数值分析 典型例题与习题2

合集下载

(整理)数值分析课件典型例题与习题2.ppt

(整理)数值分析课件典型例题与习题2.ppt

0.4
1
0.8
x2
2
0.4 0.8 1 x3 3
(B) 1.0928203 1
20/51
例6.设A对称正定矩阵, 证明 x xT Ax是向量范数。 A
思路 : 对称正定矩阵的Cholesky分解A LLT。
x 2 xT Ax=xT LLT x= LT x 2
A
2
x+y LT ( x y) LT x LT y x y
➢中止准则
| x(k ) x* | L | x(k) x(k1) | 1 L
|| X (k ) X * || || B || || X (k) X (k1) || 1 || B ||
➢加速(松弛思想)
Aitken加速方法
超松弛加速方法
8/51
现代迭代方法 (Top 10 Algorithms)
Hilbert矩阵条件数: for i=1:10 c(i)=cond(hilb(i),2);%%vander(1:i) end,plot(1:10,c')
13/51
范数的威力和魅力: 范数(全局)
问题的好与坏
算法的快与慢
|| x || (|| A || || A1 ||) || b ||
|| x ||
7/51
➢迭代格式构造
x (x)
➢收敛条件(局部vs全局)
x*为( x)的不动点,( x) 对任意的f 和任意的初始
在x*的某邻域N (x* )连续
且 | ( x* ) | 1, 则迭代法
对任意x(0) N (x* )收敛
向量X(0)迭代法收敛的充
分必要条件是(B) 1和
充分条件是||B|| 1
A
2

数值分析习题和答案解析(最新整理)

数值分析习题和答案解析(最新整理)

(1)
要使
应满足().
(2) 已知方程组
,则解此方程组的
Jacobi 迭代法是否收敛().它的渐近收敛速度 R(B)=
公式(6.13)直接计算即可。

,取 n=8,在分点处计算 f(x)的值构造函数表。
按式(6.11)求出
,按式(6.13)求得

积分
2. 用 Simpson 公式求积分 ,并估计误差 解:直接用 Simpson 公式(6.7)得
由(6.8)式估计误差,因
,故
3. 确定下列求积公式中的待定参数,使其代数精确度尽量 高,并指明求积公式所具有的代数精确度.
专业知识分享
WORD 格式
编辑整理
11. 填空题
(1) 满 足 条 件
的插值多项式
p(x)=( ).
(2)
,则 f[1,2,3,4]=( ),f[1,2,3,4,5]
=( ).
(3) 设
为互异节点, 为对应的四次插值基函
数,则
=( ),
=( ).
(4) 设
是区间[0,1]上权函数为 ρ(x)=x 的最
WORD 格式
编辑整理
误差估计由公式(5.19)得
这里 仍为 0.565 8. 求 一 个 次 数 不 高 于 四 次 的 多 项 式 p(x),使 它 满 足
解:这种题目可以有很多方法去做,但应以简单为宜。此处
可先造 使它满足
,显然 p(x)=x2(2-x)+Ax2(x-1)2
,再令
由 p(2)=1 求出 A= ,于是
5.计算
取 ,利用 :
式计算误差最小。
四个选项: 第二、三章 插值与函数逼近
习题二、三

数值分析典型例题

数值分析典型例题

1数值分析典型例题例1 对下列各数写出具有5位有效数字的近似值。

236.478, 0.00234711,9.000024, 9.000034310⨯.解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310⨯。

注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9是1位有效数字。

例2 指出下列各数具有几位有效数字。

2.0004, -0.00200, -9000, 9310⨯,2310-⨯。

解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程*s 的近似值s=800m ,所需时间*s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。

解:因为t s v /=,所以)()(1)()()(2t e tss e t t e t v s e s v v e -=∂∂+∂∂≈ 从而05.00469.0358005.0351|)(||||)(|1|)(|22≤≈+⨯≤+≤t e t s s e t v e同样v v e v e r )()(≈)()()()(t e s e t e vtt v s e v s s v r r r -=∂∂+∂∂=所以00205.03505.08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r因此绝对误差限和相对误差限分别为0.05和0.00205。

