 在 x = 3 附 近 有 根 , 把 方 程 写 成 三 种 不 同 的 等 价 形 式
零, A = LU 为 Doolitte 分解,则上三角矩阵 U 的上半带宽为

5、设对称正定矩阵
A
=
(aij
)∈
Rn×n , a11

0
,经过一次
Gauss
消元得到形如
A
=
⎛ ⎜ ⎝
a11 0
∗⎞
A1
⎟ ⎠

矩阵,则 A1 是
矩阵。
三、(12 分)试用高斯列主元素法求解线性方程组
⎡ 1 3 −2 −4 ⎤ ⎡ x1 ⎤ ⎡3 ⎤
3、设矩阵 A ∈ Rn×n , Q ∈ Rn×n ,且 QT Q = E ,则下列关系式不成立的是(

(1) A = AQ ;(2) QA = A ;(3) Qx = x ,其中 x ∈ Rn ;

数值分析(研究生)试卷

数值分析(研究生)试卷

华中科技大学研究生课程考试试卷课程名称:_______________________ 课程类别考核形式数值分析学生类别______________考试日期______________学生所在院系_______________ □公共课□专业课√□开卷□√闭卷2009.5.6学号__________________姓名__________________任课教师___________________ 一、填空题(每空2分,共20分) 1. 为避免有效数字的损失,应将,1,ln )1ln(>>-+x x x 改写为_____________。

2. 设其三阶差商,200720082009)(3++=x x x f =]3,2,1,0[f _____________,四阶差商____________。

=]4,3,2,1,0[f 3. 设是上带权b x x x +-=22)(?]1,0[1)(=x ρ的正交多项式,则=b ___________。

4. 对于常微分方程数值解,若某算法的局部截断误差为,则称该算法有_____________阶精度;显式欧拉法有____________阶精度。

)O(h1p+5. 设是的二重根。

*x 0)(=x f )(x f ′′在邻近连续,则用迭代公式________________*x 求此根的近似值所产生的序列至少具有二阶收敛性。

6. ,当a 满足条件___________时,A 可作LU 分解,当a 满足条件__________时,必有分解式,这种分解唯一吗? _____________ ??????+=1221a A TL L A ?=二、(10分)函数在上有三阶连续导数,作一个不高于二次的多项式满足)(x f ],[10x x )(x P .)()(),()(),()(110000x f x P x f x p x f x P =′=′=证明其唯一性,并写出它的余项的表达式。

研究生数值分析习题

研究生数值分析习题

1. 五个节点的Newton-Cotes 求积公式的代数精度为______,五个节点的求积公式最高代数精度为___________。

(即Gauss 型求积公式)2. 已知数值求积公式为311()[(1)4(2)(3)]3f x dx f f f ≈++⎰ ,则其代数精度为______。

3. 数值积分公式1'12()[(1)8(0)(1)]9f x dx f f f -≈-++⎰的代数精度为_________。

4. 要使求积公式11101()(0)()4f x dx f A f x ≈+⎰具有2次代数精度,则1x =___,1A =___。

5. 在Newton-Cotes 求积公式:()()()()nbn i i a i f x dx b a C f x =≈-∑⎰中,当系数()n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当___________时的Newton-Cotes 求积公式不能使用。

()8()7()10()6A n B n C n D n ≥≥≥≥6. 若用复化梯形公式计算10x e dx ⎰,要求误差不超过610-,利用余项公式估计,至少用______个求积节点。

7. 对于Gauss 型求积公式31()()()bk k a k f x x dx A f x ρ=≈∑⎰,其中()x ρ为权函数,下列说法错误的是_________。

(A )该求积公式一定是稳定的; (B )31()k k k A f x b a ==-∑;(C )该求积公式的代数精度为5;(D )2(35)()()0ba x x x x dx ωρ-=⎰ ,其中31()()k k x x x ω==∏-。

