数值分析试题A卷10.1
数值分析试题及答案

数值分析试题及答案一、选择题1. 下列哪个方法不适合用于求解非线性方程的根?A. 二分法B. 牛顿法C. 弦截法D. 正割法2. 当使用二分法求解非线性方程的根时,需要满足的条件是:A. 函数f(x)在区间[a, b]上连续B. 函数f(x)在区间[a, b]上单调递增C. 函数f(x)在区间[a, b]上存在根D. 函数f(x)在区间[a, b]上可导3. 数值积分是通过将定积分转化为求和的方法来近似计算积分值的过程。
下列哪个方法是常用的数值积分方法?A. 矩形法则B. 辛普森规则C. 梯形规则D. 高斯-勒让德法则4. 龙格-库塔法是常用于求解常微分方程的数值解法。
以下哪个选项是描述龙格-库塔法的特点?A. 该方法是一种多步法B. 该方法是一种多项式插值法C. 该方法是一种单步法D. 该方法是一种数值积分法5. 用有限差分法求解偏微分方程时,通常需要进行网格剖分。
以下哪个选项是常用的网格剖分方法?A. 多边形剖分法B. 三角剖分法C. 矩形剖分法D. 圆形剖分法二、解答题1. 将函数f(x) = e^x 在区间[0, 1]上用复化梯形规则进行数值积分,分为6个子区间,求得的近似积分值为多少?解:将区间[0, 1]等分为6个子区间,每个子区间的长度为h = (1-0)/6 = 1/6。
根据复化梯形规则的公式,近似积分值为:I ≈ (1/2) * h * [f(0) + 2f(1/6) + 2f(2/6) + 2f(3/6) + 2f(4/6) + 2f(5/6) +f(1)]≈ (1/2) * (1/6) * [e^0 + 2e^(1/6) + 2e^(2/6) + 2e^(3/6) + 2e^(4/6) +2e^(5/6) + e^1]2. 使用二分法求解方程 x^3 - 3x + 1 = 0 在区间[1, 2]上的根。
要求精确到小数点后三位。
解:首先需要判断方程在区间[1, 2]上是否存在根。
数值分析试卷A及参考答案参考资料

中南林业科技大学课程考试卷课程名称:数值分析 编号:A 考试时间:120分钟一、单项选择题(每小题4分,共20分)1. 用3.1415作为π的近似值时具有( B )位有效数字。
(A) 3 (B) 4 (C) 5 (D) 62. 下列条件中,不是分段线性插值函数 P(x)必须满足的条件为( )。
(A) P(x) 在各节点处可导 (B) P(x) 在 [a ,b] 上连续 (C) P(x) 在各子区间上是线性函数 (D) P(x k )=y k ,(k=0,1, … ,n)3. n 阶差商递推定义为:01102110],,[],,[],,[x x x x x f x x x f x x x f n n n n --=- ,设差商表如下:那么差商f [1,3,4]=( )。
A. (15-0)/(4-1)=5B. (13-1)/(4-3)=12C. 4D. -5/44. 分别改写方程042=-+x x 为42+-=xx 和2ln /)4ln(x x -=的形式,对两者相应迭代公式求所给方程在[1,2]内的实根,下列描述正确的是:( )(A) 前者收敛,后者发散 (B) 前者发散,后者收敛 (C) 两者均收敛发散 (D) 两者均发散5. 区间[a ,b]上的三次样条插值函数是( )。
A. 在[a ,b]上2阶可导,节点的函数值已知,子区间上为3次的多项式B. 在区间[a ,b]上连续的函数C. 在区间[a ,b]上每点可微的函数D. 在每个子区间上可微的多项式二、填空题(每小题4分,共20分)1. 欧拉法的局部截断误差的阶为 ;改进欧拉法的局部截断误差的阶为 ;2. 求解非线性方程01=-x xe 的牛顿迭代公式是 ;3. 已知数据对),(k k y x (k =1,2,…,n),用直线y =a +bx 拟合这n 个点,则参数a 、b 满足的法方程组是 ;4. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=20302a a a a A 给出使追赶法数值稳定地求解方程组3,R b b Ax ∈=的a 的取值范围(最大取值区间)是 ; 5. 求积公式)43(32)21(31)41(32)(10f f f dx x f +-≈⎰具有 次代数精度。
数值分析试卷整合打印版(请叫我活雷锋)

华南理工大学研究生课程考试《数值分析》试卷A2011年1月7日1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在试卷上; 课程代码:S0003004 考试形式:闭卷 考生类别:硕士研究生本试卷共八大题,满分100分,考试时间为150分钟。
一.选择、判断、填空题(10小题,每小题2分,共20分):*** 第1--2小题:选择A 、B 、C 、D 四个答案之一,填在括号内,使命题成立*** .求解线性代数方程组的追赶法适用于求解()方程组。
A . 上三角 B .下三角 C .三对角D .对称正定求解一阶常微分方程初值问题的经典4阶Runge-Kutta 公式( )。