例4试建立积分20,,1,05=+=n dx x x I nn 的递推关系,并研究它的误差传递。

解:151--=n n I nI ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。

但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可知近似值之间的递推关系为151--=n n I nI ……………………………………………….…..(2) (1)-(2)可得01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。

数值分析习题含答案

数值分析习题含答案
2
x1 )
f (x0)
(x
x 0 )( x x0 x1
x1 )
f ' ( x0 )
(x ( x1
x0)
2 2
x0 )
f ( x1 )
R ( x)
其中 R(x) 由以下计算得到: 构造辅助函数:
(t ) f (t ) N 2 (t ) (t (x x0 ) (t x0 ) ( x
2 2
x1 ) x1 )
f [ 2 ,2 ] =-2089 ,
0 1 2 7
0 1 7
f (x)
M ,
x
[ a , b ] ,证明:在任意相邻两节点间
R1 ( x )
1 8
Mh
2

x xi x xi M
1
f ( ) R1 i ( x ) 2 M 8 h 2,
h ,
2
x
8 ,n
[ xi , xi
1
]
R1 ( x )
max R1 i ( x )
1 2
s
2
[( x
xi
1
))( x
x
i
1 2
)( x
x i )]
e
4
h
3
[ s( s
1)( s
1)] 24
3 9
e h
4
3
10
6
3!
8
h
1 . 317
则用二次插值的步长应:
h
0 .6585
10
2
2-6 对区间 [a,b] 作步长为 h 的剖分,且 做线性插值,其误差限为 证明:区间上的误差限: 误差限: 2-7 设 f ( x ) 解: 自变量 1 2

数值分析试题与答案

数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。

(完整版)数值分析整理版试题及答案,推荐文档

(完整版)数值分析整理版试题及答案,推荐文档

9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x

xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4

a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5

数值分析课后部分习题答案

数值分析课后部分习题答案


x * = 2.00021 = 0.200021 × 101 ,即 m = 1
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 2 ; y* = 0.032 = 0.32 × 101 ,即 m = 1
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 ,Fra bibliotek2 2=
f [x1 , x2 ,⋯ , x n ]-f [ x0 , x1 ,⋯ , x n−1 ] g[ x1 , x2 ,⋯ , x n ] − g[ x0 , x1 ,⋯ , x n−1 ] + x n − x0 x n − x0
( x − 1)( x − 2)( x − 3) 1 =- ( x − 1)( x − 2)( x − 3) , (0 − 1)(0 − 2)(0 − 3) 6
x ( x − 2)( x − 3) 1 = x ( x − 2)( x − 3) , (1 − 0)(1 − 2)(1 − 3) 2 x( x − 1)( x − 3) 1 =- x( x − 1)( x − 3) , (2 − 0)(2 − 1)(2 − 3) 2 x( x − 1)( x − 2) 1 = x ( x − 1)( x − 2) , (3 − 0)(3 − 1)(3 − 2) 6

数值分析习题(含答案)

数值分析习题(含答案)

