高考数学专题19

合集下载

专题19 解决立体几何中的计算问题-2021年高考数学二轮复习核心考点微专题(苏教版)(原卷版)

专题19 解决立体几何中的计算问题-2021年高考数学二轮复习核心考点微专题(苏教版)(原卷版)

1.如图,直三棱柱ABCA1B1C1中,AB=1,BC=2,AC=5,AA1=3,M为线段B1B上的一动点,则当AM +MC1最小时,△AMC1的面积为________.2.如图,在直三棱柱ABCA1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点.当AD+DC1最小时,三棱锥D-ABC1的体积为________.(1) 若D为线段AC的中点,求证:AC⊥平面PDO;(2) 求三棱锥P-ABC体积的最大值;(3) 若BC=2,点E在线段PB上,求CE+OE的最小值.4.如图,在棱长为4的正方体ABCDA 1B 1C 1D 1中,E ,F 分别为棱AA 1,D 1 C 1上的动点,点G 为正方形B 1BCC 1的中心,则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为________.【考向分析】有关立体几何体的计算,是历年高考中命题的重点和难点,几乎每年都考,考查题目巧妙、灵活、新颖.近几年高考立体几何体计算除了通常的题型外,还有几何体的组合问题、翻折问题、以生活实际为背景的问题、融入数学文化的问题等渐成为亮点,集中考查距离、表面积、体积等计算问题.这类问题题目新颖,能够考查空间想象能力与思维能力(一)立体几何中关于面积计算的问题变式1 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.变式2 正三棱锥S -ABC 中,BC =2,SB =3,D ,E 分别是棱SA ,SB 上的点,Q 为边AB 的中点,SQ ⊥平面CDE ,则△CDE 的面积为________.(二)立体几何中关于体积计算的问题例2. 已知棱长为3的正方体ABCD -A 1B 1C 1 D 1中,P ,M 分别为线段BD 1,B 1C 1上的点,若BP PD 1=12,则三棱锥M-PBC的体积为________.变式1如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别在边CD,CB上,点E与点C,D 不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(1) 求证:BD⊥平面POA;(2) 当PB取得最小值时,求四棱锥P-BDEF的体积.变式2如图,在圆柱O1,O2内有一个球O,该球与圆柱的上、下面及母线均相切,记圆柱O1,O2的体积为V1,球O的体积为V2,则V1V2的值是________.(三)以实际生活为背景的立体几何问题例3.将一个半径为5 cm的水晶球放在如图所示的工艺支架上,支架是由三根细金属杆P A,PB,PC组成,它们两两成60°角,则水晶球的球心到支架顶点P的距离是________cm.变式1如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥,当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为________.变式2《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有________斛.(保留两位有效数字)3.在三棱锥S-ABC中,底面ABC是边长为3的等边三角形,SA⊥SC,SB⊥SC,SA=SB=2, 则该三棱锥的体积为________.4.如图,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD 沿BD折起,使平面ABD⊥平面BDC,E,F分别为棱AC,AD的中点.(1) 求证:DC⊥平面ABC;(2) 设CD=a,求三棱锥A-BFE的体积.1.已知正四棱锥的底面边长是6,高为7,则这个正四棱锥的侧面积是________.2.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则三棱锥A -B 1D 1D 的体积为______ cm 3.3.已知一个圆锥的底面积为2π,侧面积为4π,则该圆锥的体积为________.4.如图,已知正三棱柱ABCA 1B 1C 1的底面边长为2 cm ,高为5 cm ,一质点自点A 出发,沿着三棱柱的侧面绕行两周到点A 1点的最短路线的长为________cm.5. 若正四面体的棱长为a ,则其外接球的表面积为多少?6. 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 7. 如图,在矩形ABCD 中,AD =2,AB =4,E ,F 分别为边AB ,AD 的中点,现将△ADE 沿DE 折起,得四棱锥ABCDE .(1) 求证:EF //平面ABC ;(2)若平面ADE ⊥平面BCDE ,求四面体FDCE 的体积.8. 如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB, AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.9. 一个长方体的三条棱长分别为3,8,9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为________.10.一块边长为10 cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P为顶点,加工成一个如图所示的正四棱锥形容器,当x=6 cm时,该容器的容积为________cm3.11.(1) 给出两块面积相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等.请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明.(2) 试比较你剪拼的正三棱锥与正三棱柱的体积的大小.(3) 如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.12.如图,已知正方体ABCD -A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围________.。

2022年高考数学解三角形知识点专项练习含答案

2022年高考数学解三角形知识点专项练习含答案

专题19 解三角形一、单选题(本大题共10小题,共50分)1.在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosC=b,则△ABC的形状是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形2.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5√3,CD=5,BD=2AD,则AD的长为()A. 4B. 5C. 6D. 73.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A. 10√3海里B. 10√63海里 C. 5√2海里 D. 5√6海里4.在△ABC中,内角A、B、C所对的边分别为a、b、c,若角A、C、B成等差数列,角C的角平分线交AB于点D,且CD=√3,a=3b,则c的值为()A. 3B. 72C. 4√73D. 2√35.如图,要测量电视塔AB的高度,在C点测得塔顶A的仰角是π4,在D点测得塔顶A的仰角是π6,水平面上的,则电视塔AB的高度为()mA. 20B. 30C. 40D. 506.为测出小区的面积,进行了一些测量工作,所得数据如图所示,则小区的面积为( )A.B. 3−√64km2C.D. 6−√34km27.已知直三棱柱ABC−A1B1C1的底面是正三角形,AB=2√3,D是侧面BCC1B1的中心,球O与该三棱柱的所有面均相切,则直线AD被球O截得的弦长为()A. √1010B. √105C. 3√1010D. 3√1058.在△ABC中,角A,B,C所对的边分别为a,b,c,若直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰或者直角三角形9.海伦不仅是古希腊的数学家,还是一位优秀的测绘工程师.在他的著作《测地术》中最早出现了已知三边求三角形面积的公式,即著名的海伦公式S=√p(p−a)(p−b)(p−c),这里p=12(a+b+c),a,b,c分别为▵ABC的三个角A,B,C所对的边,该公式具有轮换对称的特点,形式很美.已知▵ABC中,p=12,c=9,cosA=23,则该三角形内切圆半径()A. √2B. √3C. √10D. √510.在ΔABC中,若1sinA +1sinB=2(1tanA+1tanB),则()A. C的最大值为π3B. C的最大值为2π3C. C的最小值为π3D. C的最小值为π6二、单空题(本大题共4小题,共20分)11.如图,在离地面高200m的热气球上,观测到山顶C处的仰角为15∘、山脚A处的俯角为45∘,已知∠BAC=60∘,则山的高度BC为______m.12. 在四边形ABCD 中,AB =6,BC =CD =4,DA =2,则四边形ABCD 的面积的最大值是______.13. 海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B 两点间的距离,现在珊瑚群岛上取两点C,D ,测得CD =45m ,∠ADB =135∘,∠BDC =∠DCA =15∘,∠ACB =120∘,则AB 两点的距离为______.14. 如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,若测得CD =4 km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离是_______km .三、解答题(本大题共4小题,共30分)15. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且ccosB +bcosC =3acosB .(1)求cos B 的值;(2)若|CA ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=2,△ABC 的面积为2√2,求边b .16. 在①2acosC +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sinB +sinC)2=sin 2A +3sinBsinC 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 . (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.17. 设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m⃗⃗⃗ =(cos C2,sin C2),n ⃗ =(cos C2,−sin C2),m ⃗⃗⃗ 与n ⃗ 的夹角为π3. (1)求角C 的大小;(2)已知c =72,△ABC 的面积S =3√32,求a +b 的值.18. 某农场有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,为迎接“五一”观光游,欲在边界BC 上选择一点P ,修建观赏小径PM 、PN ,其中M 、N 分别在边界AB 、AC 上,小径PM 、PN 与边界BC 的夹角都为60°,区域PMB 和区域PNC 内种植郁金香,区域AMPN 内种植月季花.(1)探究:观赏小径PM 与PN 的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区域内修建小径MN,当P点在何处时,三条小径(PM、PN、MN)的长度和最小?专题19 解三角形一、单选题(本大题共10小题,共50分)19.在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosC=b,则△ABC的形状是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形【答案】C解:∵b=2acosC,∴由正弦定理得sinB=2sinAcosC,∵B=π−(A+C),∴sin(A+C)=2sinAcosC,则sinAcosC+cosAsinC=2sinAcosC,sinAcosC−cosAsinC=0,即sin(A−C)=0,∵A、C∈(0,π),∴A−C∈(−π,π),则A−C=0,∴A=C,∴△ABC是等腰三角形.故选:C.20.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5√3,CD=5,BD=2AD,则AD的长为()A. 4B. 5C. 6D. 7【答案】B【解析】解:设AD=t,可得BD=2t,BC=√4t2−25,在直角三角形BCD中,可得cosB=√4t2−252t,在三角形ABC中,可得cosB=222⋅3t⋅√4t2−25,即为√4t2−252t =222⋅3t⋅√4t2−25,即2(4t2−25)=9t2−75,解得t=5,可得AD=5,故选:B.21.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A. 10√3海里B. 10√63海里 C. 5√2海里 D. 5√6海里【答案】D【解析】解:由题意可得,A=60°,B=75°,∠C=180°−60°−75°=45°根据正弦定理可得,BCsin60°=ABsin45°∴BC=10×√32√22=5√6故选D.22.在△ABC中,内角A、B、C所对的边分别为a、b、c,若角A、C、B成等差数列,角C的角平分线交AB于点D,且CD=√3,a=3b,则c的值为()A. 3B. 72C. 4√73D. 2√3【答案】C【解析】解:由题意,得由S△ABC=S△ACD+S△BCD,得,所以ab=a+b,(b=0舍去),所以3b2=4b,解得b=43故a=3b=4,故c=√a2+b2−2ab·cosC=4√73故选C.23.如图,要测量电视塔AB的高度,在C点测得塔顶A的仰角是π,在D点测得塔顶A4的仰角是π,水平面上的,则电视塔AB的高度为6()mA. 20B. 30C. 40D. 50【答案】A【解析】解:由题题意,设AB=x,则BD=√3x,BC=x在△DBC中,∠BCD=60°,CD=40,∴根据余弦定理,得BD2=BC2+CD2−2BC⋅CD⋅cos∠DCB即:(√3x)2=(40)2+x2−2×40⋅x⋅cos60°整理得x2+20x−800=0,解之得x=−40(舍去)或x=20即所求电视塔的高度为20米.故选A.24.为测出小区的面积,进行了一些测量工作,所得数据如图所示,则小区的面积为( )A.B. 3−√6km24C.D. 6−√34km2【答案】D【解析】解:如图连接AC,根据余弦定理可得AC2=AB2+BC2−2AB×BCcosB=3,即AC=√3,由于AC2+BC2=AB2,所以∠ACB=90°,∠BAC=30°,所以∠DAC=45°−30°=15°,∠DCA=105°−90°=15°,所以∠DAC=∠DCA所以△ADC为等腰三角形,设AD=DC=x,∠D=150°,由余弦定理x2+x2+√3x2=3⇒x2=3(2−√3),故所求面积为12×1×√3+12×3(2−√3)×12=6−√34.故选D.25.已知直三棱柱ABC−A1B1C1的底面是正三角形,AB=2√3,D是侧面BCC1B1的中心,球O与该三棱柱的所有面均相切,则直线AD被球O截得的弦长为()A. √1010B. √105C. 3√1010D. 3√105【答案】D【解析】解:因为球O与直三棱柱ABC−A1B1C1的所有面均相切,且直三棱柱ABC−A1B1C1的底面是正三角形,所以球心O为该三棱柱上、下底面三角形重心连线的中点,如图所示,设球O的球心为O,底面三角形ABC的重心为O′,连接OO′,则OO′⊥底面ABC.设BC的中点为E,连接AE,易知点O′在AE上,连接OD、DE,因为D是侧面BB1C1C的中心,所以四边形OO′ED为正方形,设球O的半径为r,则由AB=2√3,可得r=2√3×√32×13=1,易得AD=√3√32)=√10,连接OA,可得OA=√23)=√5,∴cos ∠ADO=DO2+AD2−AO22⋅DO⋅AD =3√1010,故所求弦长为2r⋅cos ∠ADO=3√105.故选D.26.在△ABC中,角A,B,C所对的边分别为a,b,c,若直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰或者直角三角形【答案】C【解析】解:∵直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,∴ba =cosAcosB,解得bcosB=acosA,∴利用余弦定理可得:b×a2+c2−b22ac =a×b2+c2−a22bc,整理可得:c2(b2−a2)=(b2+a2)(b2−a2),∴解得:c2=a2+b2或b=a,而当a=b时,两直线重合,不满足题意;则△ABC是直角三角形.故选C.27.海伦不仅是古希腊的数学家,还是一位优秀的测绘工程师.在他的著作《测地术》中最早出现了已知三边求三角形面积的公式,即著名的海伦公式S=√p(p−a)(p−b)(p−c),这里p=12(a+b+c),a,b,c分别为▵ABC的三个角A,B,C所对的边,该公式具有轮换对称的特点,形式很美.已知▵ABC中,p=12,c=9,cosA=23,则该三角形内切圆半径()A. √2B. √3C. √10D. √5【答案】D【解析】解:因为p=12(a+b+c),所以a+b+c=2p,因为p=12,c=9,所以a+b=15,三角形的内切圆半径r=2Sa+b+c,由余弦定理得cos A=b2+c2−a2 2bc =23,所以(b−a)(b+a)+81=12b,即b−5a=−27,所以a=7,b=8,所以S=√p(p−a)(p−b)(p−c)=√12×(12−7)(12−8)(12−9)=12√5,所以r=√5,故选D28.在ΔABC中,若1sinA +1sinB=2(1tanA+1tanB),则()A. C的最大值为π3B. C的最大值为2π3C. C的最小值为π3D. C的最小值为π6【答案】A【解析】解:因为1sin A +1sin B=2(1tan A+1tan B),所以1sin A +1sin B=2(cosAsinA+cosBsin B),所以sin A+sin Bsin Asin B =2·(sin BcosA+cosBsinA)sin Asin B=2·sin(A+B)sin Asin B =2·sinCsin Asin B,所以sinA+sinB=2sinC,由正弦定理得到:a+b=2c,所以cosC=a2+b2−c22ab =a2+b2−(a+b2)22ab=34a2+34b2−12ab2ab⩾34·2ab−12ab2ab=12,当且仅当a=b时“=”成立,所以,则C的最大值为π3.故选A.二、单空题(本大题共4小题,共20分)29.如图,在离地面高200m的热气球上,观测到山顶C处的仰角为15∘、山脚A处的俯角为45∘,已知∠BAC=60∘,则山的高度BC为______m.【答案】300【解析】解:根据题意,可得Rt△AMD中,∠MAD=45°,MD=200,∴AM=MDsin45°=200√2.∵△MAC中,∠AMC=45°+15°=60°,∠MAC=180°−45°−60°=75°,∴∠MCA=180°−∠AMC−∠MAC=45°,由正弦定理,得AC=MAsin∠AMCsin∠MCA =200√2×√32√22=200√3,在Rt△ABC中,BC=ACsin∠BAC=200√3×√32=300m.故答案为300.30.在四边形ABCD中,AB=6,BC=CD=4,DA=2,则四边形ABCD的面积的最大值是______.【答案】8√3【解析】解:如图所示,AB=6,BC=CD=4,DA=2,设BD=x,在△ABD中,由余弦定理可得x2=22+62−2×2×6cosA=40−24cosA,在△BCD中,由余弦定理可得x2=32−32cosC,联立可得3cosA−4cosC=1,①又四边形ABCD面积S=12×4×4sinC+12×2×6sinA,即4sinC+3sinA=12S,②①2+②2可得9+16+24(sinAsinC−cosAcosC)=1+14S2,化简可得−24cos(A+C)=14S2−24,由于−1≤cos(A+C)≤1,∴−24≤14S2−24≤24,∴0≤S2≤192,解得S≤8√3,当cos(A+C)=−1即A+C=π时取等号,∴S的最大值为8√3.故答案为:8√3.31.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B两点间的距离,现在珊瑚群岛上取两点C,D,测得CD=45m,∠ADB=135∘,∠BDC=∠DCA=15∘,∠ACB=120∘,则AB两点的距离为______.【答案】45√5【解析】解:易知在△ACD中,∠DAC=180°−∠ADB−∠BDC−∠ACD=15°,∴△ACD为等腰三角形,则AD=CD=45,在△BCD中,∠CBD=180°−∠BDC−∠ACD−∠ACB=30°,∠BCD=120°+15°= 135°,所以由正弦定理得,即45sin30°=BDsin135°,得BD=45√2,在△ABD中,由余弦定理得=452+(45√2)2−2×45×45√2×(−√22)=452×5,所以AB=45√5,即A,B两点的距离为45√5,故答案为45√5.32.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D,若测得CD=4km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离是_______km.【答案】2√2【解析】由于CD=4km,∠ADB=∠CDB=30∘,∠ACD=60∘,∠ACB=45∘,所以∠DAC=180°−30°−30°−60°=60°,∠DBC=180°−30°−60°−45°=45°,在三角形ADC 中,由正弦定理得4sin∠DAC =ADsin∠ACD ,所以AD =4sin60°sin60°=4,在三角形BCD 中,由正弦定理得BDsin∠BCD =4sin∠DBC , 所以BD =4×sin(60°+45°)sin45°=2√3+2,在三角形ABD 中由余弦定理得到AB 2=42+(2√3+2)2−2×4×(2√3+2)cos30°=8, 所以AB =2√2, 故答案为2√2.三、解答题(本大题共4小题,共30分)33. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且ccosB +bcosC =3acosB .(1)求cos B 的值;(2)若|CA⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=2,△ABC 的面积为2√2,求边b . 【答案】解:(1)由正弦定理asinA =bsinB =csinC , 即ccosB +bcosC =3acosB ,得sinCcosB +sinBcosC =3sinAcosB ,则有3sinAcosB =sin(B +C)=sin(π−A)=sinA . 又A ∈(0,π),则sinA >0,则.(2)因为B ∈(0,π),则sinB >0,.因为|CA ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=|BA ⃗⃗⃗⃗⃗ |=c =2,所以S =12acsinB =12a ×2×2√23=2√2,得a =3.由余弦定理,则b =3.34. 在①2acosC +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sinB +sinC)2=sin 2A +3sinBsinC 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 . (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值. 【答案】解:(1)选①,由正弦定理得2sin Acos C +sin C =2sin B ,所以2sin Acos C +sin C =2sin (A +C)=2(sin Acos C +cos Asin C),即sin C(2cos A −1)=0,又C ∈(0,π),所以sin C >0,所以cos A =12,又A ∈(0,π),从而得A =π3. 选②,因为cos 2 B−C 2−cosBcosC =1+cos (B−C )2−cosBcosC=1−cosBcosC+sinBsinC2=1−cos(B+C)2=34,所以cos(B +C)=−12,cosA =−cos(B +C)=12,又因为A ∈(0,π),所以A =π3. 选③因为(sinB +sinC)2=sin 2A +3sinBsinC , 所以sin 2B +sin 2C +2sinBsinC =sin 2A +3sinBsinC , 即sin 2B +sin 2C −sin 2A =sinBsinC , 所以由正弦定理得b 2+c 2−a 2=bc ,由余弦定理知cosA =b 2+c 2−a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)得A =π3,又a =2,由余弦定理得a 2=b 2+c 2−2bccos A =b 2+c 2−bc ⩾2bc −bc =bc , 所以bc ⩽4,当且仅当b =c =2时取得等号,,所以△ABC 面积的最大值为√3.35. 设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m ⃗⃗⃗ =(cos C2,sin C2),n ⃗ =(cos C2,−sin C2),m ⃗⃗⃗ 与n ⃗ 的夹角为π3. (1)求角C 的大小;(2)已知c =72,△ABC 的面积S =3√32,求a +b 的值.【答案】解:(1)由已知,得.又∵|m⃗⃗⃗ |=|n ⃗ |=1, .又∵0<C <π,∴C =π3.(2)由面积公式,得由余弦定理,得c 2=a 2+b 2−2abcosC , 即494=a 2+b 2−ab.② ①②联立,解得a +b =112.36. 某农场有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,为迎接“五一”观光游,欲在边界BC 上选择一点P ,修建观赏小径PM 、PN ,其中M 、N 分别在边界AB、AC上,小径PM、PN与边界BC的夹角都为60°,区域PMB和区域PNC内种植郁金香,区域AMPN内种植月季花.(1)探究:观赏小径PM与PN的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区域内修建小径MN,当P点在何处时,三条小径(PM、PN、MN)的长度和最小?【答案】解:(1)在三角形BPM中由正弦定理可得:PM sin45∘=PBsin75∘,化简得PM=(√3−1)PB,同理可得PN=(√3−1)PC,∴PM+PN=(√3−1)(PB+PC)=(√3−1)BC=(√3−1)×400为定值.(2)在三角形PMN中,由余弦定理得MN2=PM2+PN2−2PM⋅PNcos60°=(PM+ PN)2−3PM⋅PN=160000(√3−1)2−3PM⋅PN≥160000(√3−1)2−3×(PM+PN2)2=160000(√3−1)2−3×[400(√3−1)2]2=40000(√3−1)2,∴MN≥200(√3−1),当且仅当PM=PN,即P为BC的中点时,MN取得最小值200(√3−1),∴P为BC的中点时,三条小径(PM、PN、MN)的长度和最小,且最小值为600(√3−1).。

