GPS测量原理
gps的原理是什么

gps的原理是什么
GPS的原理是基于卫星定位系统工作的。
GPS系统由地面的
控制站和在轨道上绕地球运行的一组24颗卫星组成。
这些卫
星被称为全球定位系统,它们以恒定的速度绕地球周围运行。
每颗卫星每天绕地球转两次,通过固定的轨道,确保整个地球上的任何地点都可以收到至少四颗卫星的信号。
GPS设备接收卫星发出的信号,并通过计算信号发送和接收
的时间来确定位置。
每颗卫星都具有一个精确的原子钟,其时间同步在地面控制站进行监控和修正。
当GPS接收器接收到
至少四颗卫星的信号时,它能够计算出接收器与每颗卫星之间的距离。
然后,通过三角测量原理,GPS设备可以确定接收
器所在的地理坐标。
在进行位置计算时,GPS接收器会考虑到卫星的位置和距离,以及信号的传输速度。
由于信号在空间中传播的速度是已知的,接收器可以计算出信号从卫星到接收器的距离,并以此为基础来确定位置。
这些计算需要高度精确的时间测量,因此GPS
接收器需要使用非常精确的原子钟。
总结来说,GPS的原理是通过接收卫星发送的信号,并计算
信号的时间和距离来确定接收器的位置。
GPS系统的准确性
取决于卫星的数量和位置,以及接收器的精确度和计算能力。
GPS测量技术的原理与精度分析

GPS测量技术的原理与精度分析随着科技的迅猛发展,我们的生活方式和交通方式也在发生着巨大的变化。
全球定位系统(GPS)作为一种应用广泛的测量技术,在我们的日常生活中发挥着重要作用。
它不仅在导航和定位方面发挥着重要作用,还在地质勘探、环境监测、农业、航天等领域得到了广泛应用。
GPS测量技术的原理其实非常简单。
首先,我们需要知道地球上至少有4颗人造卫星在不同的轨道上运行。
这些卫星通过发送精确的时刻信号,电波以光速传播到地球上的接收设备。
接收设备会记录下每颗卫星发送的信号到达的时间。
通过知道信号传输速度(约为光速),我们可以根据信号从卫星到达接收设备所需的时间来计算出距离。
为了精确地测量距离,GPS接收设备同时接收多颗卫星的信号。
通过三角定位原理,我们可以计算出接收设备到每颗卫星的距离。
然后,我们将所有的卫星距离信息传给GPS接收设备,它会进行进一步的计算来确定自己的精确位置。
通过与地球上的基准站进行通信,GPS接收设备还可以获取更准确的时间数据,从而提高测量的精度。
然而,GPS测量技术在实际应用中也存在一定的精度限制。
首先,由于天线高度、天气状况、地下信号衰减等因素的影响,GPS信号可能会被干扰或丢失,导致测量精度下降。
其次,GPS测量也受到卫星几何结构的影响。
如果卫星位置过于集中或者过于稀疏,都会对测量结果产生一定的影响。
同时,地球和卫星之间的大气层延迟也是GPS测量精度的一个重要限制因素。
电磁波在穿过大气层时会发生折射、散射和衍射,导致信号传播速度的变化。
这种大气折射现象会使GPS测量结果产生一定的误差。
为了克服大气层延迟的影响,科学家们开发了一些用于校正的模型和算法,以提高GPS测量的准确性。
另外,GPS测量技术在山区、高楼大厦密集区和深海等特殊地形和环境下的精度也面临挑战。
例如在山区,卫星信号的传播路径可能会被遮挡,导致接收设备无法接收到足够数量的卫星信号来进行定位。
在高楼大厦密集区,建筑物的反射和折射可能会干扰卫星信号,降低测量精度。
第五章 GPS定位基本原理

第五章 GPS定位基本原理
8
2)、相对定位
• 确定同步跟踪相同的GPS信号的若干台接收机之间的相对 位臵的方法。可以消除许多相同或相近的误差(如卫星钟、 卫星星历、卫星信号传播误差等),定位精度较高。但其 缺点是外业组织实施较为困难,数据处理更为烦琐。
• 在大地测量、工程测量、地壳形变监测等精密定位领域内 得到广泛的应用。
j为卫星数,j=1,2,3,…
第五章 GPS定位基本原理
27
三、用测距码来测定伪距的特点
• 利用测距码测距的必要条件
– 必须了解测距码的结构
(1)易于将微弱的卫星信号提取出来。
卫星信号的强度一般只有噪声强度的万分之一或更低。 只有依据测距码的独特结构,才能将它从噪声的汪洋大海中 提取出来;