8. 0{()}k k x ϕ∞=是区间[0,1]上权函数()x x ρ=的最高系数为1的正交多项式族,其中0()1x ϕ=,则140()_______x x dx ϕ=⎰。

9. 构造代数精度最高的如下形式的求积公式,并求出其代数精度:10101()()(1)2xf x dx A f A f ≈+⎰10. 数值积分公式形如1()()(0)(1)(0)(1)xf x dx S x Af Bf Cf Df ''≈=+++⎰(1)试确定参数A 、B 、C 、D ,使公式的代数精度尽量高; (2)设4()[0,1]f x C ∈,推导余项公式10()()()R x xf x dx S x =-⎰,并估计误差。

硕士研究生数值分析试卷

硕士研究生数值分析试卷

数值分析(研究生,2008-12-15)1.(10分)求函数⎩⎨⎧≤≤++<≤-+=10,101,1sin )(2x x x x x x f 在区间[-1,1]上的最佳平方逼近式x e a x a a x 210)(++=φ。

2.(15分)利用乘幂法计算下列矩阵的主特征值和相应的特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----110141012,初始向量为T x ]0,0,1[0=(要求结果有三位有效数字)。

同时计算该矩阵的1-条件数和谱条件数。

3.(15分)已知函数x x f sin )(=在36.0,34.0,32.0210===x x x 处的值分别为352274.0,333487.0,314567.0210===y y y 。

用Lagrange 插值多项式对3167.0=x 的函数值进行近似计算,并估计近似计算的误差界。

4.(15分)用Newton 迭代法求方程0ln 2=+x x 在区间(0,2π)内的解,选择你认为合适的初始点,计算方程的根,使得近似解具有四位有效数字。

请从理论上估计达到所需精度所需的迭代次数。

5.(15分)用Gauss-Seidel 迭代法解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---542834*********x x x 取初始近似向量0[0,0,0]Tx =,估计达到4位有效数字需要的迭代次数,并实际计算之。

就该具体问题分析计算过程中总的乘除法计算量。

6. (10分)应用拟牛顿法解非线性方程组⎪⎩⎪⎨⎧=-+=-+.12,2322112221x x x x x x 取T x ]1,0[)0(= ,终止容限210-=ε。

7.(10分) 求解矛盾方程组⎪⎪⎩⎪⎪⎨⎧=++=++=++=++232328.12221321321321321x x x x x x x x x x x x8. (10分)用复合Simpson 公式计算积分⎰=21sin )(xdx f I 讨论在误差要求不超过410-的条件下的步长。

研究生数值分析练习题答案

研究生数值分析练习题答案

------------------------------------------------ 装 ---------------------------------订 ---------------------------------线 ------------------------------------------------装 订 线 左 侧 不 要 书 写 内 容允许使用计算器一、 填空题 (本大题共10小题,每小题 2分,共 20分)1. 若2.71828x e == ,取近似值* 2.7180x =,则*x 具有 4 位有效数字。

2.为了提高数值计算精度,应将8格式进行计算。

3.已知n=3时牛顿—柯特斯系数(3)(3)(3)012133,,888C C C ===,那么(3)3C =18 。

4.设3()1f x x x =+-,则函数的四阶差商[0,1,2,3,4]f = 0 。

5. 用牛顿迭代法解方程0x x e --=在0.5x =附近的近似实根的牛顿迭代格式为)1,0(e 1e )()(1=+--='-=--+n x x x f x f x x nnx x n n n n n n6. 对给定的剖分01:n a x x x b ∆=<<<= ,当()s x 满足条件 ()s x 在[a,b]有2阶连续导数且在每个子区间上是个3次多项式 时是三次样条函数。

7.用最小二乘法拟合三点()()()0,1,1,3,2,2A B C 的直线是1322y x =+。

8.向量序列()211cos ,sin ,3Tk k x e k k k k -⎛⎫=+ ⎪⎝⎭ 的极限向量为()0,1,3T9.求积公式 10311()()(1)434f x dx f f ≈+⎰的代数精度为 2 。