高考数学二轮复习考点知识与题型专题讲解19---三角恒等变换与解三角形

高考数学二轮复习考点知识与题型专题讲解19---三角恒等变换与解三角形

高考数学二轮复习考点知识与题型专题讲解第19讲 三角恒等变换与解三角形[考情分析] 1.三角恒等变换主要考查化简、求值,解三角形主要考查求边长、角度、面积等,三角恒等变换作为工具,将三角函数与三角形相结合考查求解最值、范围问题.2.三角恒等变换以选择题、填空题为主,解三角形以解答题为主,中等难度.考点一 三角恒等变换 核心提炼1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β;(2)cos(α±β)=cos αcos β∓sin αsin β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)tan 2α=2tan α1-tan 2α.例1 (1)(2022·新高考全国Ⅱ)若sin(α+β)+cos(α+β)=22cos ⎝⎛⎭⎫α+π4sin β,则() A .tan(α-β)=1B .tan(α+β)=1C .tan(α-β)=-1D .tan(α+β)=-1答案 C解析 由题意得sin αcos β+cos αsin β+cos αcos β-sin αsin β=22×22(cos α-sin α)sin β,整理,得sin αcos β-cos αsin β+cos αcos β+sin αsin β=0,即sin(α-β)+cos(α-β)=0,所以tan(α-β)=-1.(2)(2021·全国甲卷)若α∈⎝⎛⎭⎫0,π2,tan 2α=cos α2-sin α,则tan α等于( ) A.1515 B.55 C.53 D.153答案 A解析 方法一因为tan 2α=sin 2αcos 2α=2sin αcos α1-2sin 2α, 且tan 2α=cos α2-sin α, 所以2sin αcos α1-2sin 2α=cos α2-sin α,解得sin α=14. 因为α∈⎝⎛⎭⎫0,π2, 所以cos α=154,tan α=sin αcos α=1515. 方法二 因为tan 2α=2tan α1-tan 2α=2sin αcos α1-sin 2αcos 2α=2sin αcos αcos 2α-sin 2α=2sin αcos α1-2sin 2α, 且tan 2α=cos α2-sin α, 所以2sin αcos α1-2sin 2α=cos α2-sin α,解得sin α=14. 因为α∈⎝⎛⎭⎫0,π2, 所以cos α=154,tan α=sin αcos α=1515. 规律方法 三角恒等变换的“4大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等;(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降幂与升幂:正用二倍角公式升幂,逆用二倍角公式降幂;(4)弦、切互化:一般是切化弦.跟踪演练1 (1)(多选)(2022·张家口模拟)已知sin θcos θ+3cos 2θ=cos θ+32,θ∈⎝⎛⎭⎫0,π2,则θ等于( ) A.π3 B.π6 C.π12 D.π18答案 BD解析 sin θcos θ+3cos 2θ =12sin 2θ+3×1+cos 2θ2=cos ⎝⎛⎭⎫2θ-π6+32=cos θ+32, 故cos ⎝⎛⎭⎫2θ-π6=cos θ, 所以2θ-π6=θ+2k π或2θ-π6=-θ+2k π(k ∈Z ), 故θ=π6+2k π或θ=π18+2k π3(k ∈Z ). 又θ∈⎝⎛⎭⎫0,π2,所以θ=π6或π18. (2)已知函数f (x )=sin x -2cos x ,设当x =θ时,f (x )取得最大值,则cos θ=________.答案 -255解析 f (x )=sin x -2cos x =5sin(x -φ),其中cos φ=55,sin φ=255, 则f (θ)=5sin(θ-φ)=5,因此θ-φ=π2+2k π,k ∈Z ,则cos θ=cos ⎝⎛⎭⎫φ+π2+2k π=-sin φ=-255. 考点二 正弦定理、余弦定理核心提炼1.正弦定理:在△ABC 中,a sin A =b sin B =c sin C=2R (R 为△ABC 的外接圆半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ,sin A =a 2R ,sin B =b 2R ,sin C =c 2R ,a ∶b ∶c =sin A ∶sin B ∶sin C 等.2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc . 3.三角形的面积公式:S =12ab sin C =12ac sin B =12bc sin A .例2 (1)(2022·济南模拟)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin 2A =a sin B ,且c =2b ,则a b等于( ) A .3 B.13 C.33D. 3 答案 D解析 因为b sin 2A =a sin B ,所以2b sin A cos A =a sin B ,利用正弦定理可得2ab cos A =ab , 所以cos A =12,又c =2b , 所以cos A =b 2+c 2-a 22bc =b 2+4b 2-a 24b 2=12, 解得a b= 3.(2)(2022·全国乙卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin(A -B )=sin B sin(C -A ).①证明:2a 2=b 2+c 2;②若a =5,cos A =2531,求△ABC 的周长. ①证明 方法一由sin C sin(A -B )=sin B sin(C -A ),可得sin C sin A cos B -sin C cos A sin B=sin B sin C cos A -sin B cos C sin A ,结合正弦定理a sin A =b sin B =c sin C, 可得ac cos B -bc cos A =bc cos A -ab cos C ,即ac cos B +ab cos C =2bc cos A (*).由余弦定理可得ac cos B =a 2+c 2-b 22, ab cos C =a 2+b 2-c 22,2bc cos A =b 2+c 2-a 2, 将上述三式代入(*)式整理,得2a 2=b 2+c 2.方法二 因为A +B +C =π,所以sin C sin(A -B )=sin(A +B )sin(A -B )=sin 2A cos 2B -cos 2A sin 2B=sin 2A (1-sin 2B )-(1-sin 2A )sin 2B=sin 2A -sin 2B ,同理有sin B sin(C -A )=sin(C +A )sin(C -A )=sin 2C -sin 2A .又sin C sin(A -B )=sin B sin(C -A ),所以sin 2A -sin 2B =sin 2C -sin 2A ,即2sin 2A =sin 2B +sin 2C ,故由正弦定理可得2a 2=b 2+c 2.②解 由①及a 2=b 2+c 2-2bc cos A 得,a 2=2bc cos A ,所以2bc =31.因为b 2+c 2=2a 2=50,所以(b +c )2=b 2+c 2+2bc =81,得b +c =9,所以△ABC 的周长l =a +b +c =14.规律方法 正、余弦定理的适用条件(1)“已知两角和一边”或“已知两边和其中一边的对角”应采用正弦定理.(2)“已知两边和这两边的夹角”或“已知三角形的三边”应采用余弦定理.注意:应用定理要注意“三统一”,即“统一角、统一函数、统一结构”.跟踪演练2 (1)在△ABC 中,若cos C =79,b cos A +a cos B =2,则△ABC 外接圆的面积为() A.49π8 B.81π8 C.81π49 D.81π32答案 D解析 根据正弦定理可知b =2R sin B ,a =2R sin A ,得2R sin B cos A +2R sin A cos B=2R sin(A +B )=2,因为sin(A +B )=sin(π-C )=sin C =1-cos 2C =429,所以R =928,所以△ABC 外接圆的面积S =πR 2=81π32.(2)(2022·衡水中学模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且tan A tan B =2c -bb .①求角A 的大小;②若a =2,求△ABC 面积的最大值及此时边b ,c 的值.解 ①在△ABC 中,由正弦定理得,c =2R sin C ,b =2R sin B ,则tan A tan B =2c b -1=2sin C sin B -1,tan A tan B +1=2sin C sin B, 化简得cos A sin B +sin A cos B =2sin C cos A .即sin(A +B )=2sin C cos A ,∵A +B =π-C ,∴sin(A +B )=sin C ≠0,∴cos A =12, ∵0<A <π,∴A =π3. ②由余弦定理得a 2=b 2+c 2-2bc cos A ,又A =π3,∴b 2+c 2-bc =4, 又b 2+c 2≥2bc ,∴bc ≤4,则S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立, ∴△ABC 面积的最大值为3,此时b =2,c =2.考点三 解三角形的实际应用核心提炼解三角形应用题的常考类型(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.例3 (1)滕王阁,位于江西省南昌市西北部沿江路赣江东岸,始建于唐朝永徽四年,因唐代诗人王勃的诗句“落霞与孤鹜齐飞,秋水共长天一色”而流芳后世.如图,小明同学为测量滕王阁的高度,在滕王阁的正东方向找到一座建筑物AB ,高为12 m ,在它们的地面上的点M (B ,M ,D 三点共线)测得楼顶A 、滕王阁顶部C 的仰角分别为15°和60°,在楼顶A 处测得滕王阁顶部C 的仰角为30°,则小明估算滕王阁的高度为(精确到1 m)()A .42 mB .45 mC .51 mD .57 m答案 D解析 由题意得,在Rt △ABM 中,AM =AB sin 15°, 在△ACM 中,∠CAM =30°+15°=45°,∠AMC =180°-15°-60°=105°,所以∠ACM =30°,由正弦定理得AM sin ∠ACM =CM sin ∠CAM, 所以CM =sin ∠CAM sin ∠ACM·AM =2AB sin 15°, 又sin 15°=sin(45°-30°) =22×32-22×12=6-24, 在Rt △CDM 中,CD =CM sin 60°=6AB 2sin 15°=1262×6-24=36+123≈57(m). (2)雷达是利用电磁波探测目标的电子设备,电磁波在大气中大致沿直线传播,受地球表面曲率的影响,雷达所能发现目标的最大直视距离L =(R +h 1)2-R 2+(R +h 2)2-R 2=2Rh 1+h 21+2Rh 2+h 22(如图),其中h 1为雷达天线架设高度,h 2为探测目标高度,R 为地球半径.考虑到电磁波的弯曲、折射等因素,R等效取8 490 km,故R远大于h1,h2.假设某探测目标高度为25 m,为保护航母的安全,须在直视距离412 km外探测到目标,并发出预警,则舰载预警机的巡航高度至少约为(参考数据:2×8.49≈4.12)()A.6 400 m B.8 100 mC.9 100 m D.1 000 m答案 C解析根据题意可知L=412 km,R=8 490 km,h2=0.025 km,因为L=(R+h1)2-R2+(R+h2)2-R2=2Rh1+h21+2Rh2+h22,即412=(8 490+h1)2-8 4902+(8 490+0.025)2-8 4902≈(8 490+h1)2-8 4902+20.6,解得h1≈9.02(km)≈9 100(m).所以舰载预警机的巡航高度至少约为9 100 m.规律方法解三角形实际问题的步骤跟踪演练3(1)如图,已知A,B,C,D四点在同一条直线上,且平面P AD与地面垂直,在山顶P点测得点A ,C ,D 的俯角分别为30°,60°,45°,并测得AB =200 m ,CD =100 m ,现欲沿直线AD 开通穿山隧道,则隧道BC 的长为()A .100(3+1)mB .200(3+1)mC .200 3 mD .100 3 m答案 C解析 由题意可知A =30°,D =45°,∠PCB =60°,所以∠PCD =120°,∠APC =90°,∠DPC =15°,因为sin 15°=sin(45°-30°) =22×32-22×12=6-24, 所以在△PCD 中,由正弦定理得CD sin ∠DPC =PC sin D, 即1006-24=PC 22, 解得PC =100(3+1)m ,所以在Rt △P AC 中,AC =2PC =200(3+1)m ,所以BC =AC -AB =2003(m).(2)如图是建党百年展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).现分别从地面上的两点A ,B 测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =60 2 米,则OP 等于( )A.40米B.30米C.30 2 米D.30 3 米答案 C解析如图所示,设OP=h,由题意知∠OAP=30°,∠OBP=45°.在Rt△AOP中,OA=OPtan 30°=3h,在Rt△BOP中,OB=h.