A. 是隐式公式B. 是单步法C. 是多步法D. 局部截断误差为O (h 4)*** 第3--6小题:判断正误,正确写"√ ",错误写"× ",填在括号内 ***.设近似数x *=2.5368具有5位有效数字,则其相对误差限为0.25×10-4。
( ) .矩阵A 的条件数越小,A 的病态程度越严重。
( ).解线性方程组Ax=b 时,J 迭代法和GS 迭代法对任意的x (0)收敛的充要条件是A 严格对角占优。
( ).n 个求积节点的插值型求积公式至少具有n -1次代数精度。
( )*** 第7--10小题: 填空题,将答案填在横线上***.为避免两相近数相减的运算,应将11310-变换为。
.方程组Ax=b ,其中⎥⎦⎤⎢⎣⎡-=5.1112A ,则求解此方程组的J 迭代法的迭代矩阵 为,而GS 迭代法的迭代矩阵为__。
.设i x i =),,2,1,0(n i =,)(x l i 是相应的n 次Lagrange 插值基函数,则∑==ni i n ix l x)(。
.若用二分法求方程013=--x x 在 [1,1.5 ] 内的近似根,要求有3位有效数字,则至少应计算中点次。
《数值分析》A卷期末考试试题及参考答案

一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
数值分析试题_A卷与答案

三.求一个次数不高于3的多项式 ,满足下列插值条件:
1
2
3
2
4
12
3
并估计误差。(10分)
四.试用 的牛顿-科特斯求积公式计算定积分 。(10分)
五.用Newton法求 的近似解。(10分)
六.试用Doolittle分解法求解方程组:
2) 的值域是定义域的子集;(2分)
3) 在其定义域内满足李普希兹条件。(2分)
3.解:参照幂法求解主特征值的流程(8分)
步1:输入矩阵A,初始向量v0,误差限,最大迭代次数N;
步2:置k:=1,μ:=0,u0=v0/||v0||∞;
步3:计算vk=Auk-1;
步4:计算
并置mk:=[vk]r, uk:=vk/mk;
(1分)
应用科特斯公式得:
(2分)
(2分)
五.解:由零点定理, 在 内有根。(2分)
由牛顿迭代格式 (4分)
取 得,
(3分)
故取 (1分)
六.解:对系数矩阵做三角分解:
分)
七.解:(1)对于方程组,雅可比方法的迭代矩阵为
(2分)
其特征多项式为 ,且特征值为
青岛科技大学试题
__2014__年~__2015___年第一学期
课程名称:数值分析专业年级:2014级(研究生)
考生学号:考生姓名:
试卷类型:A卷√B卷□考试方式:开卷√闭卷□
………………………………………………………………………………………………………
一.填空题(本大题共4小题,每小题4分,共16分)
则 (1分)
2.证:牛顿迭代格式为 (3分)
(完整)数值分析试题库与答案解析,推荐文档

模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设,,则=.,= ______.152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A 342⎛⎫⎪=- ⎪ ⎪⎝⎭x ∞A1x3.已知y =f (x )的均差(差商),,,01214[,,]3f x x x =12315[,,] 3f x x x =23491[,,]15f x x x =, 那么均差=.0238[,,] 3f x x x =423[,,]f x x x 4.已知n =4时Newton -Cotes 求积公式的系数分别是:则,152,4516,907)4(2)4(1)4(0===C C C = .)4(3C 5.解初始值问题的改进的Euler 方法是阶方法;0(,)()y f x y y x y '=⎧⎨=⎩6.求解线性代数方程组的高斯—塞德尔迭代公式为,123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩若取, 则.(0)(1,1,1)=- x(1)=x 7.求方程根的牛顿迭代格式是 .()x f x =8.是以整数点为节点的Lagrange 插值基函数,则01(), (),, ()n x x x 01, ,, ,n x x x =.()nk jk k x x =∑9.解方程组的简单迭代格式收敛的充要条件是.=Ax b (1)()k k +=+x Bx g 10.设,则的三次牛顿插值多项式为(-1)1,(0)0,(1)1,(2)5f f f f ====()f x ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式满足:,,()p x (1)15p =(1)20p '=(1)30p ''=,.(2)57p =(2)72p '=2.构造代数精度最高的形式为的求积公式,并求出10101()()(1)2xf x dx A f A f ≈+⎰其代数精度.3.用Newton 法求方程在区间内的根, 要求.2ln =-x x ) ,2(∞8110--<-kk k x x x 4.用最小二乘法求形如的经验公式拟合以下数据:2y a bx=+i x 19253038iy 19.032.349.073.35.