数值分析习题(含答案)第一章绪论姓名学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算)解:2*103400.0-?=x ,325*10211021---?=?≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需41*1021-?≤-ππ,3*310211021--?+≤≤?-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)解:3*1021-?≤-aa ,2*1021-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102110211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b ba ab 故b a ?至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)解:已知δ=-**xx x ,则误差为δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6/16
ห้องสมุดไป่ตู้
由2-范数计算公式 范数计算公式
|| A || 2 = λ max ( A T A) = max[λ j ( A)]2 = max | λ j ( A) |= ρ ( A)
1≤ j ≤ m 1≤ j ≤ n
Ex5.对任意 ,y∈Rn,利用向量范数的三角形不 对任意x, ∈
等式证明: 等式证明:
的范数有关系: 径与A的范数有关系:ρ(A) ≤ || A || 任一特征值,x 证:设 λ 是矩阵 任一特征值 是对应的特征向量 则 设 是矩阵A任一特征值 是对应的特征向量,则
Ax = λx || λx ||=|| Ax ||≤|| A || ⋅ || x || | λ | ⋅ || x ||≤|| A || ⋅ || x || | λ |≤|| A ||
迭代公式
X
( k +1)
=X
(k )
+ ω (b − AX
(k )
)
讨论使迭代序列收敛的ω 的取值范围.
15/16
练习9: 练习 设A是n阶可逆矩阵,有A的一个近似逆B,令 R=I –AB如果 || R ||≤ q <1 ,试证明 (1) A–1 = B ( I + R + R2 + …… ); ; (2)任意给定n阶矩阵X0,由迭代格式 Xk+1 = Xk R + B ( k = 0,1,2,…… ) , , , 产生的矩阵序列{ Xk }收敛到矩阵A-1; (3)对矩阵序列{ Xk },有误差估计式 ,
n n n j =1 j≠k j =1 j≠k j =1 j≠k
| a kk | ⋅ | uk |=| ∑ a kj u j |≤ ∑ | a kj u j | ≤ ∑ | a kj | ⋅ | uk |
两边约去 |uk|,得 ,
| a kk |≤ ∑ | a kj |
j =1 j≠k
n
这与主对角占优矛盾, 这与主对角占优矛盾 故det(A) ≠0。 。
以及2-范数意义的条件数
1 1 1 − 1 1 − 1 Q= − 1 − 1 1 1 −1 −1
1 1 1 1
练习6. 练习 设 A =( aij )n×n为实对称正定矩阵, x∈R n, ∈ × b ∈R n,如果 u 使二次函数 1 f ( x ) = ( Ax , x ) − (b, x ) 2 取极小值 , 证明 u 是线性方程组 Ax = b 的解。
1 A → F1 A = − m1
T a11 α 1 a11 = I n −1 α 1 A1 0
T A1 − m1α 1
T α1
1 T A2 = A1 − αα a11
所以,
A2 = A2T
5/16
Ex3.对任何一种矩阵的算子范数,证明矩阵 的谱半 对任何一种矩阵的算子范数,证明矩阵A的谱半
= ( I − AX 0 )
2k
11/16
X k = A [ I − ( I − AX 0 ) ]
2k
−1
ρ ( I − AX 0 ) < 1
−1
lim ( I − AX 0 )
k →∞
2k
2k
=0
lim X k = lim A [ I − ( I − AX 0 ) ] = A −1
k →∞ k →∞
10/16
Ex7.设A是一个可逆矩阵,矩阵序列满足 设 是一个可逆矩阵 是一个可逆矩阵, Xk+1=Xk(2I – A Xk ),( =0,1,2,……) ,(k , , , ,( ) 证明:当 证明 当 ρ ( I − AX 0 ) < 1 时
lim X k = A −1
k →∞
证明: 证明:由Xk+1=Xk(2I – A Xk ),得 , I – AXk+1 = I – A Xk(2I – A Xk )= (I – A Xk )2 于是 I – AXk =(I – A Xk -1)2 × =(I – A Xk -2)2×2 = ··········
|| x || − || y || ≤|| x − y ||
证: || x || = || (x – y )+ y || ≤|| x – y || + || y || || x || – || y || ≤|| x – y || 同理, 同理 || y || – || x || ≤|| y – x || =|| x – y || || x || – || y ||≥ – || x – y || – || x – y || ≤ || x || – || y || ≤|| x – y ||
9/16
| λa ii |=| λ | × | a ii |>| λ | ∑ | a ij | = ∑ | λ | × | a ij | ≥ ∑ | λa ij | +
j =1 j≠i j =1 j≠i j =1
n
n
i −1
j = i +1
∑| a
n
ij
|
也是严格主对角占优矩阵。 故C(λ)也是严格主对角占优矩阵。由于严格主对角占 也是严格主对角占优矩阵 优矩阵的行列式不为零, 优矩阵的行列式不为零,故λ不是特征方程
4/16
Ex2.设A对称且a11≠ 0,高斯消元法一步后 约化为 高斯消元法一步后,A约化为
T a11 α 1 0 A2 证明 A2 也是对称矩阵。 T a11 α 1 A= 证明:设 证明 设 α 1 A1
1 α1 m1 = a11
1 F1 = − m1 I n −1
2 1 2 5 − 2 − 2 3 1 1 − 2 x1 4 x 7 3 − 2 2 = 3 5 x3 − 1 2 3 x4 0
13/16
练习5: 练习 求矩阵的 2-范数,
Ex8 设 A∈R n×n 为对称正定矩阵 定义 为对称正定矩阵,定义 ∈ || x ||A = x T Ax
上的一种向量范数。 证明 || x ||A 是 R n 上的一种向量范数。
12/16
练习1. 分析求解三对角方程组追赶法的计算工作量。 练习 分析求解三对角方程组追赶法的计算工作量。 练习2. 练习 . 设A=(aij)n×n 为可逆下三角矩阵,证明 × A-1 仍为下三角矩阵。 仍为下三角矩阵。 练习3. 练习 . 设 A=(aij)n×n为可逆上三角矩阵,证 × 为可逆上三角矩阵, 仍为上三角矩阵。 明 A-1 仍为上三角矩阵。 练习4 练习 . 用列主元法解方程组
C(λ) = |λ(D– L ) – U | = 0
的根。所以当A是严格主对角占优矩阵时,(D – L )-1U 是严格主对角占优矩阵时, 的根。所以当 是严格主对角占优矩阵时 的特征值必然满足: 的特征值必然满足:|λ | < 1,从而高斯-赛德尔迭代矩 ,从而高斯阵谱半径小于1 迭代法收敛。 阵谱半径小于1,迭代法收敛。
2/16
=
=
消元法使用的条件 定理3.1 约化主元ak+1,k+1(k) ≠ 0 (k=0,1,···,n-1)的 矩阵A的各阶顺序主子式不为零 的各阶顺序主子式不为零. 充分必要条件是 矩阵 的各阶顺序主子式不为零 定理4.2 :设x*为方程组 Ax=b 的解 若||B||<1,则对迭代格式 x(k+1) = B x(k) + f 有
|λ(D– L ) – U | = 0
a 12 ⋯
行列式对应的矩阵为
λa 11 λa 21 C (λ ) = ⋮ λ a n1
λa 22