在△ABO中,由余弦定理,得OA2=AB2+OB2-2AB·OB cos 60°,代入数据计算得到h=302(米).即OP=302(米).专题强化练一、单项选择题1.(2021·全国甲卷)在△ABC中,已知B=120°,AC=19,AB=2,则BC等于() A.1 B. 2 C. 5 D.3答案 D解析 由余弦定理AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC 2+2BC -15=0,解得BC =3或BC =-5(舍去).2.(2021·全国乙卷)cos 2π12-cos 25π12等于( ) A.12 B.33 C.22 D.32答案 D解析 cos 2π12-cos 25π12=1+cos π62-1+cos 5π62=1+322-1-322=32. 3.(2022·榆林模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为3154,b -c =1,cos A =14,则a 等于( ) A .10 B .3 C.10 D. 3答案 C解析 因为cos A =14,所以sin A =154, 又S △ABC =12bc sin A =158bc =3154, 所以bc =6,又b -c =1,可得b =3,c =2,所以a 2=b 2+c 2-2bc cos A =10,即a =10.4.已知cos α=55,sin(β-α)=-1010,α,β均为锐角,则β等于( ) A.π12B.π6C.π4D.π3答案 C解析 ∵α,β均为锐角,即α,β∈⎝⎛⎭⎫0,π2, ∴β-α∈⎝⎛⎭⎫-π2,π2, ∴cos(β-α)=1-sin 2(β-α)=31010, 又sin α=1-cos 2α=255, ∴cos β=cos[(β-α)+α]=cos(β-α)cos α-sin(β-α)sin α =31010×55-⎝⎛⎭⎫-1010×255=22, 又β∈⎝⎛⎭⎫0,π2,∴β=π4. 5.故宫是世界上现存规模最大、保存最为完整的木质结构古建筑群,故宫宫殿房檐设计恰好使北房在冬至前后阳光满屋,夏至前后屋檐遮阴.已知北京地区夏至前后正午太阳高度角约为75°,冬至前后正午太阳高度角约为30°.图1是顶部近似为正四棱锥、底部近似为正四棱柱的宫殿,图2是其示意图,则其出檐AB 的长度(单位:米)约为( )A .3米B .4米C .6(3-1)米D .3(3+1)米答案 C解析 如图,根据题意得∠ACB =15°,∠ACD =105°,∠ADC =30°,∠CAD =45°,CD =24米,所以∠CAD =45°,在△ACD 中,由正弦定理得CDsin ∠CAD =ACsin ∠ADC ,即24sin 45°=AC sin 30°,解得AC =122(米),在Rt △ACB 中,sin ∠ACB =AB AC ,即sin 15°=AB122,解得AB =122sin 15°=122sin(60°-45°)=122×⎝⎛⎭⎫32×22-12×22 =122×6-24=32(6-2)=6(3-1)米.6.(2022·济宁模拟)已知sin α-cos β=3cos α-3sin β,且sin(α+β)≠1,则sin(α-β)的值为() A .-35B.35C .-45D.45答案 C解析 由sin α-cos β=3cos α-3sin β得,sin α-3cos α=cos β-3sin β=sin ⎝⎛⎭⎫π2-β-3cos ⎝⎛⎭⎫π2-β,设f (x )=sin x -3cos x =10⎝⎛⎭⎫110sin x -310cos x=10sin(x -φ), 其中cos φ=110,sin φ=310,φ为锐角,已知条件即为f (α)=f ⎝⎛⎭⎫π2-β,所以π2-β=2k π+α,或π2-β-φ+α-φ=2k π+π,k ∈Z ,若π2-β=2k π+α,k ∈Z ,则α+β=-2k π+π2,k ∈Z ,sin(α+β)=sin π2=1与已知矛盾,所以π2-β-φ+α-φ=2k π+π,k ∈Z ,α-β=2k π+π2+2φ,k ∈Z ,则sin(α-β)=sin ⎝⎛⎭⎫2k π+π2+2φ =sin ⎝⎛⎭⎫π2+2φ=cos 2φ=2cos 2φ-1=-45.二、多项选择题7.(2022·张家口质检)下列命题中,正确的是( )A .在△ABC 中,若A >B ,则sin A >sin BB .在锐角△ABC 中,不等式sin A >cos B 恒成立C .在△ABC 中,若a cos A =b cos B ,则△ABC 是等腰直角三角形D .在△ABC 中,若B =π3,b 2=ac ,则△ABC 必是等边三角形 答案 ABD解析 对于A ,由A >B ,可得a >b ,利用正弦定理可得sin A >sin B ,正确;对于B ,在锐角△ABC 中,A ,B ∈⎝⎛⎭⎫0,π2, ∵A +B >π2, ∴π2>A >π2-B >0, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B ,因此不等式sin A >cos B 恒成立,正确;对于C ,在△ABC 中,a cos A =b cos B ,利用正弦定理可得sin A cos A =sin B cos B ,∴sin 2A =sin 2B ,∵A ,B ∈(0,π),∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形,错误;对于D ,由于B =π3,b 2=ac ,由余弦定理可得 b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,则A =C =B =π3, ∴△ABC 必是等边三角形,正确.8.函数f (x )=sin x (sin x +cos x )-12,若f (x 0)=3210,x 0∈⎝⎛⎭⎫0,π3,下列结论正确的是( ) A .f (x )=22sin ⎝⎛⎭⎫2x -π4 B .直线x =π4是f (x )图象的一条对称轴C .f (x )在⎝⎛⎭⎫0,π3上的最小值为-22D .cos 2x 0=210答案 AD解析 f (x )=sin 2x +sin x cos x -12 =1-cos 2x2+12sin 2x -12=12(sin 2x -cos 2x )=22sin ⎝⎛⎭⎫2x -π4,故A 正确;当x =π4时,sin ⎝⎛⎭⎫2x -π4=22,∴x =π4不是f (x )的对称轴,故B 错误;当x ∈⎝⎛⎭⎫0,π3时,2x -π4∈⎝⎛⎭⎫-π4,5π12,∴f (x )在⎝⎛⎭⎫0,π3上单调递增,∴f (x )在⎝⎛⎭⎫0,π3上无最小值,故C 错误;∵f (x 0)=3210,∴sin ⎝⎛⎭⎫2x 0-π4=35, 又2x 0-π4∈⎝⎛⎭⎫-π4,5π12, ∴cos ⎝⎛⎭⎫2x 0-π4=45, ∴cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π4+π4 =22⎣⎡⎦⎤cos ⎝⎛⎭⎫2x 0-π4-sin ⎝⎛⎭⎫2x 0-π4=210, 故D 正确.三、填空题9.(2022·烟台模拟)若sin α=cos ⎝⎛⎭⎫α+π6,则tan 2α的值为________. 答案 3解析 由sin α=cos ⎝⎛⎭⎫α+π6, 可得sin α=cos αcos π6-sin αsin π6 =32cos α-12sin α,则tan α=33, tan 2α=2tan α1-tan 2α=2×331-⎝⎛⎭⎫332= 3. 10.(2022·泰安模拟)已知sin ⎝⎛⎭⎫π3-α=14,则sin ⎝⎛⎭⎫π6-2α=________. 答案 -78解析 sin ⎝⎛⎭⎫π6-2α=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π3-α-π2 =-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3-α =-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-⎝⎛⎭⎫1-18=-78. 11.(2022·开封模拟)如图,某直径为55海里的圆形海域上有四个小岛,已知小岛B 与小岛C 相距5海里,cos ∠BAD =-45.则小岛B 与小岛D 之间的距离为________海里;小岛B ,C ,D 所形成的三角形海域BCD 的面积为________平方海里.答案 35 15解析 由圆的内接四边形对角互补,得cos ∠BCD =cos(π-∠BAD )=-cos ∠BAD=45>0, 又∠BCD 为锐角,所以sin ∠BCD =1-cos 2∠BCD =35, 在△BCD 中,由正弦定理得BD sin ∠BCD =BD 35=55,则BD =35(海里). 在△BCD 中,由余弦定理得 (35)2=CD 2+52-2×CD ×5×45, 整理得CD 2-8CD -20=0,解得CD =10(负根舍去).所以S △BCD =12×10×5×35=15(平方海里). 12.(2022·汝州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =2,cos 2C =cos 2A +4sin 2B ,则△ABC 面积的最大值为________.答案23解析 由cos 2C =cos 2A +4sin 2B 得,1-2sin 2C =1-2sin 2A +4sin 2B ,即sin 2A =sin 2C +2sin 2B ,由正弦定理得a 2=c 2+2b 2=4,由余弦定理得a 2=b 2+c 2-2bc cos A =4,∴c 2+2b 2=b 2+c 2-2bc cos A ,即cos A =-b 2c<0, ∵A ∈(0,π),∴sin A =1-b 24c 2, ∴S △ABC =12bc sin A =12b 2c 2⎝⎛⎭⎫1-b 24c 2 =12b 2c 2-14b 4, ∵c 2+2b 2=4,∴c 2=4-2b 2,∴S △ABC =12b 2(4-2b 2)-14b 4 =12-94b 4+4b 2, 则当b 2=89时, ⎝⎛⎭⎫-94b 4+4b 2max =-94×6481+4×89=169, ∴(S △ABC )max =12×43=23. 四、解答题13.(2022·新高考全国Ⅱ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3.已知S 1-S 2+S 3=32,sin B =13. (1)求△ABC 的面积;(2)若sin A sin C =23,求b . 解 (1)由S 1-S 2+S 3=32, 得34(a 2-b 2+c 2)=32, 即a 2-b 2+c 2=2,又a 2-b 2+c 2=2ac cos B ,所以ac cos B =1.由sin B =13, 得cos B =223或cos B =-223(舍去), 所以ac =322=324, 则△ABC 的面积S =12ac sin B =12×324×13=28. (2)由sin A sin C =23,ac =324及正弦定理知 b 2sin 2B =ac sin A sin C =32423=94, 即b 2=94×19=14,得b =12. 14.(2022·抚顺模拟)在①(2c -a )sin C =(b 2+c 2-a 2)sin B b ;②cos 2A -C 2-cos A cos C =34;③3c b cos A=tan A +tan B 这三个条件中,任选一个,补充在下面问题中,问题:在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =23,________.(1)求角B ;(2)求2a -c 的取值范围.解 (1)选择①:∵(2c -a )sin C =(b 2+c 2-a 2)sin B b, ∴由正弦定理可得(2c -a )c =b 2+c 2-a 2=2bc cos A ,∴2c -a =2b cos A ,可得cos A =2c -a 2b, ∴由余弦定理可得cos A =2c -a 2b =b 2+c 2-a 22bc , 整理可得c 2+a 2-b 2=ac ,∴cos B =c 2+a 2-b 22ac =ac 2ac =12, ∵B ∈(0,π),∴B =π3. 选择②:∵cos 2A -C 2-cos A cos C =1+cos (A -C )2-cos A cos C =1-cos A cos C +sin A sin C 2=1-cos (A +C )2=34, ∴cos(A +C )=-12, ∴cos B =-cos(A +C )=12, 又∵B ∈(0,π),∴B =π3. 选择③: 由正弦定理可得3c b cos A =3sin C sin B cos A,又tan A +tan B =sin A cos A +sin Bcos B=sin A cos B +cos A sin Bcos A cos B =sin Ccos A cos B , 由3cb cos A =tan A +tan B , 可得3sin Csin B cos A =sin Ccos A cos B ,∵sin C >0,∴tan B =3, ∵B ∈(0,π),∴B =π3.(2)在△ABC 中,由(1)及b =23, 得b sin B =a sin A =c sin C =2332=4,故a =4sin A ,c =4sin C ,2a -c =8sin A -4sin C=8sin A -4sin ⎝⎛⎭⎫2π3-A=8sin A -23cos A -2sin A =6sin A -23cos A=43sin ⎝⎛⎭⎫A -π6,∵0<A <2π3,则-π6<A -π6<π2,-12<sin ⎝⎛⎭⎫A -π6<1,-23<43sin ⎝⎛⎭⎫A -π6<43﹒∴2a -c 的取值范围为()-23,43.。