用矩阵的直接三角分解法解方程组.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x 6 试用数值积分法建立求解初值问题的如下数值求解公式0(,)(0)y f x y y y '=⎧⎨=⎩,1111(4)3n n n n n hy y f f f +-+-=+++其中.(,),1,,1i i i f f x y i n n n ==-+三、证明题(10分)设对任意的,函数的导数都存在且,对于满足x ()f x ()f x '0()m f x M '<≤≤的任意,迭代格式均收敛于的根.20Mλ<<λ1()k k k x x f x λ+=-()0f x =*x 参考答案一、填空题1.5; 2. 8, 9 ; 3.; 4. ; 5. 二; 911516456. , (0.02,0.22,0.1543)(1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩7. ; 8. ; 9. ;1()1()k k k k k x f x x x f x +-=-'-j x ()1B ρ<10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题1.差商表:11122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+令,,求出a 和b.(2)57p =(2)72p '=2.取,令公式准确成立,得:()1,f x x =,, , .0112A A +=011123A A +=013A =116A =时,公式左右;时,公式左, 公式右2()f x x =14=3()f x x =15=524=∴ 公式的代数精度.2=3.此方程在区间内只有一个根,而且在区间(2,4)内。
中国石油大学《数值分析》2011年考试试题A卷及答案

f (4)(x)
1 2880
1 n
4
6
1 2
104
,
仅要 n 4 1 101 2.54 ,取 n 3 即对将[1,2] 作 6 等分,则有 240
(8 分)
2
1 ln xdx
1 [0 4(ln 7 ln 3 ln 11) 2(ln 4 ln 5) ln 2] 0.38628716327880 .
0.000040074
( 4 分)
七、(10 分)(1)牛顿迭代格式
x(k 1)
x(k)
f f
(x(k ) ) '(x(k) )
x(k)
x(k) 1 (2
(x(k) )2 )(x(k) )1
1
(1 (2
)(
x( )(
)k ) 2 x(k ) )1
(2)
x(k 1)
lim
k
x(k)
1 1
fgdx
,取( x) ax bx3 , f ( x) sin x ,则法方程为
(0 ,0 )
(1
,
0
)
(0 ,1) (1 , 1 )
a b
( (
f f
,0 ,1
) )
( 4 分)
其中 0,0
1
x xdx
1
2, 3
0 ,1
(1 )(x(k) )2
lim
k
1
(2
)(x(k ) )1
c0
2
c 1
(5 分) (5 分)
1
x(k) 2
x(k) 3
1
x(k) 1
x(k) 3
/2
x3( k
1)
数值分析试题及答案

武理数值分析考试试题纸(A 卷)课程名称 数值分析 专业年纪 一、计算题(本题满分100分,共5小题,每小题20分) 1. 已知函数表(1) 求f(x)的三次Lagrange 型插值多项式及其插值余项(要求化成最简形式). (2) 求f(x)的Newton 插值多项式(要求化成最简形式). 2. 已知A=[212013612],求‖A ‖1,‖A ‖∞,A 的LU 分解.3. 叙述m 阶代数精度的定义,写出求∫f (x )dx ba 的Simpson 公式,并验证Simpson 公式的代数精度为3阶.4. 设矩阵A=012α11,求当α为何值时,解线性方程组Ax=b 的Gauss-Seidel 迭代法收敛.5. 叙述最小二乘法的基本原理,并举例说明其应用.参考答案一、计算题1、解:(1)L 3(x )=l 0(x )y 0+l 1(x )y 0+l 2(x )y 2+l 3(x )y 3=(x−0)(x−2)(x−2)(−1−0)(−1−1)(−1−2)×0+(x+1)(x−1)(x−2)(0+1)(0−1)(0−2)×(−1)+(x+1)(x−0)(x−2)(1+1)(1−0)(1−2)×2+(x+1)(x−0)(x−1)(2+1)(2−0)(2−1)×15=x 3+2x 2−1R 3(x )=f (x )−L 3(x )=f (4)(ε)4!