λa n 2
a1n ⋯ a 2n ⋱ ⋮ ⋯ λa nn
矩阵的主对角占优性质, 当|λ | > 1时,利用 矩阵的主对角占优性质,得 时 利用A矩阵的主对角占优性质
用反证法。 则齐次方程组Ax=0有非 证: 用反证法。设det(A) = 0, 则齐次方程组 有非 零解 u =[u1, u2, ···, un ]T. 设
|| u ||∞ =| uk | 考虑 =0的第 个等式 考虑Au 的第 的第k个等式 a k 1 u1 + ⋯ + a kk uk + ⋯ + a kn un = 0
|| x || − || y || ≤|| x − y ||
7/16
Ax = b, 将矩阵分裂 A = D – U – L 将矩阵分裂:
Jacobi 迭代法的迭代矩阵
特征多项式与特征方程: 特征多项式与特征方程
BJ = D-1(U+L)
| λI – D-1(U+L)| = |D-1|·|λD – (U+L) | | λD – (U+L) | = 0 Gauss-Seidel迭代法的矩阵 BG-S= (D – L)-1U 迭代法的矩阵: 迭代法的矩阵
ρ ( A) ≤|| A ||
Ex4.若矩阵A是n阶对称矩阵, 则有 ρ ( A) =|| A ||2 阶对称矩阵,
的任一特征值, 对称, 证:设λ 是A的任一特征值,由于 对称,故λ2 是矩阵 的任一特征值 由于A对称 ATA的特征值,即 的特征值, 的特征值
λ ( AT A) = λ ( A 2 ) = [λ ( A)]2
14/16
练习7 写出n维向量序列 维向量序列{X 收敛于向量X 的定义; 练习 . 写出 维向量序列 (k)} 收敛于向量 * 的定义;
设 证明
lim X ( k ) = X * ,而 B 是 n 阶方阵 而 k →∞
lim BX
k →∞
(k )
= BX
*
练习8 为对称正定阵,且有 练习8.有方程组Ax = b,其中A为对称正定阵 且有 ,
相关文档
最新文档