专题19 椭圆(解答题压轴题)(学生版)-备战2022年高考数学高分必刷必过题(全国通用版)

专题19 椭圆(解答题压轴题)(学生版)-备战2022年高考数学高分必刷必过题(全国通用版)

专题19椭圆(解答题压轴题)1.(2021·江苏鼓楼·南京市第二十九中学高三月考)已知C :22221x y a b+=的上顶点到右,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M 、N 两点,直线m 的方程为:2x a =-,过点M 作ME 垂直于直线m 交直线m 于点E .(1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标.②点O 为坐标原点,求OEN ∆面积的最大值.2.(2021·江西景德镇一中高三月考(理))已知椭圆()2222:10y x C a b a b+=>>的短轴长为2,过下焦点且与x 轴平行的弦长为3.(1)求椭圆C 的标准方程;(2)若A 、B 分别为椭圆C 的右顶点与上顶点,直线()0y kx k =>与椭圆C 相交于M 、N 两点,求四边形AMBN 的面积的最大值及此时k 的值.3.(2021·云南昆明一中高三月考(理))已知椭圆C :22221(0)x y a b a b+=>>的右焦点为F,且F 与椭圆C 上点的距离的取值范围为22⎡⎣(1)求,a b ;(2)若点P 在圆M ∶225x y +=上,PA ,PB 是C 的两条切线,,A B 是切点,求ABC ∆面积的最小值.4.(2021·山东高三模拟预测)已知椭圆()2222:10x y C a b a b+=>>上一点到两焦点的距离之和为,且其离心率为2.(1)求椭圆C 的标准方程;(2)如图,已知A 、B 是椭圆C 上的两点,且满足223OA OB =+,求AOB ∆面积的最大值.5.(2021·江苏鼓楼·南京市第二十九中学高三开学考试)已知椭圆C :()222210x y a b a b+=>>的左、右顶点分别为A 、B4,动点S 在C 上且位于x 轴上方,直线AS ,BS 与直线l :4x =分别交于M ,N 两点.(1)求MN 的最小值;(2)当MN 最小时,在椭圆C 上可以找出点T 使TSB △,试确定点T的个数.6.(2021·上海高三模拟预测)已知椭圆1C :()22211x y a a+=>与抛物线2C :()220y px p =>在第一象限交于点(),Q Q Q x y ,A ,B 分别为1C 的左、右顶点.(1)若1Q x =,且12QA QB ⋅=-uur uuu r ,求2C 的焦点坐标;(2)设点()1,0F 是1C 和2C 的一个共同焦点,过点F 的一条直线l 与1C 相交于C ,D 两点,与2C 相交于E ,F 两点,EF CD λ=uuu r uuu r,若直线l 的斜率为1,求λ的值;(3)设直线QA ,直线QB 分别与直线1x a =+交于M ,N 两点,QMN 与QAB 的面积分别为1S ,2S ,若12S S 的最小值为79,求点Q 的坐标.7.(2021·上海黄浦·格致中学高三月考)已知点(),M x y 是平面直角坐标系上的一个动点,点M 到直线4x =的距离等于点M 到点()1,0D 的距离的2倍,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)斜率为12的直线l 与曲线C 交于A B 、两个不同点,若直线l 不过点31,2P ⎛⎫ ⎪⎝⎭,设直线PA PB 、的斜率分别为,PA PB k k ,求PA PB k k +的数值;(3)设点E 为曲线C 的上顶点,点,P Q 是椭圆C 上异于点E 的任意两点,若直线EP 与EQ 的斜率的乘积为常数()0λλ<,试判断直线PQ 是否经过定点,若经过定点,请求出定点坐标;若不经过定点,请说明理由.8.(2021·沙坪坝·重庆八中高三月考)与椭圆2222:1x y C a b+=(0a b >>,0c >且222a b c =+)相关的两条直线2a x c=±称为椭圆C 的准线,拥有丰富的几何性质.已知直线l 是位于椭圆C 右侧的一条准线,椭圆上的点到l 的距离的最大值为6,最小值为2.(1)求椭圆C 的标准方程及直线l 的方程;(2)设椭圆C 的左右两个顶点分别为1A ,2A ,T 为直线l 上的动点,且T 不在x 轴上,1TA 与C 的另一个交点为M ,2TA 与C 的另一个交点为N ,F 为椭圆C 的左焦点,求证:FMN 的周长为定值.9.(2021·江苏海安·高三开学考试)在平面直角坐标系xOy 中,已知点1(2,0)F -,2(2,0)F ,点M 满足12||||MF MF +=,记M 的轨迹为C .(1)求C 的方程;(2)设l 为圆224x y +=上动点T (横坐标不为0)处的切线,P 是l 与直线y =点,Q 是l 与轨迹C 的一个交点,且点T 在线段PQ 上,求证:以PQ 为直径的圆过定点.10.(2021·浙江高三模拟预测)定义:平面内两个分别以原点和两坐标轴为对称中心和对称轴的椭圆12,E E ,它们的长、短半轴长分别为11,a b 和22,a b ,若满足2121,(,2)k k a a b b k k ==∈≥Z ,则称2E 为1E 的 k 级相似椭圆.已知椭圆221221:1,4x y E E b +=为1E 的2级相似椭圆,且焦点共轴,1E 与2E 的离心率之比为2.(1)求2E 的方程.(2)已知P 为2E 上任意一点,过点P 作1E 的两条切线,切点分别为()()1122,,,A x y B x y .①证明:1E 在()11,A x y 处的切线方程为112114x x y y b +=.②是否存在一定点到直线AB 的距离为定值?若存在,求出该定点和定值;若不存在,说明理由.11.(2021·广东荔湾·西关外国语学校高三月考)已知椭圆C :()222210x y a b a b+=>>,O是坐标原点,1F ,2F 分别为椭圆的左、右焦点,点12M ⎫⎪⎭在椭圆C 上,过2F 作12F MF ∠的外角的平分线的垂线,垂足为A ,且2OA b =.(1)求椭圆C 的方程:(2)设直线l :()0,0y kx m k m =+>>与椭圆C 交于P ,Q 两点,且直线OP ,PQ ,OQ 的斜率之和为0(其中O 为坐标原点).①求证:直线l 经过定点,并求出定点坐标:②求OPQ ∆面积的最大值.12.(2021·全国高三专题练习)在平面直角坐标系xOy 中,设点()00,M x y 是椭圆22:1205x y C +=上一点,以M 为圆心的一个半径2r =的圆,过原点作此圆的两条切线分别与椭圆C 交于点,P Q(1)若点M 在第一象限且直线,OP OQ 互相垂直,求圆M 的方程;(2)若直线,OP OQ 的斜率都存在,且分别记为12,k k .求证:12k k 为定值;(3)探究22OP OQ +是否为定值,若是,则求出OP OQ ⋅的最大值;若不是,请说明理由.13.(2021·全国高三专题练习)已知椭圆2222:1(0)x y E a b a b+=>>的左右焦点为1F 、2F ,离心率32e =2221:C x y b +=上一点Q (Q 在y 轴左侧)作该圆的切线,分别交椭圆E 于,A B 两点,交圆2222:C x y a +=于,C D 两点(如图所示).当切线AB 与x 轴垂直时,2CDF ∆的面积为33(1)求椭圆E 的标准方程;(2)(ⅰ)求ABO ∆的面积的最大值;(ⅱ)求证:2AC AF +为定值,并求出这个定值.14.(2021·唐山市第十一中学高三月考)已知椭圆1C :()222210x y a b a b +=>>的离心率为22,且椭圆1C 与椭圆2C :2238x y +=在第一、二、三、四象限分别交于A ,B ,C ,D 四点,顺次连接A ,B ,C ,D 四点得到一个正方形.(1)求椭圆1C 的方程;(2)已知直线1l :20x y +=与直线2l :30x y -+=交于点E ,过点()1,0的直线与椭圆1C 交于M ,N 两点,求EM EN ⋅ 的取值范围.15.(2021·上海黄浦·格致中学高三三模)在平面直角坐标系xOy 中,过方程221(,,,0)mx ny m n m n +=∈≠R 所确定的曲线C 上点()00,M x y 的直线与曲线C 相切,则此切线的方程001mx x ny y +=.(1)若41m n ==,直线l 过2)点被曲线C 截得的弦长为2,求直线l 的方程;(2)若1m =,13n =-,点A 是曲线C 上的任意一点,曲线过点A 的切线交直线10l y -=于M ,交直线20l y +=于N ,证明:0MA NA += ;(3)若14m =,12n =,过坐标原点斜率0k >的直线3l 交C 于,P Q 两点,且点P 位于第一象限,点P 在x 轴上的投影为E ,延长QE 交C 于点R ,求PQ PR ⋅ 的值.16.(2021·四川眉山·高三三模(理))已知O 为坐标原点,A ,B 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和上顶点,AOB 的面积为1.设M ,N 是椭圆C 上的两个动点,且OM ON ⊥,当=OM ON 时,5MN =.(1)求a ,b 的值;(2)过O 作线段MN 的垂线,垂足为H ,求HA HB ⋅ 的取值范围.17.(2021·上海黄浦·高三二模)椭圆()2222:10x y C a b a b+=>>的右顶点为(),0A a ,焦距为()20c c >,左、右焦点分别为1F 、2F ,()00,P x y 为椭圆C 上的任一点.(1)试写出向量1PF 、2PF 的坐标(用含0x 、0y 、c 的字母表示;(2)若12PF PF ⋅ 的最大值为3,最小值为2,求实数a 、b 的值;(3)在满足(2)的条件下,若直线:l y kx m =+与椭圆C 交于M 、N 两点(M 、N 与椭圆的左右顶点不重合),且以线段MN 为直径的圆经过点A ,求证:直线l 必经过定点,并求出定点的坐标.18.(2021·天津高三二模)已知点()2,0F 为椭圆()222210x y a b a b +=>>的焦点,且点P ⎛ ⎝⎭在椭圆上.(1)求椭圆的方程;(2)已知直线l 与椭圆交于M 、N 两点,且坐标原点O 到直线l 的距离为6,MON ∠的大小是否为定值?若是,求出该定值,若不是,请说明理由.19.(2021·全国高三专题练习)已知椭圆()2222:10x y C a b a b+=>>的一焦点与短轴的两个端点组成的三角形是等边三角形,直线1y =与椭圆C 的两交点间的距离为8.(1)求椭圆C 的方程;(2)如图,设()00,R x y 是椭圆C 上的一动点,由原点O 向圆()()22004x x y y -+-=引两条切线,分别交椭圆C 于点P ,Q ,若直线OP ,OQ 的斜率均存在,并分别记为1k ,2k ,求证:12k k ⋅为定值;(3)在(2)的条件下,试问22OP OQ +是否为定值?若是,求出该值;若不是,请说明理由.20.(2021·全国高三专题练习)如图,分别过椭圆()2222:10x y E a b a b+=>>左、右焦点1F 、2F 的动直线1l 、2l 相交于P 点,与椭圆E 分别交于A 、B 与C 、D 不同四点,直线OA 、OB 、OC 、OD 的斜率1k 、2k 、3k 、4k 满足1243k k k k +=+.已知当1l 与x 轴重合时,AB =,3CD =.(1)求椭圆E 的方程;(2)是否存在定点M 、N ,使得PM PN +为定值?若存在,求出M 、N 点坐标并求出此定值;若不存在,说明理由.。