10.若绝对误差限为31102-⨯,那么近似数0.03600有 2 位有效数字二、单项选择题(本大题共5小题,每小题 2 分,共 10分)1. 已知实验数据555521111(,)(1,2,3,4,5),15,31,55,105.5,k k k k kk k k k k k x y k x y x x y =========∑∑∑∑其中则用最小二乘法求近似公式01y a a x =+的法方程为( C )A 0101153155105.5a a a a +=⎧⎨+=⎩B 0101515551531105.5a a a a +=⎧⎨+=⎩C 0101515311555105.5a a a a +=⎧⎨+=⎩ D0101531153155105.5a a a a +=⎧⎨+=⎩ 2. 以下矩阵是严格对角占优矩阵的是( B )A 3210141011410012⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭ B 2100131013610113-⎛⎫⎪--⎪ ⎪-- ⎪-⎝⎭C 5210113121410012-⎛⎫⎪--⎪ ⎪⎪⎝⎭D 4211141021411315⎛⎫⎪ ⎪⎪- ⎪⎝⎭3.已知两种递推公式11(1)35(1,2,,20)31(2)(20,,1)55n n n n I nI n I I n n n--=-==-= 则在数值计算过程中( C )。

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。

1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。

第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。

(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。

"(1)计算01)1(<-=f ,故有根区间为[1,2]。

(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。

(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。

(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硕士研究生 《数值分析》练习题
一、判断题
1、用Newton 切线法求解非线性线性方程可以任选初值。

( )
2、求解非线性线性方程,Newton 切线法比弦截法迭代次数多。

( )
3、若n n A R ⨯∈非奇异,用Jacobi 迭代法求解线性方程组Ax b =必收敛。

( )
4、Lagrange 插值法与Newton 插值法得到同一个插值多项式。

( )
二、填空题
1、近似数 3.14108937a =关
于π具 位有效数字。

2、双点弦截法具有 阶收敛速度。

3、求方程x x e =根的单点弦截法迭代公式是 。

4、设2112A ⎛⎫
=
⎪ ⎪⎝

,则()A ρ= 。

5、若(),0,1,2,3i l x i =是以01231,3,,x x x x ==为插值节点的Lagrange 插值基函数,则()()3
3012i i i x l =-=∑ 。

6、由下数据表确定的代数插值多项式的不超过 次。

7、若()8754321f x x x x =+-+,则差商[]0,1,2,,8f = 。

8、拟合三点()()()0,1,1,3,2,2A B C 的
直线是y = 。

三、分析与计算题
1、设()14,2,3515T
A x -⎡⎤==-⎢⎥
-⎣⎦
,求∞=,2,1,,p x A p p 和()1A cond 。

2、1001012,20253A x -⎛⎫⎛⎫ ⎪ ⎪
== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭
,试计算p
p x
A ,,p=1,2,∞,和1)(A c o n d 。

3、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中
122111221A -⎛⎫
⎪=-- ⎪ ⎪--⎝⎭。

4、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中
2-11=11111-2A ⎡⎤
⎢⎥⎢⎥
⎢⎥⎣⎦。

5、已知函数表如下:
⑴ ()111.75ln11.75L ≈、估计截断误差并说明结果有几位有效数字; ⑵ ()211.75ln11.75N ≈、估计截断误差并说明结果有几位有效数字。

6、已知函数表
如下:
⑴用Lagrange 插值法求ln 0.55的近似值()10.55N 、估计截断误差并说明结果的有效数字;
⑵用Newton
插值法求ln 0.55的近似值()20.55N 、估计截断误差并说明结果的有效数字。

7、已知数据如下,求满足条件的Hermite 插值多项式。

8、求满足条件的Hermite插值多项式。

f x求[0,3]上的三次样条插值函数。

9、已知函数表如下,用三转角法求()
f x在[0,3]上的三次样条插值函数。

10、已知函数表如下,求()
11、试对如下已知数据进行线性拟合。

相关文档
最新文档