数值分析题库
数值分析试题集

..数值分析试题集(试卷一)一( 10 分)已知 x 1* 1.3409 ,x 2* 1.0125 都是由四舍五入产生的近似值, 判断 x 1*x 2* 及 x 1* x 2*有几位有效数字。
二( 10 分)由下表求插值多项式x 01 2 y2 34 y1- 1三( 15 分)设 f ( x)C 4 [a,b] , H ( x )是满足下列条件的三次多项式H (a) f (a) , H (b) f (b) , H (c)f (c) , H (c) f (c)( a c b )求 f (x)H ( x) ,并证明之。
12四( 15 分)计算13 dx ,10 2。
x五( 15 分)在 [0,2]上取 x 0 0 , x 1 1 , x 22 ,用二种方法构造求积公式,并给出其公式的代数精度。
六( 10 分)证明改进的尢拉法的精度是 2 阶的。
七( 10 分)对模型 yy , 0 ,讨论改进的尢拉法的稳定性。
八( 15分)求方程 x 34x 2 7x 1 0 在 -1.2 附近的近似值,10 3。
-----------------------------------------------------------------------------------------------------------------------------(试卷二)一填空( 4*2 分)1 {k ( x) } k 0 是区间 [0, 1]上的权函数为( x) x 2 的最高项系数为 1 的正交多项式族,其中10 (x)1,则x0 ( x) dx ------------------- , 1 ( x) ------------------。
2 12 A,则 A1 4----------- ,( A) ----------------- 。
a 1 2 时, A 可作 LU 分解。
3 设 A,当 a 满足条件 ---------------- 14..4 设非线性方程 f ( x) (x33x23x1)( x 3) 0 ,其根 x1* 3 , x2*1,则求 x1* 的近似值时,二阶局部收敛的牛顿迭代公式是--------------------------- 。
数值分析试题及答案

数值分析试题及答案一、选择题1. 下列哪个方法不适合用于求解非线性方程的根?A. 二分法B. 牛顿法C. 弦截法D. 正割法2. 当使用二分法求解非线性方程的根时,需要满足的条件是:A. 函数f(x)在区间[a, b]上连续B. 函数f(x)在区间[a, b]上单调递增C. 函数f(x)在区间[a, b]上存在根D. 函数f(x)在区间[a, b]上可导3. 数值积分是通过将定积分转化为求和的方法来近似计算积分值的过程。
下列哪个方法是常用的数值积分方法?A. 矩形法则B. 辛普森规则C. 梯形规则D. 高斯-勒让德法则4. 龙格-库塔法是常用于求解常微分方程的数值解法。
以下哪个选项是描述龙格-库塔法的特点?A. 该方法是一种多步法B. 该方法是一种多项式插值法C. 该方法是一种单步法D. 该方法是一种数值积分法5. 用有限差分法求解偏微分方程时,通常需要进行网格剖分。
以下哪个选项是常用的网格剖分方法?A. 多边形剖分法B. 三角剖分法C. 矩形剖分法D. 圆形剖分法二、解答题1. 将函数f(x) = e^x 在区间[0, 1]上用复化梯形规则进行数值积分,分为6个子区间,求得的近似积分值为多少?解:将区间[0, 1]等分为6个子区间,每个子区间的长度为h = (1-0)/6 = 1/6。
根据复化梯形规则的公式,近似积分值为:I ≈ (1/2) * h * [f(0) + 2f(1/6) + 2f(2/6) + 2f(3/6) + 2f(4/6) + 2f(5/6) +f(1)]≈ (1/2) * (1/6) * [e^0 + 2e^(1/6) + 2e^(2/6) + 2e^(3/6) + 2e^(4/6) +2e^(5/6) + e^1]2. 使用二分法求解方程 x^3 - 3x + 1 = 0 在区间[1, 2]上的根。
要求精确到小数点后三位。
解:首先需要判断方程在区间[1, 2]上是否存在根。
数值分析题库答案(含详细解题步骤)