专题19 立体几何中体积与表面积—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

专题19 立体几何中体积与表面积—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

好教育云平台 1.【2017课标3,文9】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A .πB .3π4C .π2D .π4【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以32r BC ==,那么圆柱的体积是2233124V r h πππ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B.【考点】圆柱体积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.2.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )(B )(C )(D )【答案】【考点定位】1.旋转体的几何特征;2.几何体的体积.【名师点睛】本题考查了旋转体的几何特征及几何体的体积计算,解答本题的关键,是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量.本题属于基础题,在考查旋转体的几何特征及几何体的体积计算方法的同时,考查了考生的空间想象能力及运算能力,是“无图考图”的一道好题.3.【2016高考新课标1文数】平面过正文体ABCD—A1B1C1D1的顶点A,,,则m,n所成角的正弦值为()(A)(B)(C)(D)【答案】A【解析】考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.【2017天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【答案】92π 【解析】试题分析:设正方体边长为a ,则226183a a =⇒=,外接球直径为34427923,πππ3382R V R ====⨯=. 【考点】球与几何体的组合体【名师点睛】正方体与其外接球的组合体比较简单,因为正方体的中心就是外接球的球心,对于其他几何体的外接球,再找球心时,注意球心到各个顶点的距离相等,1.若是柱体,球心肯定在中截面上,再找底面外接圆的圆心,过圆心做底面的垂线与中截面的交点就是球心,2.若是锥体,可以先找底面外接圆的圆心,过圆心做底面的垂线,再做一条侧棱的中垂线,两条直线的交点就是球心,构造平面几何关系求半径,3.若是三棱锥,三条侧棱两两垂直时,也可补成长方体,长方体的外接球就是此三棱锥的外接球,这样做题比较简单. 5.【2015新课标2文10】已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.B.C.D.【答案】C 【解析】【考点定位】本题主要考查球与几何体的切接问题及空间想象能力. 【名师点睛】由于三棱锥底面AOB 面积为定值,故高最大时体积最大,本题就是利用此结论求球的半径,然后再求出球的表面积,由于球与几何体的切接问题能很好的考查空间想象能力,使得这类问题一直是高考中的热点及难点,提醒考生要加强此方面的训练. 6. [2016高考新课标Ⅲ文数]在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是()(A )4π (B )(C )6π (D )【答案】B【解析】试题分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B.考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.7.【2014全国2,文7】正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为( )(A)(B)(C)(D)【答案】C【考点定位】棱柱、棱锥、棱台的体积【名师点睛】本题考查几何体的体积的求法,属于中档题,求解几何体的底面面积与高是解题的关键,对于三棱锥的体积还可利用换底法与补形法进行处理.8.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()(A)斛(B)斛(C)斛(D)斛【答案】B【解析】设圆锥底面半径为r ,则,所以,所以米堆的体积为=,故堆放的米约为÷1.62≈22,故选B.【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是圆锥,底面周长是两个底面半径与圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.9.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=【考点】三棱锥外接球【名师点睛】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.10.【2017课标II ,文15】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 【答案】14π.【解析】球的直径是长方体的体对角线,所以224π14π.R S R ==== 【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.11.【2017江苏,6】如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.12【2015高考四川,文14】在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是______. 【答案】【解析】由题意,三棱柱是底面为直角边长为1的 等腰直角三角形,高为1的直三棱柱,底面积为如图,因为AA 1∥PN ,故AA 1∥面PMN , 故三棱锥P -A 1MN 与三棱锥P -AMN 体积相等, 三棱锥P -AMN 的底面积是三棱锥底面积的,高为1故三棱锥P -A 1MN 的体积为【考点定位】本题主要考查空间几何体的三视图、直观图及空间线面关系、三棱柱与三棱锥的体积等基础知识,考查空间想象能力、图形分割与转换的能力,考查基本运算能力. 【名师点睛】解决本题,首先要正确画出三棱柱的直观图,包括各个点的对应字母所在位置,结合条件,三棱锥P -A 1MN 的体积可以直接计算,但转换为三棱锥P -AMN 的体积,使得计算更为简便,基本上可以根据条件直接得出结论.属于中档偏难题.13.【2016高考浙江文数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40.PC 1B 1A 1NCMBA考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 14.【2017课标II ,文18】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PAD 面积为P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅰ)4√3 【解析】试题解析:(1)在平面ABCD 内,因为∠BAD=∠ABC=90°,所以BC ∥AD.又BC PAD ⊄平面,AD PAD ⊂平面,故BC ∥平面PAD.(2)取AD 的中点M ,连结PM ,CM ,由12AB BC AD ==及BC ∥AD ,∠ABC=90°得四边形ABCM 为正方形,则CM ⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM ⊥AD,PM⊥底面ABCD,因为CM ABCD底面,所以PM⊥CM.设BC=x,则CM=x,CD=√2x,PM=√3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以PN=√142x因为△PCD的面积为2√7,所以1 2×√2x×√142x=2√7,解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=2√3,所以四棱锥P-ABCD的体积V=13×2(2+4)2×2√3=4√3.【考点】线面平行判定定理,面面垂直性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.15.【2017课标3,文19】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)详见解析;(2)1试题解析:(1)证明:取AC 中点O ,连OB OD , ∵CD AD =,O 为AC 中点, ∴OD AC ⊥,又∵ABC ∆是等边三角形, ∴OB AC ⊥,又∵O OD OB = ,∴⊥AC 平面OBD ,⊂BD 平面OBD , ∴BD AC ⊥.(2)设2==CD AD ,∴22=AC ,22==CD AB , 又∵BD AB =,∴22=BD , ∴≅∆ABD CBD ∆,∴EC AE =, 又∵EC AE ⊥,22=AC , ∴2==EC AE , 在ABD ∆中,设xDE =,根据余弦定理DEAD AE DE AD BD AD AB BD AD ADB ⋅-+=⋅-+=∠22cos 222222 x x ⨯⨯-+=⨯⨯-+=22222222)22()22(2222222解得2=x ,∴点E 是BD 的中点,则ACE B ACE D V V --=,∴1=--ACEB ACED VV . 【考点】线面垂直判定及性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.16.【2017北京,文18】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA ⊥BD ;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积. 【答案】详见解析 【解析】试题解析:证明:(I )因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(II )因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(I )知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(III )因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,BD DC ==. 由(I )知,PA ⊥平面PAC ,所以DE ⊥平面PAC .所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【考点】1.线面垂直的判断和性质;2,。

高考数学专题十九圆锥曲线综合练习题

高考数学专题十九圆锥曲线综合练习题

培优点十九圆锥曲线综合1.直线过定点2xxF轴的离心率为且垂直于,过左焦点例1:已知中心在原点,焦点在轴上的椭圆C2P两点,且,的直线交椭圆于.Q2?2PQ C(1)求的方程;C??22MM作椭是直线处的切线,点(2)若直线是圆上任一点,过点上的点2,28??yx ll ABMAMBAB过定点,,切点分别为,设切线的斜率都存在.求证:直线圆的切线,,C并求出该定点的坐标.22yx??.2)证明见解析,;【答案】(1)(2,11??8422yx??, 1)由已知,设椭圆的方程为【解析】(0?b??1?a C ??,不妨设点,代入椭圆方程得因为,1??22PQ?2?c,P22ba22ab22cc212222,,,所以,又因为,所以8ba??b2?4?e?cb?1??2a22b22yx所以的方程为.1??C 84??,即,(2)依题设,得直线的方程为2x???y?204?x?y?l??????,,,设yxABx,y,Mx,y210120??MA,由切线的斜率存在,设其方程为xxk?y?y?11??xxy?k??y?11???2????22,联立得,0?28y?xkx?4ky?kx?x?2k1??22yx1111?1??48???22??????22?0?8k2y?1?Δ?16kkx?ykx4?,由相切得??1111??2??2222,即,化简得4?8?y?kxk04yk?y?x?8?kx?2111111xyxyx11111MA???k?的方程为因为方程只有一解,所以,所以切线??1xx?yy???,11y21xx?2yy?8xx?2yy?8MB,同理,切线即的222yyx2?8?111x方程为,2211.8y??2yxx???0011AB的方程为,所以直线,所以又因为两切线都经过点yx,M?008y??2yxx?02208y??2yxx,00??4y??xAB的方程可化为,所以直线,又82y4?x?xx?00000??2yx2?x????,,令即,得08y?x8x?2y????00?y?881?y????AB所以直线.恒过定点2,1.面积问题222yxb??FF直线,焦距为、4例2:已知椭圆,的左、右焦点分别为0a?b?1??x?:yl 21122baclFlEAB1?与线段两点,的直线关于直线与椭圆相交于、在椭圆上.斜率为的对称点221PABD相交于点两点.,与椭圆相交于、C1)求椭圆的标准方程;()求四边形面积的取值范围.(2ACBD223232yx??,;.2)【答案】(1)(1????3948?????????EFFEF【解析】(1)由椭圆焦距为4,设,连结,,,设2,0F?2,0F21121bcb222???c??ab,,又,得则,?tan?cos?sin aacFF2csin90?1ac21,??????e???bc??b?|?|EFsin?sin??ca90EF2a?21aa22yx222a?bc?c?b?c?2a?8,所以椭圆方程为解得.,1??84????m+?y?xlyx,D,Cxy方程:、2()设直线,,22211.4?m??xx22?yx?213???1?22,所以,由,得08?x3?4mx?2m??48?28m?2??m?y??x?xx??213?222238????x?y?A6,66,?6Bl,,得:,代入椭圆得由(,1)知直线?AB????133333????44???6m?6,lPAB,得由直线相交于点与线段,??233??????2,28m4?22416m2xx?2??m?+12x2CD?x???8xx2?211221393116321??1kk?l?l,,,知与而+12mAB??S?CD??12ACBD ll291232443232163??????22?m???,06,6?m,+12m??由,得,,所以??????333993??????3232??,?.面积的取值范围四边形ACBD??93??3.参数的值与范围??????20?2px?pC:yF的上,过焦点3例:已知抛物线的焦点在抛物线,点1,2F1,0A C M,两点.交抛物线于直线NCl(1)求抛物线的方程以及的值;AF C22??xFNMF?B(2)记抛物线的准线与的值.轴交于点,,若,求40BN?BM?C2?3??2(),;1【答案】(.)22AF?x?y4????20p??2:Cypx,的焦点【解析】(1)抛物线1,0F p2;,则,抛物线方程为42p?xy4?1??2p??1,2A.点在抛物线上,C2???AF?12??????,设)依题意,(2、,设,y,MxyF1,0Nx,1?xl:my?2211.2?x4?y2x,得联立方程,消去.0my?4?y?4?1my?x??1my?4mx?y?y???1112①,且,所以??1my??4x?yy???2212???????y?y?FNMF?,即,则又,y1?x,?y,??1x2121122??4???y1?????m4y?1???2??????,则,,22?y得,代入①得,消去2?4m???21,0B?yBN?,BM?xx?1,y?121122222????2222y?x?1y?1?BM?|BN?|x?BM?BN?则2121??2222yy??2?x??2?xx?x??????2228?y?y???m4?1myy2112????4222,222111??2222y??2??2my?my?(?my?1)2?(my?1)y21112216m?16m??16m40?84?4m?m?m??18124?2?2?3.当,解得,故40?m?16?40m16?m2.弦长类问题4222xyx??2的顶点,的左右顶点是双曲线4:已知椭圆且椭圆例1?ya?b?0?:?C:?1C 2122ab33CC.的上顶点到双曲线的渐近线的距离为212C(1)求椭圆的方程;1QMCMCQ5?OQ?OQ?,求,两点,与相交于两点,且与(2)若直线,相交于l22111221的取值范围.MM??2.;(2)【答案】(1)212x1??y100,?3??2C3a?b0,)由题意可知:1(【解析】,,又椭圆的上顶点为1.3C,双曲线的渐近线为:0y?x?x?y??323?3b23x2.由点到直线的距离公式有:,∴椭圆方程1??b?1??y2232x2y并整理,代入)易知直线,消去的斜率存在,设直线(2的方程为m??kxy1?y?3得:??222,033mx???6kmx?k1?32?1?3k?02?1?3k?0??C相交于两点,则应有:,要与? ??????22222220m?3??41?3k?336k?mm?1?3k????????,设,yQxx,yQ,2112122?m3?36km则有:,.?xx???xx212122k?31k?31????????22.又m?km?m??x1?k?x?OQOQ??xx?yy?xxxkx?mxkx211121*********????????2222225?OQ?OQ?,又:,所以有:?k?5?6km?m1?331?k?m?3??212k?3122k?1?9m?,②??2222y,将,代入并整理得:,2x消去my?kx?1??y0m??x3?6kmx?1?3k33????222222.③要有两交点,则m?1?04??1?3k3k3m??Δ?36k3m12.由①②③有?0?k92?33m?6km????.有,设,、yxMMx,y,??xx??xx????2222k3413m??36k3m?414332434322k31?k31???22k31???22k?3m9??432?MM?1k?21??22k1?312k2k14422222.?k?1?kMM???1?k1?MM?k??19m代入有将.2112??22k3?12k3?1.??11??2t?0,,,,令kt?12??MM??21??29??2k1?3??t1t?1?t1??????t?0,?'tf?tf?.,令??32????9??t1t?331?11????????t??0,0,t内单调递增,内恒成立,故函数在所以在t0tff'?????99????5??????10M?0,?0,?Mft.故???2172??5.存在性问题??222yx??????A1,点例5:已知椭圆,,的左、右焦点分别为1,0?1,0FF0C:??1?ab?????21222ab??在椭圆上.C(1)求椭圆的标准方程;C M,有两个不同交点时,能在,使得当直线)是否存在斜率为2的直线与椭圆(2NCll5PM?NQP?若存在,求出直线,在椭圆上找到一点直线,满足上找到一点的Q Cl?y3方程;若不存在,说明理由.2x2;(2))不存在,见解析.【答案】(11?y?2【解析】(1)设椭圆的焦距为,则,1?cCc2??A1,,在椭圆∵上,∴??1???221AF2a??AF C 2????2222????????21222????2x22222a?1c?b?a?.的方程为,故椭圆,∴1?y?C2(2)假设这样的直线存在,设直线的方程为,t2x??y l5??????????,Pxy,xyD,xQ,x,MxyNy,,,,的中点为设,MN??3004242113??y?2x?t?22x,得由,消去,0?8?tty?9y2??22x?2y?2?yy?tt2??22,且∴,,故且123t??3??y?y?y?0t?36?Δ?4t8?012929NQ?PM为平行四边形,由,知四边形PMQNDD的中点,因此的中点,而为线段为线段PQ MN5y?t15?2t43?y?,,得∴?y 049297不在椭圆上,,可得,∴点又Q3?t??31?y???43.故不存在满足题意的直线l对点增分集训一、解答题2????2PP过点相外切,动圆圆心并且与圆1.已知动圆.的轨迹为2,0F4??x?2F:y C21的轨迹方程;(1)求曲线C1????lBA,直线、,设点与轨迹交于(2)过点两点,设直线的直线1,0F2,0?D C?xl:122ADBMM于,求证:直线经过定点.交l2y??2;(1)(2)见解析.【答案】0?1x??x3,1)由已知,【解析】(2??|PF ?|PF ?2PF| |PF2211P,,轨迹为双曲线的右支,,42c??|FF 2C2a?2?a?1c212y??2?.标准方程曲线0x???1x C3xBM必过)由对称性可知,直线(2轴的定点,31????????,MlBM1,02,?2,33BPA经过点,的斜率不存在时,,,,知直线当直线??122????????ly,By,2ky:l?x?Axx的斜率存在时,不妨设直线当直线,,,122111. ??y3y31y1??111y?,M1?AD:y?x时,,,当,直线?x????????M1?x1x?212x?22??111??2?x?y?k22k?43?4k?????2222,得,,?xx??xx0k?33?kx?4kx??4???21k?kBM,经过点,即下面证明直线,即证?1,0P 2121223k?k3?223x?y?3???3yyPBPM x?1x?121?3yx?3y?xy?yy?kx?2ky?kx?2k,即,,由2121122211??234?k22k3k4?4??4???0?5?,即整理得,045xx???4xx?????BMBM.经过点过定点即证,直线1,0P1,0223yx????1,AB分别为椭圆的左顶2211222?3?3kk?3k点、下顶点,在椭圆,上,设2.已知点0bE:??1?a???222ba??221AB.原点到直线的距离为O7E1)求椭圆的方程;(yxEPDPBPA两点,求分别交轴于在第一象限内一点,直线轴、,,(2)设为椭圆C的面积.四边形ABCD22yx23.2);)【答案】(1(1?? 4392231yx??4??1,1??)因为椭圆,有经过点,【解析】(10E:a??1b????22222baba??221ab?AB,的距离为由等面积法,可得原点到直线O722a?b22yx b?3E的方程为联立两方程解得,.,所以椭圆1??E:2a?4322xy????2200?1?0?x?P0,x,yy.,则(,即2)设点12??4x3y00000043y2y??00?2y?yPA:?x.直线,令,得0x?D x?2x?20032?x2y?2232yx?y?3300000从而有.,同理,可得?BD???AC32x?x2?y3?000.x110000所以四边形的面积为??AC?BD?2?22x3?y0022x383y3xy?12x?xy?12x?83y12?12?4?4y?12?43110000000000????223y?2y?3x?2?xy?3x?2y23x00000000 y?433xy?6x12?20000.32??3y?2xy?3x?2000032所以四边形的面积为.ABCD2??2P上,且有点的圆心,在圆的半径3.已知点为圆是圆上的动点,点Q8??yx?1CPC??0?MQ?APAPM,满足.和,上的点1,0AAM2AP?P在圆上运动时,判断(1)当点点的轨迹是什么?并求出其方程;Q22F,1)若斜率为的直线与圆中所求点的轨迹交于不同的两点相切,与((2)Q1yx??kl43H的取值范围.(其中是坐标原点),且,求kO??OFOF?542x222A)2;,长轴长为(2【答案】(1)是以点,的椭圆,为焦点,焦距为1??y C2????2233,?,?.????3223????AP的垂直平分线,)由题意是线段【解析】(1MQ所以,2?22?CAQC?QP?QC?QA?CP?22A的椭圆,为焦点,焦距为2所以点的轨迹是以点,,长轴长为Q C222a?,∴,,1ab???c1c?2x2.故点的轨迹方程是Q1??y2????,,,)设直线(2:yHy,xF,xbkx??y l2112b22221??1b?k与圆直线,,即相切,得1?xy?l21?k ??222y得:联立,消去,0?4kbx?2b??1?2k2x2??b?kx?y???????2222222,得,2?x21?y??0k?02b1?1??8?2k8??Δ16kbbk?4?1?2k22?2bkb4,,?xx?x?x?????22??2k?2b1?kb4?????222b?kb?OF?OH?xx?yy?1?kb?xx?kb?x?x∴212122k21?k21?2121212122k1?21?2k????22221k41?kk2k?2k?12?1???k?,222k1k?2k?121?22431?k112,所以,得???k?25k241?23322233,∴,解得或?k????kk???322323????2332,??,故所求范围为.????2323????22yx1??222AA,的焦距为,离心率为已知椭圆,圆,.4c??O:xy0bC:??1?a?c22122ba2ABA△AB.是椭圆的左右顶点,面积的最大值为是圆的任意一条直径,2O1的方程;1)求椭圆及圆(OC PE,求,)若为圆的任意一条切线,与椭圆的取值范围.交于两点(2PQQ Oll??2264yx223,,).;1【答案】()(21?yx?1????334??1xABB,易知当线段轴距离为,(【解析】1)设则点到h h?a2??AO??h??S2S1AAAB△OB△211?a?c??S2ycBO??h,,轴时,在AB△Amax1c1b?3,,,,,1?a?c2c?2?a??e?a222yx22.,圆的方程为所以椭圆方程为1x?y?1??432b2LL的方程为,此时)当直线2;的斜率不存在时,直线(3PQ??1x??a m221d???L,,直线为圆的切线,设直线,方程为:1?k?m?mkx?y?2k?1y?kx?m????222直线与椭圆联立,,得,0?4m?4k??3x12?8kmx22?yx??1? 43??8km?x?x??21234k????2,由韦达定理得:,判别式0?k?Δ?4823?24m?12??x?x ?212?34k?22?23?kk?43?122,,令所以弦长3?3?t?4k??xxPQ?1?k2123k?42??1624??所以;3,???3PQ?3???????t3t??????64PQ?3,,综上,??3??22yx????FF经、.如图,己知的左、右焦点,直线是椭圆51xy?k?:l01a?b?G:??2122ab 43ABF△FBA.过左焦点交,且与椭圆,的周长为两点,G21(1)求椭圆的标准方程;G △ABFI为等腰直角三角形?若存在,求出直线)是否存在直线的方程;若不,使得(2l2存在,请说明理由.??xc,故与,因为直线.轴的交点为22yx;2(1))不存在,见解析.(【答案】1??23【解析】(1)设椭圆的半焦距为1,0?1?Gcl ABF△34a?3,所以,的周长为,即又,故3?AFAB??BF4a?4222222?3?1ab??c?2.22yx因此,椭圆的标准方程为.1??G32(2)不存在.理由如下:AB不可能为底边,即.先用反证法证明BFAF?22??????,假设,,设,则由题意知BFB?x,Fy1,0,yAAFx222121222????22?1x?1?y?yx?,????222112.又得:,,代入上式,消去,?1???10?6x?x?x?xyy21122222xyxy2121213322xx?xx?x?6.轴,所以,故因为直线斜率存在,所以直线不垂直于ll2211?3xx?x?2x3?3?6矛盾)与,,(2211??2222,所以矛联立方程,得:6?x??x?0?6?3k?26x?kx?3k23?22?yx?1?2k6???1?xy?k?盾.2123k?2?故.BF?AF22AB不可能为等腰直角三角形的直角腰.再证明△ABFA为直角顶点.为等腰直角三角形,不妨设假设2??22F△AF,此方设,在中,由勾股定理得:,则m?AF m?2?AF343m?2??m2112程无解.故不存在这样的等腰直角三角形.。