第五章 GPS定位基本原理
接收机钟差
t tk t tk (G) t (G) tk t
j j
j
信号真正传播时 间
第五章 GPS定位基本原理 22
如果不考虑大气折射的影响,则有:
' ct c[tk t ]
j
c tk (G ) t (G ) c(tk t )
j j
ρ = τ*C= △t*C 上式求得的距离ρ并不等于卫星至地面测站的真正距 离,称之为伪距。
第五章 GPS定位基本原理 19
二、伪距测量的观测方程
• 码相关法测量伪距时,有一个基本假设,即卫星钟和接 收机钟是完全同步的。
• 但实际上这两台钟之间总是有差异的。因而在R(t) =max 的情况下求得的时延τ就不严格等于卫星信号的传播时间 Δt,它还包含了两台钟不同步的影响在内。
第五章 GPS定位基本原理 17
GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法GPS(全球定位系统)是一种基于卫星信号的导航系统,用于确定地球上任意点的位置和时间。
GPS导航定位的原理基于三个基本原则:距离测量、导航电文和定位解算。
首先,定位解算的基本原理是通过测量卫星与接收器之间的距离差异来确定接收器的位置。
GPS接收器接收卫星发射的信号,并测量信号从卫星到接收器的时间延迟。
通过已知卫星位置和测量时间延迟,可以计算出接收器与卫星之间的距离。
至少需要接收到4个卫星信号才能进行定位解算,因为每个卫星提供三个未知数(x、y、z三个坐标)和一个时间未知数。
其次,GPS导航系统通过导航电文提供的卫星轨道参数来计算卫星的精确位置。
每个卫星通过导航电文向接收器传递关于卫星识别码、卫星轨道和钟差等数据。
接收器使用这些参数来计算卫星的准确位置。
最后,通过定位解算算法,将接收器收到的卫星信号和导航电文中的轨道参数进行计算,可以确定接收器的位置。
定位解算算法主要有两种:三角测量法和最小二乘法。
三角测量法基于三角学原理,通过测量多个卫星与接收器之间的距离差异,然后根据这些距离差异以及卫星的位置信息来计算接收器的位置。
这种算法的优势是计算简单,但受到测量误差的影响较大。
最小二乘法是一种数学优化方法,通过最小化接收器位置与测量距离之间的误差平方和来求解接收器的位置。
该方法考虑到了测量误差的影响,并通过对多个卫星信号进行加权以提高解算的准确性。
除了上述的定位解算算法,GPS导航系统还使用了差分GPS和惯性导航等技术来提高定位精度和可靠性。
差分GPS通过接收器与参考站之间的信号比对,消除了大部分的误差,提高了定位精度。
惯性导航通过测量加速度和角速度来估计接收器的位移,可以在信号丢失或弱化的情况下提供连续的导航定位。
综上所述,GPS导航定位通过距离测量、导航电文和定位解算算法来确定接收器的位置。
通过接收到的卫星信号和导航电文中的轨道参数,定位解算算法能够计算出接收器的位置,并提供准确的导航信息。
gps测量的原理

gps测量的原理
GPS(Global Positioning System)是一种通过卫星信号和接收器
来测量和确定地理位置的技术。
GPS系统由全球范围内的一
组卫星组成,它们绕地球轨道运行,并通过无线电信号传输时间和位置信息。
GPS测量的原理是基于卫星定位和三角测量原理。
当接收器
接收到至少四颗卫星发出的信号后,它会使用卫星信号传输的时间信息来计算每颗卫星与接收器之间的距离。
通过同时测量多颗卫星与接收器之间的距离,可以确定接收器的精确位置。
具体来说,GPS接收器会接收多颗卫星发出的信号,信号中
包含卫星的识别码和发射时间等信息。
接收器会记录下信号接收时间和卫星的发射时间,然后计算信号传播的时间差。
由于光速是已知的,可以通过时间差乘以光速来计算信号传播的距离。
然后,接收器会将测得的多个卫星与接收器之间的距离与卫星的位置信息结合起来,使用三角测量方法来确定接收器的位置。
三角测量原理是利用三个已知的点(即卫星的位置)与这些点到未知位置(接收器位置)的距离来计算未知位置。
通过多次三角测量,可以提高测量的精度和确定性。