第 1 页/共 22 页1. 正方形的边长大约为100cm ,应怎样测量才干使面积误差不超过1cm 22. 已测得某场地长l 的值为110=*l m ,宽d 的值为80=*d m ,已知 2.0≤-*l l m,1.0≤-*d d m, 试求面积ld s =的绝对误差限与相对误差限.3.为使π的相对误差小于0.001%,至少应取几位有效数字?4.设x的相对误差界为δ,求n x的相对误差界.5.设有3个近似数a=2.31,b=1.93,c=2.24,它们都有3位有效数字,试计算p=a+bc的误差界和相对误差界,并问p的计算结果能有几位有效数字?第 3 页/共 22 页6. 已知333487.034.0sin ,314567.032.0sin ==,请用线性插值计算3367.0sin 的值,并预计截断误差.7. 已知sin0.32=0.314567, sin0.34=0.333487, sin0.36= 0.352274,用抛物插值计算sin0.3367的值, 并预计误差.8. 已知16243sin ,sin πππ===请用抛物插值求sin50的值,并预计误差9. . .6,8,7,4,1)(,5,4,3,2,1求四次牛顿插值多项式时设当==i i x f x第 5 页/共 22 页10. 已知4)2(,3)1(,0)1(=-=-=f f f , 求函数)(x f 过这3点的2次牛顿插 值多项式.11. 设x x f =)(,并已知483240.1)2.2(,449138.1)1.2(,414214.1)0.2(===f f f ,试用二次牛顿插值多项式计算(2.15)f 的近似值,并研究其误差12. 设],[)(b a x f 在上有四阶延续导数,试求满意条件)2,1,0()()(==i x f x P i i 及)()(11x f x P '='的插值多项式及其余项表达式.13. 给定3201219(),,1,,44f x x x x x ====试求()f x 在1944⎡⎤⎢⎥⎣⎦,上的三次埃尔米特插值多项式()P x ,使它满意11()()(0,1,2),()(),i i P x f x i P x f x ''===并写出余项第 7 页/共 22 页表达式.14. 设],1,0[,23)(2∈++=x x x x f 试求)(x f 在]1,0[上关于,,1{,1)(x span x =Φ=ρ}2x 的最佳平方逼近多项式15.已知实验数据如下:用最小二乘法求形如y=a+bx2的拟合曲线,并计算均方误差.16.已知数据表如下第 9 页/共 22 页x i 1 2 3 4 5 y iωi4 4.56 8 8.5 2 1 3 1 1试用最小二乘法求多项式曲线与此数据组拟合17. .1)(},1{span ,1]41[)(的最佳平方逼近多项式中的关于上的在在求==Φ=x x x x f ρ18. 决定求积公式⎰++≈10110)1()(32)0()(f A x f f A dx x f 中的待定参数110,,A x A , 使其代数精度尽量高,并指出所决定的求积公式的代数精度.19. 用复化辛普森公式计算积分⎰=10dx e I x , 问区间[0,1]应分多少等分才干使截断误差不超过?10215-⨯第 11 页/共 22 页20. 利用下表中给出的数据,分离用复化梯形公式和复化辛甫生公式计算定积分dx x I ln 21⎰=的近似值(要求结果保留到小数点后六位)21. 用复化梯形公式和复化辛甫生公式计算积分⎰=6.28.1)(dx x f I ,函数)(x f 在某些节点上的值如下图:(本题共14分)22. 决定公式⎰+≈101100)()()(x f A x f A dx x f x 的系数1010,,,x x A A ,使其具有最高代数精度23. 决定求积公式⎰++≈1110)1()(32)0()(f A x f f A dx x f 中的待定参数110,,A x A ,使其代数精度尽量高,并指出所决定的求积公式的代数精度第 13 页/共 22 页24.用LU 分解法求解以下方程组 (10分)123123142521831520x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭25.用LU 分解法求解以下方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛8892121514131615141321x x x26. 用LU 分解法求解以下方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛542631531321321x x x27. 设方程组b Ax =,其中⎪⎪⎪⎭⎫⎝⎛-=220122101A ,Tb ⎪⎭⎫ ⎝⎛-=32,31,21, 已知它有解Tx ⎪⎭⎫⎝⎛-=0,31,21,若右端有小扰动61021-∞⨯=bδ,试预计由此引起的解的相对误差.第 15 页/共 22 页28. 设方程组b Ax =,其中212 1.0001A -⎛⎫= ⎪-⎝⎭,11.0001b -⎛⎫= ⎪⎝⎭,当右端向量b 有误差00.0001δ⎛⎫= ⎪⎝⎭b 时,试预计由此引起的解的相对误差(用∞范数计算)29. 给定b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111a a a a a a A 证实:(1) 当121<<-a 时,A 对称正定,从而GS 法收敛. (2) 惟独当2121<<-a 时,J 法收敛.30. 对于线性方程组⎪⎩⎪⎨⎧-=+-=-+=+1242043 16343232121x x x x x x x ,列出求解此方程组的Jacobi 迭代格式,并判断是否收敛。