2024年高考数学19题新模式新结构新题型数学与阅读理解 解析版

2024年高考数学19题新模式新结构新题型数学与阅读理解  解析版

2024年高考数学19题新模式新结构新题型1(2023上·北京朝阳·高三统考期中/24南通)已知A m =a 1,1a 1,2⋯a 1,m a 2,1a 2,2⋯a 2,m ⋮⋮⋱⋮a m ,1a m ,2⋯a m ,m(m ≥2)是m 2个正整数组成的m 行m 列的数表,当1≤i <s ≤m ,1≤j <t ≤m 时,记d a i ,j ,a s ,t =a i ,j -a s ,j +a s ,j -a s ,t .设n ∈N *,若A m 满足如下两个性质:①a i ,j ∈1,2,3;⋯,n (i =1,2,⋯,m ;j =1,2,⋯,m );②对任意k ∈1,2,3,⋯,n ,存在i ∈1,2,⋯,m ,j ∈1,2,⋯,m ,使得a i ,j =k ,则称A m 为Γn 数表.(1)判断A 3=123231312是否为Γ3数表,并求d a 1,1,a 2,2 +d a 2,2,a 3,3 的值;(2)若Γ2数表A 4满足d a i ,j ,a i +1,j +1 =1(i =1,2,3;j =1,2,3),求A 4中各数之和的最小值;(3)证明:对任意Γ4数表A 10,存在1≤i <s ≤10,1≤j <t ≤10,使得d a i ,j ,a s ,t =0.【答案】(1)是;5(2)22(3)证明见详解【分析】(1)根据题中条件可判断结果,根据题中公式进行计算即可;(2)根据条件讨论a i +1,j 的值,根据d a i ,j ,a s ,t =a i ,j -a s ,j +a s ,j -a s ,t ,得到相关的值,进行最小值求和即可;(3)当r i ≥2时,将横向相邻两个k 用从左向右的有向线段连接,则该行有r i -1条有向线段,得到横向有向线段的起点总数,同样的方法得到纵向有向线段的起点总数,根据条件建立不等关系,即可证明.【详解】(1)A 3=123231312是Γ3数表,d a 1,1,a 2,2 +d a 2,2,a 3,3 =2+3=5.(2)由题可知d a i ,j ,a s ,t =a i ,j -a s ,j +a s ,j -a s ,t =1(i =1,2,3;j =1,2,3).当a i +1,j =1时,有d a i ,j ,a i +1,j +1 =(a i ,j -1)(a i +1,j +1-1)=1,所以a i ,j +a i +1,j +1=3.当a i +1,j =2时,有d a i ,j ,a i +1,j +1 =(2-a i ,j )(2-a i +1,j +1)=1,所以a i ,j +a i +1,j +1=3.所以a i ,j +a i +1,j +1=3(i =1,2,3;j =1,2,3).所以a 1,1+a 2,2+a 3,3+a 4,4=3+3=6,a 1,3+a 2,4=3,a 3,1+a 4,2=3.a 1,2+a 2,3+a 3,4=3+1=4或者a 1,2+a 2,3+a 3,4=3+2=5,a 2,1+a 3,2+a 4,3=3+1=4或者a 2,1+a 3,2+a 4,3=3+2=5,a 1,4=1或a 1,4=2,a 4,1=1或a 4,1=2,故各数之和≥6+3+3+4+4+1+1=22,当A 4=1111122212111212时,各数之和取得最小值22.(3)由于Γ4数表A 10中共100个数字,必然存在k ∈1,2,3,4 ,使得数表中k 的个数满足T ≥25.设第i 行中k 的个数为r i (i =1,2,⋅⋅⋅,10).当r i ≥2时,将横向相邻两个k 用从左向右的有向线段连接,则该行有r i -1条有向线段,所以横向有向线段的起点总数R =∑r i ≥2(r i -1)≥∑i =110(r i -1)=T -10.设第j 列中k 的个数为c j (j =1,2,⋅⋅⋅,10).当c j ≥2时,将纵向相邻两个k 用从上到下的有向线段连接,则该列有c j -1条有向线段,所以纵向有向线段的起点总数C =∑c j ≥2(c j -1)≥∑j =110(c j -1)=T -10.所以R +C ≥2T -20,因为T ≥25,所以R +C -T ≥2T -20-T =T -20>0.所以必存在某个k 既是横向有向线段的起点,又是纵向有向线段的终点,即存在1<u <v ≤10,1<p <q ≤10,使得a u ,p =a v ,p =a v ,q =k ,所以d a u ,p ,a v ,q =a u ,p -a v ,p +a v ,p -a v ,q =0,则命题得证.2(镇海高三期末)在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB,其弧长为Δs ,当动点从A 沿曲线段AB运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δs →0ΔθΔs =y 1+y 2 32(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示y =f x 在点A 处的一阶、二阶导数)(1)求单位圆上圆心角为60°的圆弧的平均曲率;(2)求椭圆x 24+y 2=1在3,12处的曲率;(3)定义φy =22y1+y3为曲线y =f x 的“柯西曲率”.已知在曲线f x =x ln x -2x 上存在两点P x 1,f x 1 和Q x 2,f x 2 ,且P ,Q 处的“柯西曲率”相同,求3x 1+3x 2的取值范围.【答案】(1)1(2)16749(3)2e ,1 【解析】【分析】(1)依据所给定义求解即可.(2)直接利用定义求解即可.(3)合理构造给定式子,转化为一元函数,结合高观点极限方法求解即可.【小问1详解】K =ΔθΔs=π3π3=1.【小问2详解】y =1-x 24,y=-x 41-x 24 -12,y =-141-x 24 -12-x 2161-x 24-32,故y x =3=-32,y x =3=-2,故K =21+3432=16749.【小问3详解】fx =ln x -1,fx =1x ,故φy =22y 1+y3=22x ln x 3=2233s ln s 3,其中s =3x ,令t 1=3x 1,t 2=3x 2,则t 1ln t 1=t 2ln t 2,则ln t 1=-t ln tt -1,其中t =t 2t 1>1(不妨t 2>t 1)令p x =x ln x ,p x =1+ln x ⇒p x 在0,1e 递减,在1e ,+∞ 递增,故1>t 2>1e>t 1>0;令h t =ln t 1+t 2 =ln t +1 -t ln tt -1,h 't =1t -1 2ln t -2t -1 t +1 ,令m (t )=ln t -2t -1 t +1(t >1),则m(t )=t -1 2t (t +1),当t >1时,m (t )>0恒成立,故m (t )在(1,+∞)上单调递增,可得m (t )>m (1)=0,即ln t -2t -1t +1>0,故有h t =1t -1 2ln t -2t -1 t +1>0,则h t 在1,+∞ 递增,又lim t →1h t =ln2-1,lim t →+∞h t =0,故ln t 1+t 2 ∈ln2-1,0 ,故3x 1+3x 2=t 1+t 2∈2e ,1.【点睛】关键点点睛:本题考查求导数新定义,解题关键是将给定式子合理转化为一元函数,然后利用极限方法求得关键函数值域,最终即可求解.3(合肥一中期末)同余定理是数论中的重要内容.同余的定义为:设a ,b ∈Z ,m ∈N *且m >1.若m a -b 则称a 与b 关于模m 同余,记作a ≡b (mod m )(“|”为整除符号).(1)解同余方程x 2-x ≡0(mod3);(2)设(1)中方程的所有正根构成数列a n ,其中a 1<a 2<a 3<⋯<a n .①若b n =a n +1-a n (n ∈N *),数列b n 的前n 项和为S n ,求S 2024;②若c n =tan a 2n +1⋅tan a 2n -1(n ∈N *),求数列c n 的前n 项和T n .解:(1)由题意x x -1 ≡0(mod3),所以x =3k 或x -1=3k (k ∈Z ),即x =3k 或x =3k +1(k ∈Z ).(2)由(1)可得a n 为3,4,6,7,9,10,⋯ ,所以a n =3×n +12n 为奇数3×n 2+1n 为偶数.①因为b n =a n +1-a n (n ∈N *),所以b n =1n 为奇数2n 为偶数.S 2024=b 1+b 2+b 3+⋯+b 2024=3×1012=3036.②c n =tan a 2n +1⋅tan a 2n -1=tan3n ⋅tan3n +1 (n ∈N *).因为tan3n ⋅tan3n +1 =tan3n +1 -tan3ntan3-1,所以T n =c 1+c 2+⋯c n =tan6-tan3tan3-1 +tan9-tan6tan3-1 +⋯+tan3n +1 -tan3n tan3-1=tan3n +1 -tan3tan3-n =tan3n +1 tan3-n -1.4(北京西城)给定正整数N ≥3,已知项数为m 且无重复项的数对序列A :x 1,y 1 ,x 2,y 2 ,⋅⋅⋅,x m ,y m 满足如下三个性质:①x i ,y i ∈1,2,⋅⋅⋅,N ,且x i ≠y i i =1,2,⋅⋅⋅,m ;②x i +1=y i i =1,2,⋅⋅⋅,m -1 ;③p ,q 与q ,p 不同时在数对序列A 中.(1)当N =3,m =3时,写出所有满足x 1=1的数对序列A ;(2)当N =6时,证明:m ≤13;(3)当N 为奇数时,记m 的最大值为T N ,求T N .【答案】(1)A :1,2 ,2,3 ,3,1 或A :1,3 ,3,2 ,2,1(2)证明详见解析(3)T N =12N N -1【解析】【分析】(1)利用列举法求得正确答案.(2)利用组合数公式求得m 的一个大致范围,然后根据序列A 满足的性质证得m ≤13.(3)先证明T N +2 =T N +2N +1,然后利用累加法求得T N .【小问1详解】依题意,当N =3,m =3时有:A :1,2 ,2,3 ,3,1 或A :1,3 ,3,2 ,2,1 .【小问2详解】当N =6时,因为p ,q 与q ,p 不同时在数对序列A 中,所以m ≤C 26=15,所以1,2,3,4,5,6每个数至多出现5次,又因为x i +1=y i i =1,2,⋯,m -1 ,所以只有x 1,y m 对应的数可以出现5次,所以m ≤12×4×4+2×5 =13.【小问3详解】当N 为奇数时,先证明T N +2 =T N +2N +1.因为p ,q 与q ,p 不同时在数对序列A 中,所以T N ≤C 2N =12N N -1 ,当N =3时,构造A :1,2 ,2,3 ,3,1 恰有C 23项,且首项的第1个分量与末项的第2个分量都为1.对奇数N ,如果和可以构造一个恰有C 2N 项的序列A ,且首项的第1个分量与末项的第2个分量都为1,那么多奇数N +2而言,可按如下方式构造满足条件的序列A :首先,对于如下2N +1个数对集合:1,N +1 ,N +1,1 ,1,N +2 ,N +2,1 ,2,N +1 ,N +1,2 ,2,N +2 ,N +2,2 ,⋯⋯N ,N +1 ,N +1,N ,N ,N +2 ,N +2,N ,N +1,N +2 ,N +2,N +1 ,每个集合中都至多有一个数对出现在序列A 中,所以T N +2 ≤T N +2N +1,其次,对每个不大于N 的偶数i ∈2,4,6,⋯,N -1 ,将如下4个数对并为一组:N +1,i ,i ,N +2 ,N +2,i +1 ,i +1,N +1 ,共得到N -12组,将这N -12组对数以及1,N +1 ,N +1,N +2 ,N +2,1 ,按如下方式补充到A 的后面,即A ,1,N +1 ,N +1,2 ,2,N +2 ,N +2,3 ,3,n +1 ,⋯,(N +1,N -1),(N -1,N +2),(N +2,N ),(N ,N +1),(N +1,N +2),(N +2,1).此时恰有T N +2N +1项,所以T N +2 =T N +2N +1.综上,当N 为奇数时,T N =T N -T N -2 +T N -2 -T N -4 +⋯+T 5 -T 3 +T 3 =2N -2 +1 +2N -4 +1 +⋯+2×3+1 +3=2N -2 +1 +2N -4 +1 +⋯+2×3+1 +2×1+1 =2N -3 +2N -7 +⋯+7+3=2N -3+32×N -2+12=12N N -1 .