值得注意的是,由于卫星位置的精确度以及信号传播的误差等因素的影响,GPS测量的精度会受到一定的限制。
然而,通
过采用多个卫星进行测量并使用各种校正技术,可以提高
GPS测量的准确性。
gps定位基本原理

gps定位基本原理
GPS定位基本原理是利用卫星进行定位的技术。
GPS系统由一组卫星、地面控制站和用户设备组成。
卫星向地面控制站发送信号,控制站对这些信号进行处理和分析,并将处理后的信息发送给用户设备。
用户设备中的GPS接收器接收到来自卫星的信号,并测量信号的传播时间。
由于信号以光速传播,可以根据传播时间计算出信号的传播距离。
通过接收来自多颗卫星的信号,并计算出这些信号的传播距离,GPS接收器可以确定自身的位置。
为了准确计算位置,GPS接收器需要同时接收来自至少四颗卫星的信号。
每颗卫星都会向接收器发送一个具有时间戳的信号,并通过该时间戳与接收器中的时钟进行同步。
接收器使用来自多颗卫星的信号和时间戳来确定自身的位置。
GPS定位的精度取决于接收器接收到的卫星数量以及这些卫星的几何分布。
当接收器处于开阔地区,能够同时接收到来自多个方向的卫星信号时,定位精度会更高。
但当接收器处于有遮挡物的地区,如高楼大厦或树木茂密的地区,定位精度可能会下降。
总的来说,GPS定位基本原理是通过接收卫星信号并测量信号的传播时间来确定自身位置的。
这种定位技术在许多领域中得到广泛应用,例如导航、车辆追踪和地图绘制等。
gps测高原理

gps测高原理GPS测高原理引言:GPS(全球定位系统)是一种通过卫星定位的技术,广泛应用于导航、测绘、地理信息系统等领域。
除了可以确定位置的经纬度,GPS还可以用来测量高度。
本文将介绍GPS测高的原理,并探讨其应用。
一、GPS测高原理GPS测高主要依靠卫星信号的接收和计算来实现。
GPS接收机通过接收来自卫星的信号,计算出接收机与卫星之间的距离,并通过三角测量的方法确定接收机的高度。
1. 接收卫星信号GPS接收机通过天线接收卫星发射的信号。
每颗GPS卫星都会发射包含精确时间信息的信号,接收机通过接收多颗卫星的信号来计算位置和高度。
2. 计算距离接收机接收到卫星信号后,会通过测量信号的传播时间来计算接收机与卫星之间的距离。
由于信号的传播速度是已知的(光速),接收机可以根据接收到信号的时间差来计算距离。
3. 确定接收机高度通过接收多个卫星的信号,接收机可以获得多组距离数据。
利用三角测量的原理,接收机可以确定自身的高度。
三角测量的基本原理是,通过知道一个角度和对边的长度,就可以计算出其他两边的长度。
在GPS测高中,已知的是接收机与卫星的距离,可以通过计算得到高度。
二、GPS测高的精度和误差尽管GPS测高具有一定的精度,但也存在一些误差来源。
以下是常见的误差来源:1. 卫星精度误差:卫星的位置精度会影响到测量的精度,因为接收机计算高度时需要依赖卫星的位置信息。
2. 大气延迟误差:卫星信号在穿过大气层时会发生折射,导致信号传播时间增加。
这种延迟误差会对测量结果产生一定的影响。
3. 多路径误差:如果卫星信号在传播过程中反射、折射或散射,会导致接收机接收到多个信号源,从而产生多路径误差。
4. 接收机误差:接收机本身的误差也会对测量结果产生影响,这包括接收机的精度、稳定性等因素。
为了降低误差,GPS测高通常会采用差分GPS技术,即通过同时测量一个已知高程点和需要测量的点的距离差来消除误差。
三、GPS测高的应用GPS测高具有广泛的应用领域,以下是一些常见的应用场景:1. 地理测绘:GPS测高可以用于制作地图、测量地表高程、绘制等高线等。
gps定位原理是什么

gps定位原理是什么GPS定位原理是什么。
GPS(全球定位系统)是一种通过卫星信号来确定地理位置的技术。
它由一组24颗卫星组成,这些卫星围绕地球轨道运行,每颗卫星都携带有原子钟和GPS接收机,能够向地面发射无线信号。
通过接收这些信号,GPS设备可以计算出自己的位置,速度和时间。
那么,GPS定位的原理是什么呢?首先,GPS定位需要至少四颗卫星的信号。