数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
数值分析试题

数值分析考试题一、 填空题(每小题3分,共15分) 1.已知x =62.1341是由准确数a 经四舍五入得到的a 的近似值,试给出x 的绝对 误差界_______________.2. 已知矩阵1221A ⎡⎤=⎢⎥⎣⎦,则A 的奇异值为 _________. 3. 设x 和y 的相对误差均为0.001,则xy 的相对误差约为____________. 4. 424()53,,()_____.i i f x xx x i f x =+-∆=若=则5. 下面Matlab 程序所描述的数学表达式为________________________.a =[10,3,4,6];t=1/(x -1);n=length(a )();1:1:1*();y a n for k n y t y a k end==--=+二、(10分)设32()()f x x a =-。
(1)写出解()0f x =的Newton 迭代格式;(2)证明此迭代格式是线性收敛的。
三、 (15分)已知矛盾方程组Ax=b ,其中21110,1101211A b ⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎣⎦,(1)用Householder 方法求矩阵A 的正交分解,即A=QR 。
(2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。
四、(15分) 给出数据点:012343961215i i x y =⎧⎨=⎩(1)用1234,,,x x x x 构造三次Newton 插值多项式3()N x ,并计算 1.5x =的近似值3(1.5)N 。
(2)用事后误差估计方法估计3(1.5)N 的误差。
五、(15分)(1)设012{(),(),()}ϕϕϕx x x 是定义于[-1,1]上关于权函数2()x x ρ=的首项系数为1的正交多项式组,若已知01()1,()x x x ϕϕ==,试求出2()x ϕ。
(2)利用正交多项式组012{(),(),()}ϕϕϕx x x ,求()f x x =在11[,]22-上的二次最佳平方逼近多项式。
《数值分析》练习题及答案解析

《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
数值分析试题及答案

数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 单项选择题(每小题2分,共10分)1. 在下列四个数中,有一个数具有4位有效数字,且其绝对误差限为 51021-⨯,则该数是( ) A 0.001523 B 0.15230 C 0.01523 D 1.52300 2. 设方阵A 可逆,且其n 个特征值满足:n λλλ>≥> (21),则1-A 的主特征值是( )A11λ Bn λ1C1λ或n λ D11λ或nλ13. 设有迭代公式→→+→+=fxB x k k )()1(。
若||B|| > 1,则该迭代公式( )A 必收敛B 必发散C 可能收敛也可能发散4. 常微分方程的数值方法,求出的结果是( )A 解函数B 近似解函数C 解函数值D 近似解函数值 5. 反幂法中构造向量序列时,要用到解线性方程组的( ) A 追赶法 B LU 分解法C 雅可比迭代法D 高斯—塞德尔迭代法二. 填空题(每小题4分,共20分)1. 设有方程组⎪⎩⎪⎨⎧=+-=+-=+02132432132132x x x x x x x x ,则可构造高斯—塞德尔迭代公式为⎪⎩⎪⎨⎧2. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111112101A ,则=∞A3. 设1)0(,2'2=+=y y x y ,则相应的显尤拉公式为=+1n y4. 设1)(+=ax x f ,2)(x x g =。