【点睛】方法点睛:解新定义题型的步骤:(1)理解“新定义”--明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.5(如皋市)对于给定的正整数n ,记集合R n ={α |α=(x 1,x 2,x 3,⋅⋅⋅,x n ),x j ∈R ,j =1,2,3,⋅⋅⋅,n },其中元素α称为一个n 维向量.特别地,0 =(0,0,⋅⋅⋅,0)称为零向量.设k ∈R ,α =(a 1,a 2,⋅⋅⋅,a n )∈R n ,β =(b 1,b 2,⋅⋅⋅,b n )∈R n ,定义加法和数乘:kα =(ka 1,ka 2,⋅⋅⋅,ka n ),α +β=(a 1+b 1,a 2+b 2,⋅⋅⋅,a n +b n ).对一组向量α1 ,α2 ,⋯,αs (s ∈N +,s ≥2),若存在一组不全为零的实数k 1,k 2,⋯,k s ,使得k 1α1 +k 2α2+⋅⋅⋅+k s αs =0 ,则称这组向量线性相关.否则,称为线性无关.(1)对n =3,判断下列各组向量是线性相关还是线性无关,并说明理由.①α=(1,1,1),β =(2,2,2);②α =(1,1,1),β =(2,2,2),γ=(5,1,4);③α =(1,1,0),β =(1,0,1),γ=(0,1,1),δ =(1,1,1).(2)已知α ,β ,γ 线性无关,判断α +β ,β +γ ,α +γ是线性相关还是线性无关,并说明理由.(3)已知m (m ≥2)个向量α1 ,α2 ,⋯,αm线性相关,但其中任意m -1个都线性无关,证明:①如果存在等式k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0(k i ∈R ,i =1,2,3,⋅⋅⋅,m ),则这些系数k 1,k 2,⋯,k m 或者全为零,或者全不为零;②如果两个等式k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0 ,l 1α1 +l 2α2 +⋅⋅⋅+l m αm =0 (k i ∈R ,l i ∈R ,i =1,2,3,⋅⋅⋅,m )同时成立,其中l 1≠0,则k 1l 1=k 2l 2=⋅⋅⋅=km l m.(1)解:对于①,设k 1α +k 2β =0 ,则可得k 1+2k 2=0,所以α ,β线性相关;对于②,设k 1α +k 2β +k 3γ =0,则可得k 1+2k 2+5k 3=0k 1+2k 2+k 3=0k 1+2k 2+4k 3=0 ,所以k 1+2k 2=0,k 3=0,所以α ,β ,γ线性相关;对于③,设k 1α +k 2β +k 3γ+k 4δ =0 ,则可得k 1+k 2+k 4=0k 1+k 3+k 4=0k 2+k 3+k 4=0 ,解得k 1=k 2=k 3=-12k 4,所以α ,β ,γ ,δ 线性相关;(2)解:设k 1(α +β )+k 2(β +γ )+k 3(α +γ)=0 ,则(k 1+k 3)α +(k 1+k 2)β +(k 2+k 3)γ =0,因为向量α ,β ,γ线性无关,所以k 1+k 3=0k 1+k 2=0k 2+k 3=0 ,解得k 1=k 2=k 3=0,所以向量α +β ,β +γ ,α +γ线性无关,(3)①k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0,如果某个k i =0,i =1,2,⋯,m ,则k 1α1 +k 2α2 +⋯+k i -1αi -1 +k i +1αi +1 +⋅⋅⋅+k m αm =0 ,因为任意m -1个都线性无关,所以k 1,k 2,⋯k i -1,k i +1,⋅⋅⋅,k m 都等于0,所以这些系数k 1,k 2,⋅⋅⋅,k m 或者全为零,或者全不为零,②因为l 1≠0,所以l 1,l 2,⋅⋅⋅,l m 全不为零,所以由l 1α1 +l 2α2 +⋅⋅⋅+l m αm =0 可得α1 =-l 2l 1α2 -⋅⋅⋅-l m l 1αm,代入k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0 可得k 1-l 2l 1α2 -⋅⋅⋅-l m l 1αm+k 2α2 +⋅⋅⋅+k m αm =0 ,所以-l 2l 1k 1+k 2 α2 +⋅⋅⋅+-lm l 1k 1+k mαm =0 ,所以-l 2l 1k 1+k 2=0,⋯,-lm l 1k 1+k m =0,所以k 1l 1=k 2l 2=⋅⋅⋅=km l m.6(江苏四校)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D四点的交比,记为(A ,B ;C ,D ).(1)证明:1-(D ,B ;C ,A )=1(B ,A ;C ,D );(2)若l1,l2,l3,l4为平面上过定点P且互异的四条直线,L1,L2为不过点P且互异的两条直线,L1与l1,l2,l3,l4的交点分别为A1,B1,C1,D1,L2与l1,l2,l3,l4的交点分别为A2,B2,C2,D2,证明:(A1,B1;C1,D1)= (A2,B2;C2,D2);(3)已知第(2)问的逆命题成立,证明:若ΔEFG与ΔE F G 的对应边不平行,对应顶点的连线交于同一点,则ΔEFG与ΔE F G 对应边的交点在一条直线上.解:(1)1-(D,B;C,A)=1-DC⋅BABC⋅DA=BC⋅AD+DC⋅BABC⋅AD=BC⋅(AC+CD)+CD⋅ABBC⋅AD=BC⋅AC+BC⋅CD+CD⋅ABBC⋅AD =BC⋅AC+AC⋅CDBC⋅AD=AC⋅BDBC⋅AD=1(B,A;C,D);(2)(A1,B1;C1,D1)=A1C1⋅B1D1B1C1⋅A1D1=SΔPA1C1⋅SΔPB1D1SΔPB1C1⋅SΔPA1D1=12⋅PA1⋅PC1⋅sin∠A1PC1⋅12⋅PB1⋅PD1⋅sin∠B1PD112⋅PB1⋅PC1⋅sin∠B1PC1⋅12⋅PA1⋅PD1⋅sin∠A1PD1=sin∠A1PC1⋅sin∠B1PD1sin∠B1PC1⋅sin∠A1PD1=sin∠A2PC2⋅sin∠B2PD2sin∠B2PC2⋅sin∠A2PD2=SΔPA2C2⋅SΔPB2D2SΔPB2C2⋅SΔPA2D2==A2C2⋅B2D2B2C2⋅A2D2=(A2,B2;C2,D2);第(2)问图第(3)问图(3)设EF与E F 交于X,FG与F G 交于Y,EG与E G 交于Z,连接XY,FF 与XY交于L,EE 与XY交于M,GG 与XY交于N,欲证X,Y,Z三点共线,只需证Z在直线XY上.考虑线束XP,XE,XM,XE ,由第(2)问知(P,F;L,F )=(P,E;M,E ),再考虑线束YP,YF,YL,YF ,由第(2)问知(P,F;L, F )=(P,G;N,G ),从而得到(P,E;M,E )=(P,G;N,G ),于是由第(2)问的逆命题知,EG,MN,E G 交于一点,即为点Z,从而MN过点Z,故Z在直线XY上,X,Y,Z三点共线.7(高考仿真)已知无穷数列a n满足a n=max a n+1,a n+2-min a n+1,a n+2(n=1,2,3,⋯),其中max {x,y}表示x,y中最大的数,min{x,y}表示x,y中最小的数.(1)当a1=1,a2=2时,写出a4的所有可能值;(2)若数列a n中的项存在最大值,证明:0为数列a n中的项;(3)若a n>0(n=1,2,3,⋯),是否存在正实数M,使得对任意的正整数n,都有a n≤M?如果存在,写出一个满足条件的M;如果不存在,说明理由.【答案】(1){1,3,5}(2)证明见解析(3)不存在,理由见解析【解析】【分析】(1)根据定义知a n≥0,讨论a3>2、a3<2及a3,a4大小求所有a4可能值;(2)由a n≥0,假设存在n0∈N*使a n≤a n0,进而有a n≤max{a n+1,a n+2}≤a n,可得min{a n+1,a n+2}=0,即可证结论;(3)由题设a n ≠a n +1(n =2,3,⋯),令S ={n |a n >a n +1,n ≥1},讨论S =∅、S ≠∅求证a n >M 即可判断存在性.【小问1详解】由a n =max a n +1,a n +2 -min a n +1,a n +2 ≥0,a 1=max {2,a 3}-min {2,a 3}=1,若a 3>2,则a 3-2=1,即a 3=3,此时a 2=max {3,a 4}-min {3,a 4}=2,当a 4>3,则a 4-3=2,即a 4=5;当a 4<3,则3-a 4=2,即a 4=1;若a 3<2,则2-a 3=1,即a 3=1,此时a 2=max {1,a 4}-min {1,a 4}=2,当a 4>1,则a 4-1=2,即a 4=3;当a 4<1,则1-a 4=2,即a 4=-1(舍);综上,a 4的所有可能值为{1,3,5}.【小问2详解】由(1)知:a n ≥0,则min a n +1,a n +2 ≥0,数列a n 中的项存在最大值,故存在n 0∈N *使a n ≤a n 0,(n =1,2,3,⋯),由a n 0=max {a n 0+1,a n 0+2}-min {a n 0+1,a n 0+2}≤max {a n 0+1,a n 0+2}≤a n 0,所以min {a n 0+1,a n 0+2}=0,故存在k ∈{n 0+1,n 0+2}使a k =0,所以0为数列a n 中的项;【小问3详解】不存在,理由如下:由a n >0(n =1,2,3,⋯),则a n ≠a n +1(n =2,3,⋯),设S ={n |a n >a n +1,n ≥1},若S =∅,则a 1≤a 2,a i <a i +1(i =2,3,⋯),对任意M >0,取n 1=Ma 1+2([x ]表示不超过x 的最大整数),当n >n 1时,a n =(a n -a n -1)+(a n -1-a n -2)+...+(a 3-a 2)+a 2=a n -2+a n -3+...+a 1+a 2≥(n -1)a 1>M ;若S ≠∅,则S 为有限集,设m =max {n |a n >a n +1,n ≥1},a m +i <a m +i +1(i =1,2,3,⋯),对任意M >0,取n 2=M a m +1+m +1([x ]表示不超过x 的最大整数),当n >n 2时,a n =(a n -a n -1)+(a n -1-a n -2)+...+(a m +2-a m +1)+a m +1=a n -2+a n -3+...+a m +a m +1≥(n -m )a m +1>M ;综上,不存在正实数M ,使得对任意的正整数n ,都有a n ≤M .【点睛】关键点点睛:第三问,首选确定a n ≠a n +1(n =2,3,⋯),并构造集合S ={n |a n >a n +1,n ≥1},讨论S =∅、S ≠∅研究存在性.8(高考仿真)若项数为k (k ∈N *,k ≥3)的有穷数列{a n }满足:0≤a 1<a 2<a 3<⋅⋅⋅<a k ,且对任意的i ,j (1≤i ≤j ≤k ),a j +a i 或a j -a i 是数列{a n }中的项,则称数列{a n }具有性质P .(1)判断数列0,1,2是否具有性质P ,并说明理由;(2)设数列{a n }具有性质P ,a i (i =1,2,⋯,k )是{a n }中的任意一项,证明:a k -a i 一定是{a n }中的项;(3)若数列{a n }具有性质P ,证明:当k ≥5时,数列{a n }是等差数列.解析:(1)数列0,1,2具有性质P .理由:根据有穷数列a n满足:0≤a1<a2<a3<⋅⋅⋅<a k,且对任意的i,j(1≤i≤j≤k),a j+a i或a j-a i是数列a n中的项,则称数列a n具有性质P,对于数列0,1,2中,若对任意的i,j(1≤i≤j≤k),可得a j-a i=0或1或2,可得a j-a i一定是数列a n中的项,所以数列0,1,2具有性质P.⋯⋯⋯⋯⋯4分(2)证明:由a i(i=1,2,⋯,k)是数列a n中的任意一项,因为数列{a n}具有性质P,即a j+a i或a j-a i是数列a n中的项,令j=k,可得a k+a i或a k-a i是数列a n中的项,又因为0≤a1<a2<⋯<a k,可得a k+a i一定不是数列a n中的项,所以a k-a i一定是数列a n中的项. ⋯⋯⋯⋯⋯8分(3)由数列{a n}具有性质P,可得a k+a k∉a n,所以a k-a k∈a n,则0∈a n,且a1=0,又由a k+a i∉a n,所以a k-a i∈a n,又由0=a k-a k<a k-a k-1<a k-a k-2<⋯<a k-a2<a k-a1,①设2≤i≤k,因为0≤a1<a2<⋯<a k可得a k-a k=0,a k-a k-1=a2,a k-a k-2=a3,⋯,a k-a2=a k-1,a k-a1=a k,当k≥5时,可得a k-a k-i=a i+11≤i≤k-1, (∗)②设3≤i≤k-2,则a k-1+a i>a k-1+a2=a k,所以a k-1+a i∉a n,由0=a k-1-a k-1<a k-1-a k-2<⋯<a k-1-a3<a k-a3=a k-2,又由0≤a1<a2<⋯<a k-3<a k-2,可得a k-1-a k-1=a1,a k-1-a k-2=a2⋯<a k-1-a k-3=a3,a k-1-a3=a k-3,所以a k-1-a k-i=a i(1≤i≤k-3),因为k≥5,由以上可知:a k-1-a k-1=a1且a k-1-a k-2=a2,所以a k-1-a1=a k-1且a k-1-a2=a k-2,所以a k-1-a k-i=a i(1≤i≤k-1),(∗∗)由(∗)知,a k-a k-i=a i+11≤i≤k-1两式相减,可得a k-a k-1=a i+1-a i1≤i≤k-1,所以当k≥5时,数列a n为等差数列. ⋯⋯⋯⋯⋯17分.9(安徽)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M与两定点Q,P的距离之比MQMP=λ(λ>0,λ≠1),λ是一个常数,那么动点M的轨迹就是阿波罗尼斯圆,圆心在直线PQ上.