ω4(x )(2) 均差表如下:N (x )=f (x 0)+f ,x 0,x 1-(x −x 0)+f ,x 0,x 1,x 2-(x −x 0)(x −x 1)+f ,x 0,x 1,x 2,x 3-(x −x 0)(x −x 1)(x −x 2)=0+(−1)(x +1)+2×(x +1)(x −0)+1×(x +1)(x −0)(x −1) =x 3+x 2−12、 解: ‖A ‖1=max 1≤j≤3∑|a ij |3i=1=2+0+6=8‖A ‖∞=max 1≤i≤3∑|a ij |3j=1=6+1+2=9A =LU =[1l 211l 31l 321][u 11u 12u 13u 22u 23u 33]=[212013612] 由u 11=2 u 12=1 u 13=2l 21=0 u 22=1 u 23=3 l 31=3 l 32=−2 u 33=2所以 A =LU =[1013−21][212132] 3. 解:定义:如果某个求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次的多项式就不准确成立,则称该求积公式具有m 次代数精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国石油大学(北京)2009--2010学年第一学期研究生期末考试试题A (闭卷考试)课程名称:数值分析注:计算题取小数点后四位 一、填空题(共30分,每空3分)1、 已知x =是由准确数a 经四舍五入得到的近似值,则x 的绝对误差界为_______________。
2、数值微分公式()()'()i i i f x h f x f x h+-≈的截断误差为 。
3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。
H = 。
4、利用三点高斯求积公式11()0.5556(0.7746)0.8889(0)0.5556(0.7746)f x dx f f f -≈-++⎰导出求积分40()f x dx⎰的三点高斯求积公式 。
5、42()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-=若则6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则(0)(1)__________.nkk k lx =+=∑7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的截断误差上界为3()cos ()R x x P x =-≤_________.8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。
L =_________. 9、设32()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。
10、下面M 文件是用来求解什么数学问题的________________________.function [x,k]=dd (x0) for k=1:1000 x=cos (x0);if abs(x-x0)<, break end x0=x; end二、(15分)已知矛盾方程组Ax=b ,其中11120,1211A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,(1)用施密特正交化方法求矩阵A 的正交分解,即A=QR 。
(2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。
三、(10分)已知求解线性方程组Ax=b 的分量迭代格式1(1)(1)()1+1/,121,,i nk k k ii ij jijj ii j j i x b a xax a i n n -++===--=-∑∑(),,(1)试导出其矩阵迭代格式及迭代矩阵;(2)若11a A a ⎛⎫=⎪⎝⎭,推导上述迭代格式收敛的充分必要条件。
四、(15分)(1)证明对任何初值0x R ∈,由迭代公式111sin ,0,1,2, (2)k k x x k +=+=所产生的序列{}0k k x ∞=都收敛于方程11sin 2x x =+的根。
(2)迭代公式1121sin ,0,1,2, (2)k k k x x x k +=--=是否收敛。
五、(15分)用最小二乘法确定一条经过原点(0,0)的二次曲线,使之拟合下列数据-2-11230.81 3.4i ix y ⎧⎨⎩并求平方误差22δ。
六、(15分)(1)写出以0,1,2为插值节点的二次Lagrange 插值多项式2()P x ; (2)以0,1,2为求积节点,建立求积分3()I f x dx =⎰的一个插值型求积公式,并推导此求积公式的截断误差。
中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题标准答案A (闭卷考试)课程名称:数值分析一、(30分) 1、61102-⨯; 2、()O h ; 3、1121H ⎡-=⎢⎢⎥⎣⎦; 4、4() 1.1112(0.4508) 1.7778(2) 1.1112(3.5492)f x dx f f f ≈++⎰;5、 5;6、1;7、112; 8、10021035013L ⎛⎫⎪⎪=- ⎪ ⎪ ⎪⎝⎭;9、 32152(7)26(7)k k k k k x x x x x +-=-- 10、用简单迭代法1cos()k k x x +=求方程cos()x x =的根。