通过接收这些卫星的信号,GPS设备可以确定自己与每颗卫星的距离。
当GPS设备接收到来自卫星的信号时,它会记录下信号发射的时间,并且知道信号传播的速度是光速。
通过测量信号传播的时间差,GPS设备可以计算出自己与卫星的距离。
其次,GPS定位利用三角测量原理来确定位置。
假设我们知道自己与三颗卫星的距离,那么我们可以将自己的位置确定在三颗卫星所在的球面上。
当我们知道自己与第四颗卫星的距离时,我们可以将自己的位置确定在第四颗卫星所在的球面上。
而这两个球面的交点就是我们所在的位置。
另外,GPS定位还需要考虑时间的影响。
由于信号传播的时间非常短,所以GPS设备必须非常精确地测量信号的传播时间。
任何微小的时间误差都会导致位置计算的巨大误差。
因此,GPS设备需要使用非常精确的原子钟来测量时间,以确保定位的准确性。
最后,GPS定位还需要考虑信号的多路径效应。
当卫星信号在传播过程中遇到建筑物、树木或其他障碍物时,会产生反射和散射,导致信号的多路径传播。
这会使GPS设备接收到多个信号,从而影响位置的准确性。
为了解决这个问题,GPS设备会使用信号处理算法来滤除多路径信号,以提高定位的精度。
总的来说,GPS定位的原理是通过接收卫星信号,测量信号传播的时间和距离,利用三角测量原理确定位置,并考虑时间精度和信号多路径效应,最终计算出自己的地理位置。
这种技术已经被广泛应用在汽车导航、航空航海、地图绘制和户外运动等领域,成为现代社会不可或缺的一部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GPS测量原理及应用GIS.洋2017/12/21 Thursday目录第一章绪论 (1)1.GPS全球定位系统的建立: (2)2.GPS全球定位系统组成: (2)3.GPS系统的特点: (2)4.*GPS、GALILEO、GLONASS(P10表1-4) (3)第一章坐标系统和时间系统 (3)2.1坐标系统: (3)2.2时间系统: (4)第三章卫星运动及星历 (4)3.1无摄运动 (4)3.2受摄运动 (5)3.3GPS卫星星历 (5)第四章GPS卫星的导航电文和卫星信号 (6)4.1卫星导航电文 (6)第五章GPS卫星定位基本原理 (6)5.1GPS卫星定位的基本原理 (6)5.2定位方法 (6)5.3整周未知数No的确定 (9)5.4整周跳变的修复 (9)第七章GPS测量误差 (10)7.1 GPS测量误差源 (10)7.2与信号传播有关的误差 (10)第八章GPS测量设计与实施 (11)8.1 GPS测量的技术设计 (11)8.2 GPS测量外业准备 (13)8.3GPS测量外业实施 (13)8.4数据处理及测量结果的检核 (14)第九章GPS测量数据处理 (17)9.1数据处理 (17)第一章绪论1.GPS全球定位系统的建立:GPS:Navigation Satellite Timing and Ranging/Global Positioning System,卫星测时测距导航/全球定位系统,是以卫星为基础的无线电导航定位系统,具有全能型、全球性、全天候、连续性和实时性的导航、定位和定时的功能。
(原理:空间距离后方交汇)2.GPS全球定位系统组成:2.1 GPS卫星星座*基本参数:○1基本的卫星数为21+3(21颗工作卫星+3颗备用卫星)○2卫星轨道面的个数为6○3卫星高度为20200Km○4轨道倾角为55°○5运行周期为11h58min○6载波频率为1575.42MHZ和1227.60 MHZGPS卫星作用:1.向广大用户发送导航定位信息。
2、接收注入站发送到卫星的导航电文和其他相关信息,并通过GPS信号电路,适时的发送给广大用户。
3、接收地面主控站通过注入站发送到卫星的调度命令,适时的改正运行偏差和启用备用时钟等。
2.2地面监控系统:地面监控系统:包括1个主控站,3个注入站和5个监测站作用:1、监测和控制卫星上的设备是否正常工作,以及卫星是否一直沿着预定轨道运行。
2、保持各卫星处于同一时间。