若要使)(x f 与)(x g 在[0,1]上正交,则a =5. 设T x )1,2,2(--=→,若有平面旋转阵P ,使P →x 的第3个分量为0,则P =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 三. 计算题(每小题10分,共50分)1. 求27的近似值。
若要求相对误差小于0.1%,问近似值应取几位有效数字?2. 设42)(x x x f -=,若在[-1,0]上构造其二次最佳均方逼近多项式,请写出相应的法方程。
3. 设有方程组⎪⎩⎪⎨⎧=++=++=-+1221122321321321x x x x x x x x x ,考察用雅可比迭代解此方程组的收敛性。
4. 试确定常数A ,B ,C 及α,使求积公式⎰++-=-)()0()()(11ααCf Bf Af dx x f为高斯求积公式。
5.设有向量Tx )2,1,2(=→,试构造初等反射阵H ,使T x H)0,0,3(=→。
四. 证明题(每小题10分,共20分)1.设有迭代公式32421-+=+k k k x x x ,试证明该公式在4*=x 邻近是2阶收敛的,并求21)4(4lim--+∞→k k K x x 。
2.设→→y x ,是n 维列向量,Q 为n 阶正交矩阵,且=→y Q →x= 。
模拟二一、 单项选择题(每小题2分,共10分)1. 在下列四个数中,有一个数具有4位有效数字,且其绝对误差限为51021-⨯,则该数是( )。
A 0.00217 B 0.02170 C 0.21700 D 2.170002. 已知λ是A 的特征值,p 是给定参数,则B=A-pE 的特征值是( )。
Aλ+p B λ-p C λ+2p D λ-2p3. 设有迭代公式→→+→+=fxB x k k )()1(,则||B|| < 1 是该迭代公式收敛的( )。
A 充分条件B 必要条件C 充分必要条件4. 三次样条插值法中遇到的线性方程组应该用( )求解。
A 雅可比迭代B 高斯-塞德尔迭代C 平方根法D 追赶法 5. 若尤拉公式的局部截断误差是)(2hO ,则该公式是( )方法。
A 1阶B 2阶C 3阶D 无法确定二、 填空题(每小题4分,共20分)a)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=301221112A ,则=1A 。
b)设有方程组⎪⎩⎪⎨⎧-=++=+=-112123213132x x x x x x x ,则可构造高斯—塞德尔迭代公式为⎪⎩⎪⎨⎧。
c)设2'+=xy y ,则相应的显尤拉公式为=+1n y 。
d) 设T x )3,2,1(-=→,若有平面旋转阵P ,使P →x 的第3个分量为0,则P =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡。
e) 设2)(-=ax x f ,22)(x x g =.若要使)(x f 与)(x g 在[-1,0]上正交,则a = 。
三.计算题(每小题10分,共50分)1. 设xx x f 2)(3-=,若在[0,1]上构造其二次最佳均方逼近多项式,请写出相应的法方程。
2.求32的近似值。
若要求相对误差小于1%,问近似值应取几位有效数字?3.设有方程组⎪⎩⎪⎨⎧-=-+=++=+-12102321321321x x x x x x x x x ,考察用雅可比迭代解此方程组的收敛性。
4.试确定常数A ,B ,C 及α,使求积公式⎰++-=-)()0()()(11ααCf Bf Af dx x f有尽可能高的代数精度,并问该公式是否为高斯求积公式。
5.设有向量Tx )32,31,32(-=→,试构造初等反射阵H ,使T x H )0,0,1(=→四.证明题(共20分)1.设有迭代公式kk k k x x x x 2)2(21--=+ ,试证明该公式。
在2*=X 附近是平方收敛的,并求21)2(2lim --+∞→kk k x x 。
2. 设)(1x L 是)(x f 的一次拉格朗日插值,试证:2011)(81)()(x x x L x f -≤-10max x x x ≤≤)(''x f模拟三一、 单项选择题(每小题2分,共10分)1、 若近似值10.00230具有7位有效数字,则其较小的绝对误差限为( )。
A. 71021-⨯B. 61021-⨯ C. 51021-⨯ D. 41021-⨯2、 若已知迭代过程)(1k k x x ϕ=+是3阶收敛, C 是不为零的常数,则下列式子中,正确的式子是( )。
A .3**1=--+∞→xx xx k k k limB .3)3**1(=--+∞→x x xx k k k limC .c xx x x kk k lim=--+∞→**1 D .c x x x x kk k lim=--+∞→3**1)(3、 4阶牛顿—柯特斯求积公式至少具有( )次代数精度。