二、(15分)(1)1211122211212211212(1,2,2),(1,0,1)1(1,2,2),(1,2,2)311(,)(2,-2,1),=(2,-2,1)3331131200121T TT T T Tu u v u v u u u v u u A QR εεεεεεεε======-=-===⎧⎨=+⎩⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,(10分)5/341(2),,1/393TTRx Q b x ⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦(5分)三、(10分) (1) 1(1)()(+1)1+1,,1,,2,1i nk k k ii ii ij jij jj j i a x b a xax i n n -+===--=-∑∑L(1)(1)()(1)()(1)1()1)()()()k k k k k k k Dx b Lx Ux D L x Ux bx D L Ux D L b++++--=++-=+=-+-(1)()11112221111211,()()000,00000k k nn n nn n n n x Bx gB D L Ug D L ba a a D L a a a a a U a +----=+=-=-⎛⎫⎛⎫⎪⎪ ⎪ ⎪==-⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪ ⎪=- ⎪ ⎪⎝⎭L L M O M O M L LM O M M L L 迭代矩阵右端向量其迭代法的矩阵形式中 (6分)112100(2)()10010001000a B D L U aa a a a ---⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭迭代矩阵22(),()1,101B a B a a ρρ=<<→<<迭代格式收敛的充分必要条件是即 (4分)四、(15分)(1)记1()1sin 2x x ϕ=+,则1'()cos 2x x ϕ=。
先考虑区间[,],当[0.5,1.5]x ∈时,1()1sin [0.5,1.5]2x x ϕ=+∈ ,11'()cos 122x x ϕ=≤< 。
故对任意初值[0.5,1.5]x ∈,由迭代公式111sin ,0,1,2,...2k k x x k +=+=产生的序列{}0k k x ∞= 都收敛于方程11sin 2x x=+的根。
(9分)对任意初值0x R ∈,有1011sin [0.5,1.5]2x x =+∈,将此1x 看成新的迭代初值,则由(1)可知,由迭代公式111sin ,0,1,2, (2)k k x x k +=+=产生的序列{}0k k x ∞= 都收敛于方程11sin 2x x =+的根。
(3分) (2)记1()21sin 2x x x ϕ=--,则1'()2cos 2x x ϕ=-,对任意x R ∈,有'() 1.5x ϕ≥ 所以迭代公式1121sin ,0,1,2, (2)k k k x x x k +=--=不收敛。
(3分)五、(15分)212122(),()-243-110.8,,,11124 3.40.110010.1,=27.403427.40.805934()0.1+0.8059x x x x Y a a b b s x x x ϕϕ==⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Φ=Φ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦= (10分)2212(,)(,)(,)22.20.10.805927.40.01882Y Y a Y b Y δ=-Φ-Φ=-+⨯= (5分)六、(15分) (1)2(1)(2)(0)(2)(1)(0)()(0)(1)(2)(01)(02)(10)(12)(21)(20)x x x x x x P x f f f ------=++------ ( 5分)(2)3321039()()(0)(2)=44I f x dx P x dx f f I =≈=+⎰⎰ (5分)34319()=32442.f x x =⨯≠⨯=取,代入求积公式,左边右边代数精度为 构造一个二次插值多项式p 2(x)满足下列条件222(0)(0),(2)(2),'(2)'(2)p f p f p f ===(3)2(3)2()23!333()23!0()()(2),()()(2)f f f x p x x x a b f x dx p x dx x x dxξξξ-=-≤≤-=-⎰⎰⎰因为p 2(x)为二次多项式,所以322203939()(0)(2)(0)(2)4444p x dx p p f f =+=+⎰(3)3210(3)(3)32(3)0()(2)3!()()93(2)()3!3!48f I I x x dxf f x x dx f ξξξη-=-=-==⎰⎰ (5分)。