2.3 GPS信号接收机(用户设备)3.GPS系统的特点:1、定位精度高2、观测时间短3、测站间无需通视4、可提供三维坐标5、操作简单6、全天候作业7、功能多,应用广4.*GPS、GALILEO、GLONASS(P10表1-4)注:北斗导航卫星系统(其组成:空间部分、地面控制部分和用户接收部分,其定位原理为主动式二维导航双向测距。
)第一章坐标系统和时间系统2.1坐标系统:1.坐标系必须明确:○1坐标原点的位置○2三个坐标轴的指向○3长度单位(尺度)。
2.*春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与地球赤道的交点。
在天文学和卫星大地测量学中,春分点和天球赤道面,是建立参考系的重要基准点和基准面。
3.*天球赤道面:通过地球质心并与天轴垂直的平面,称为天球赤道面。
这时天球赤道面与地球赤道面相重。
该赤道面与天球相交的大圆称为天球赤道。
4.*岁差:平北天极绕黄的运动称为岁差。
5.*章动:瞬时北天极绕顺针的转动即为章。
6.*极移:地球瞬时自转轴在地球上随时间变,称为极移。
7.WGS-84大地坐标系:WGS-84的几何定义:原地位于地球质心,Z轴指向 BIH 1984.0定义的协议地球极(CTP)方向,X轴指向BIH 1984.0的零子午面和CTP赤道的交点,Y轴与Z、X轴构成右手坐标系,其采用WGS—84椭球(基本参数:长半轴a=6378137+-2m,α=1/298.257223563,地心引力常数,地球自转角速度,正常化二阶带谐系数)。
8.国家大地坐标系:1954年北京坐标系和1980年国家大地坐标系为二维参心系、2000国家大地坐标系为三维地心系。
9.ITRF坐标框架:由空间大地测量观测站的坐标和运动速度来定义,是国际地球自转服务IERS的地面参考框架,其实质为地固坐标系,原点位于地球体系的质心,以WGS-84椭球为参考框架。
2.2时间系统:1.恒星时(ST):以春分点为差你参考点,由春分点的周日视运动所定义的时间系统。
2.平太阳时(MT):以平太阳为参考点,由平太阳的周日视运动所定义的时间系统(假设一个平太阳以真太阳周年运动的平均速度在天球赤道上作周年视运动,其周期与真太阳一致)3.世界时(UT):以平子夜为零时起算的格林尼治平太阳时。
4.原子时(ATI):以物质内部原子运动的特征为基础的时间系统。
5.协调世界时(UTC):采用原子时秒长,采用跳变的方法是协调时与世界时的时刻相接近,其差不超过一秒。
6.GPS时间系统:采用原子时ATI秒长作为时间基准,起算原点定义在1980年1月6日UTC 0时。
GPS时是用周数+周内时间(秒)来表示。
即为1980年1月6日0时0分0秒内第0周0秒。
7.时间尺度:连续运动、周期恒定、可观测、可用实验复现的周期运动。
第三章卫星运动及星历3.1无摄运动1. 无摄运动:只考虑地球质心引力作用的卫星运动称为无摄运动。
2.*卫星运动的轨道参数(开普勒轨道参数):a:椭圆的长半径e:椭圆偏心率V:真近点角(在轨道平面上卫星与近地点之间的地心角距)Ω:升交点的赤径(在地球轨道平面上,升交点N与春分点γ之间的地心夹角)τ:轨道面倾角(卫星轨道面与赤道面之间的夹角)ω:近地点角距(在轨道平面上近地点A与升交点N之间的地心角距)3. 开普勒定律:开普勒第一定律:卫星运行的轨道是一个椭圆,而该椭圆的一个焦点与地球的质心相重合。
开普勒第二定律:卫星的地心向径,即地球质心与卫星质心间的距离向量,在相同的时间内所扫过的面积相等。
开普勒第三定律:卫星运动周期的平方与轨道椭圆长半径的立方之比为一常量,而该常量等于地球引力常数GM的倒数。
3.2受摄运动1.受摄运动:考虑摄动力(地球引力场摄动力、日月摄动力、大气阻力、太阳辐射压力等)作用的卫星运动称为受摄运动。
3.3GPS卫星星历1.卫星星历:描述卫星运动轨道的信息,一组对应某一时刻的轨道参数及其变率,其分为广播星历(预报星历)和精密星历。
2.*广播星历:通常包括相对某一参考历元的开普勒轨道参数和必要的轨道摄动改正项参数,广播星历参数共有16个,包括1个参考时刻toe,6个对应参考时刻的开普勒轨道参数和9个反映摄动力影响的参数,其格式为RINIX。