A. 4B. 5C. 8D. 94、 三次样条插值与二阶常微分方程的边值问题中,都会用到求解线性方程组的( )。
A. LU 分解法B.追赶法C.高斯消去法D.平方根法 5、 设A 的特征值满足||||||11n r λλλ≥⋅⋅⋅≥>+,则相应幂法的速比=A r ( )。
A.12λλ B.11λλ+r C.nλλ2 D.nλλ2二、 填空题(每小题4分,共20分)1、过节点10-=x ,01=x ,12=x 做近似2)(3-=x x f 的二次拉格朗日插值,其表达式是 。
2、若⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则=a ,=b ,=c 。
3、设⎥⎦⎤⎢⎣⎡=1201A ,则=∞)(A Cond 。
4、设C=PA,其中P 是三阶平面旋转阵,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=213130112A ,若使31C =0,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=P 。
5、设122'-=xy y ,则相应的隐尤拉公式为 。
三、 计算题(每小题10分,共50分)。
1、 利用最小二乘法原理,求矛盾线性方程组⎪⎩⎪⎨⎧=-=-=-1221212121x x x x x x 的近似解。
2、 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211111112A ,⎪⎪⎪⎪⎭⎫⎝⎛--=→1221b 。
若线性方程组>->-=bx A 仅有右端有扰动41021-∞>-⨯=bδ 。
试估计由此引起的解的相对误差∞>-∞>-xxδ。
3、 确定求积公式⎰-++-=11210)1()0()1()(f A f A f Adx x f ,并指明其代数精度。
4、 设有方程组⎪⎩⎪⎨⎧-=++=++=-+122012321321321x x x x x x x x x ,试考察求解该方程组的高斯-塞德尔迭代公式的敛散性。
5、 设有方程0322=--x x 。
试确定迭代函数)(x ϕ,使迭代公式)(1k k x x ϕ=+在*x =3附近收敛,并指出其收敛阶。
四、 证明题(每小题10分,共20分)1、 设U 是n 阶正交矩阵,A 是n 阶方阵。
试证明222||||||||||||A UA AU == 。
(提示:)(||||2A A A T ρ= )2、设有差分公式)3(2'1'1-+-+=n n n n y y h y y 。
试证明该公式是二阶公式。
模拟四一、 单项选择题(每小题2分,共10分)1、 按四舍五入原则,数-7.00038的具有4位有效数字的近似值是( )。
A. –7.0004 B.-7.000 C. –7 D.-7.00032、 若行列式||A E -=0,其中E 是n 阶单位阵,A 是n 阶方阵,则A 的范数满足( )。
A.1||||>A B. 1||||≥AC. 1||||<AD. 1||||≤A 3、 条件数)(A Cond =( )。
A.||||1-A AB.||||1-⋅A A4、 设A 是n 阶方阵,则A 可作唯一LU 分解的充分必要条件是( )。
A.0||≠A B .A 为正交阵C.A 为对称正定阵D.A 为对角占优阵5、 判定某数值求积公式具有m 次代数精度,只需该公式满足条件( )。
A . 公式对mx 准确成立,而对1+m x 不准确成立B. 公式对任意次数不超过m 次的多项式准确成立C. 公式对任意次数为m+1次的多项式不准确成立D. 公式对任意次数不超过m 的多项式准确成立,而对1+m x 不准确成立二、填空题(每小题4分,共20分) 1、 设*x 是方程0)(=x f 的单根,)(x ϕ是对应的牛顿迭代函数。
若*)(x x f 在邻近二阶连续,则=)(*'x ϕ 。
2、 设13)(2++=x x x f ,则二阶均差=-]1,0,1[f 。
3、 设R 是含*x 的邻域。
要使迭代公式)(211k k k x f x x -=+在R 内局部收敛,)('x f 应满足条件 。
4、 设Tx )1,1,2(-=。
若存在平面旋转阵P ,使P >--=T x )0,36,2(,则P=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡。
5、 设有数值求积公式⎰--+≈11)()()(a f a f dx x f 。
若该公式为高斯公式,则=a 。
三、计算题(每小题10分,共50分)。
1、 设}31,,1{2-=x x span ϕ,x e x f =)(。