3.精密星历:一些国家某些部门,根据各自建立的卫星跟踪站所获得的对GPS卫星的精密观测资料,应用与确定广播星历相似的方法而计算的卫星星历。
第四章GPS卫星的导航电文和卫星信号4.1卫星导航电文1.卫星导航电文:是用户用来定位和导航的数据基础。
它主要包括:卫星星历、时钟改正、电离层延迟改正、工作状态信息C/A码转换到捕获P码。
2.GPS卫星信号:是用于导航定位的调制波,它包含有:载波、距码和数据码。
3.调制:将频率较低的信号加载在频率较高的载波上的过程。
第五章GPS卫星定位基本原理5.1GPS卫星定位的基本原理原理:将无线电信号发射台从地面点搬到卫星上,组成卫星导航定位系统,应用无线电测距交会原理,便可由三个以上地面已知点(控制站)交会出卫星的位置,反之利用三颗以上卫星的已知空间位置又可交会出地面未知点(用户接收机)的位置。
5.2定位方法1. 依据测距的原理:伪距测量法定位,载波相位测量定位和差分GPS定位等。
○1伪距测量法:由GPS接收机在哦某一时刻测出得到四颗以上GPS卫星的位居及已知的卫星位置,采用距离交会的方法求定接收机天线所在点的三维坐标。
(所测伪距就是有卫星发射的测距码信号到达接收机的传播时间乘以光速所得的量测值。
伪距观测方程:○2载波相位测量:测量接收机接收到的、具有多普勒频移的载波信号,与接收机产生的参考载波信号之间的相位差。
载波相位观测方程:○3差分GPS定位原理(单站GPS差分、区域差分、广域差分)定义:利用设置在坐标已知的点(基准站)上的GPS接收机测定GPS测量定位误差,用以提高在一定范围内其它GPS接收机测量定位精度的方法。
原理:将一台GPS接收机安置在基准站上进行观测,根据基准站已知精密坐标,计算出基准站到卫星的距离改正数,并由基准站实时地将这一改正数发送出去。
用户接收机·在进行GPS观测的同时,也接收到基准站的改正数,并对其定位结果进行改正,进而提高精度。
GPS差分的类型:单站差分(位置差分、伪距差分、载波相位差分)、局域差分、广域差分。
补充:多基站RTK技术(网络RTK)------基于多基站网络的实时差分定位系统,其基础是建立多个GPS基准站,即建立多个基准站连续运行卫星定位导航系统(CORS) CORS系统组成:○1连续运行的GPS基准站○2数据处理控制中心○3数据传输与发播系统○4移动站(用户):双差相位观测可达厘米级;静态相对定位可获取毫米级三维坐标。
2.根据运动状态:静态定和动态定位*静态定位:对于固定不动的待定点,将GPS接收机安置与其上测,观测数分钟乃至更长的时间,以确定待定点坐标。
*动态定位:至少有一台接收机处于运动状态,测定的是各观测时刻(观测历元)运动中的接收机的点位。
3.*相对定位:至少用两台GPS接收机,同步观测相同的GPS卫星,确定两台接收机天线之间的相对位置。
4. *绝对定位(单点定位):用GPS卫星和用户接收机之间的距离观测值直接确定用户接收机天线在WGS-84坐标系中相对于坐标原点-----地球质心的绝对位置。
5.*静态绝对定位:接收机天线处于静止状态下,确定观测站坐标的方法。
6.*动态绝对定位:在用户接收机安置在运动的载体上并处于动态情况下,确定载体瞬时绝对位置的定位方法。
8.绝对定位精度的评价(精度因子)○1平面位置精度因子HDOP ○2高程精度因子VDOP○3空间位置精度因子PDOP ○4接收机钟差精度因子TDOP ○5几何精度因子GDOP注:精度因子的数值与所测卫星的几何分布图形有关。
假设由观测站与四颗观测卫星所构成的六面体体积为V,则精度因子GDOP与该六面体体积V的倒数成正比(GDOP ∝~1/V)9.观测值的线性组合(单差S、双差D、三差T)○1单差S:将载波相位观测值直接相减求一次差过程。
作用:可以消除与卫星有关的载波相位及其钟差项,削弱大部分对流层、电离层影响。
SD12j(t i)=φp2j (t i)−φp1j (t i)○2双差D:对一次差分观测值继续求差,所得的结果仍可以当作虚拟观测值。