已知动点M的轨迹是阿波罗尼斯圆,其方程为x2+y2=4,定点分别为椭圆C:x2a2+y2b2=1(a>b>0)的右焦点F与右顶点A,且椭圆C的离心率为e=1 2.(1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为k (k >0)的直线l 与椭圆C 相交于B ,D (点B 在x 轴上方),点S ,T 是椭圆C 上异于B ,D 的两点,SF 平分∠BSD ,TF 平分∠BTD .①求BSDS的取值范围;②将点S 、F 、T 看作一个阿波罗尼斯圆上的三点,若△SFT 外接圆的面积为81π8,求直线l 的方程.【答案】(1)x 28+y 26=1(2)①13,1 ②y =52x -102【解析】(1)方法①特殊值法,令M ±2,0 ,c -2 a -2=c +2a +2,且a =2c ,解得c 2=2.∴a 2=8,b 2=a 2-c 2=6,椭圆C 的方程为x 28+y 26=1,方法②设M x ,y ,由题意MFMA =(x -c )2+y 2(x -a )2+y 2=λ(常数),整理得:x 2+y 2+2c -2aλ2λ2-1x +λ2a 2-c2λ2-1=0,故2c -2aλ2λ2-1=0λ2a 2-c 2λ2-1=-4,又c a =12,解得:a =22,c = 2.∴b 2=a 2-c 2=6,椭圆C 的方程为x 28+y 26=1.(2)①由S △SBF S △SDF =12SB⋅SF ⋅sin ∠BSF 12SD⋅SF ⋅sin ∠DSF =SB SD ,又S △SBF S △SDF =BF DF ,∴BS DS=BF DF(或由角平分线定理得),令BF DF=λ,则BF =λFD,设D x 0,y 0 ,则有3x 20+4y 20=24,又直线l 的斜率k >0,则x 0∈-22,2 ,x B =2λ+1 -λx 0y B =-λy 0代入3x 2+4y 2-24=0得:321+λ -λx 0 2+4λ2y 20-24=0,即λ+1 5λ-3-2λx 0 =0,∵λ>0,∴λ=35-2x 0∈13,1 .②由(1)知,SB SD=TB TD=BF DF,由阿波罗尼斯圆定义知,S ,T ,F 在以B ,D 为定点的阿波罗尼斯圆上,设该圆圆心为C 1,半径为r ,与直线l 的另一个交点为N ,则有BF DF =NB ND ,即BF DF =2r -BF 2r +DF ,解得:r =11BF-1DF.又S 圆C 1=πr 2=818π,故r =922,∴1BF -1DF=229又DF =x 0-2 2+y 20=x 0-2 2+6-34x 20=22-12x 0,∴1BF -1DF =1λDF -1DF =5-2x 0322-12x 0 -122-12x 0=2-2x 0322-12x 0=229.解得:x 0=-22,y 0=-6-34x 20=-3104,∴k =-y 02-x 0=52,∴直线l 的方程为y =52x -102.10(郑州外国语)记U ={1,2,⋯,100}.对数列a n n ∈N * 和U 的子集T ,若T =∅,定义S T =0;若T =t 1,t 2,⋯,t k ,定义S T =a t 1+a t 2+⋯+a tk .例如:T =1,3,66 时,S T =a 1+a 3+a 66.现设a n n ∈N * 是公比为3的等比数列,且当T =2,4 时,S T =30.(1)求数列a n 的通项公式;(2)对任意正整数k 1≤k ≤100 ,若T 1,2,⋯,k ,求证:S T <a k +1;(3)设C ⊆U ,D ⊆U ,SC ≥SD ,求证:S C +S C ∩D ≥2S D .解:(1)当T =2,4 时,S T =a 2+a 4=a 2+9a 2=30,因此a 2=3,从而a 1=a 23=1,a n =3n -1;(2)S T ≤a 1+a 2+⋯a k =1+3+32+⋯+3k -1=3k -12<3k =a k +1;(3)设A =∁C C ∩D ,B =∁D C ∩D ,则A ∩B =∅,S C =S A +S C ∩D ,S D =S B +S C ∩D ,S C +S C ∩D -2S D =S A -2S B ,因此原题就等价于证明S A ≥2S B .由条件S C ≥S D 可知S A ≥S B .①若B =∅,则S B =0,所以S A ≥2S B .②若B ≠∅,由S A ≥S B 可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m ,若m ≥l +1,则由第(2)小题,S A <a l +1≤a m ≤S B ,矛盾.因为A ∩B =∅,所以l ≠m ,所以l ≥m +1,S B ≤a 1+a 2+⋯+a m =1+3+32+⋯+3m -1=3m -12<a m +12≤a l 2≤S A 2,即S A >2S B .综上所述,S A ≥2S B ,因此S C +S C ∩D ≥2S D .11(福建模拟)2022年北京冬奥会标志性场馆--国家速滑馆的设计理念来源于一个冰和速度结合的创意,沿着外墙面由低到高盘旋而成的“冰丝带”,就像速度滑冰运动员高速滑动时留下的一圈圈风驰电掣的轨迹,冰上划痕成丝带,22条“冰丝带”又象征北京2022年冬奥会.其中“冰丝带”呈现出圆形平面、椭圆形平面、马鞍形双曲面三种造型,这种造型富有动感,体现了冰上运动的速度和激情这三种造型取自于球、椭球、椭圆柱等空间几何体,其设计参数包括曲率、挠率、面积体积等对几何图形的面积、体积计算方法的研究在中国数学史上有过辉煌的成就,如《九章算术》中记录了数学家刘徽提出利用牟合方盖的体积来推导球的体积公式,但由于不能计算牟合方盖的体积并没有得出球的体积计算公式直到200年以后数学家祖冲之、祖眶父子在《缀术》提出祖暅原理:“幂势既同,则积不容异”,才利用牟合方盖的体积推导出球的体积公式原理的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.(Ⅰ)利用祖暅原理推导半径为R 的球的体积公式时,可以构造如图所示的几何体M ,几何体M 的底面半径和高都为R ,其底面和半球体的底面同在平面α内.设与平面α平行且距离为d 的平面β截两个几何体得到两个截面,请在图中用阴影画出与图中阴影截面面积相等的图形并给出证明;(Ⅱ)现将椭圆x 2a 2+y 2b2=1a >b >0 所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球A ,B (如图),类比(Ⅰ)中的方法,探究椭球A 的体积公式,并写出椭球A ,B 的体积之比.【答案】解: (Ⅰ)由图可知,图①几何体的为半径为R 的半球,图②几何体为底面半径和高都为R 的圆柱中挖掉了一个圆锥,与图①截面面积相等的图形是圆环(如阴影部分)证明如下:在图①中,设截面圆的圆心为O 1,易得截面圆O 1的面积为πR 2-d 2 ,在图②中,截面截圆锥得到的小圆的半径为d ,所以,圆环的面积为πR 2-d 2 ,所以,截得的截面的面积相等(Ⅱ)类比(Ⅰ)可知,椭圆的长半轴为a ,短半轴为b ,构造一个底面半径为b ,高为a 的圆柱,把半椭球与圆柱放在同一个平面上(如图),在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,即挖去的圆锥底面半径为b ,高为a ;在半椭球截面圆的面积πb 2a2a 2-d 2 ,在圆柱内圆环的面积为πb 2-πb 2a 2d 2=πb 2a2a 2-d 2 ∴距离平面α为d 的平面截取两个几何体的平面面积相等,根据祖暅原理得出椭球A 的体积为:V A =2V 圆柱-V 圆锥 =2π⋅b 2⋅a -13π⋅b 2⋅a =4π3ab 2,同理:椭球B 的体积为V B =4π3a 2b 所以,两个椭球A ,B 的体积之比为b a. 【解析】本题考查新定义问题,解题的关键是读懂题意,构建圆柱,通过计算得到高相等时截面面积相等,考查学生的空间想象能力与运算求解能力,属于中档题.(Ⅰ)由题意,直接画出阴影即可,然后分别求出图①中圆的面积及图②中圆环的面积即可证明;(Ⅱ)类比(Ⅰ)可知,椭圆的长半轴为a ,短半轴为b ,构造一个底面半径为b ,高为a 的圆柱,把半椭球与圆柱放在同一个平面上,在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,即挖去的圆锥底面半径为b ,高为a ,证明截面面积相等,由祖暅原理求出出椭球A 的体积,同理求出椭球B 的体积,作比得出答案.12用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f 'x 是f x 的导函数,f ''x 是f 'x 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =|f (x )|1+[f (x )]232.(1)若曲线f x =ln x+x与g x =x在1,1处的曲率分别为K1,K2,比较K1,K2的大小;(2)求正弦曲线h x =sin x(x∈R)曲率的平方K2的最大值.【答案】解:(1)由题意,得f'(x)=1x+1,f''(x)=-1x2,g'(x)=12x-12,g''(x)=-14x-32,∴K1=f''(1)1+f'(1)232=-11+2232=1125,K2=g''(1)1+g'(1)232=-141+12232=1412564=2125,∴K1<K2;(2)由h(x)=sin x(x∈R),得h'(x)=cos x,h''(x)=-sin x,则K=-sin x1+cos2x32,K2=sin2x1+cos2x3=sin2x2-sin2x3,令t=2-sin2x,则t∈1,2,K2=2-tt3,设p t =2-tt3,t∈1,2,则p't =-t3-32-tt2t6=2t-6t4,所以p't <0,p t 在1,2上单调递减,则p(t)max=p1 =1,即当sin2x=1,cos x=0时,即x=nπ+π2,n∈Z时,K2取最大值1.【解析】本题考查了导数的运算、指数幂运算、三角函数的性质、利用导数求函数的最值,属于中档题.(1)利用曲率的定义分别求出K1,K2,然后比较即可;(2)利用曲率的定义求出K,再求出K2,然后利用正弦函数的性质结合利用导数求最值即可求解.13设P为多面体M的一个顶点,定义多面体M在点P处的离散曲率为1-12π(∠Q1PQ2+∠Q2PQ3+⋯+∠Q k-1PQ k+∠Q k PQ1),其中Q i(i=1,2,⋯,k,k≥3)为多面体M的所有与点P相邻的顶点,且平面Q ​1PQ ​2,平面Q ​2PQ 3,⋯,平面Q k -1PQ k和平面Q k PQ ​1遍历多面体M的所有以P为公共点的面.(1)任取正四面体的一个顶点,求该点处的离散曲率;(2)如图1,已知长方体A ​1B ​1C ​1D ​1-ABCD,AB=BC=1,AA1=22,点P为底面A ​1B ​1C ​1D ​1内的一个动点,则求四棱锥P-ABCD在点P处的离散曲率的最小值;(3)图2为对某个女孩面部识别过程中的三角剖分结果,所谓三角剖分,就是先在面部取若干采样点,然后用短小的直线段连接相邻三个采样点形成三角形网格.区域α和区域β中点的离散曲率的平均值更大的是哪个区域?(只需确定“区域α”还是“区域β”)【答案】解:记∠Q1PQ2+∠Q2PQ3+⋯+∠Q n PQ1=θ,则离散曲率为1-θ2π,θ越大离散曲率越小.(1)对于正四面体而言,每个面都是正三角形,所以∠Q1PQ2=∠Q2PQ3=∠Q3PQ1=60°,所以离散曲率为1-1 2ππ3×3=12;(2)P在底面ABCD的投影记为H,通过直观想象,当H点在平面ABCD中逐渐远离正方形ABCD的中心,以至于到无穷远时,θ逐渐减小以至于趋近于0.所以当H点正好位于正方形ABCD的中心时,θ最大,离散曲率最小.此时HA=HB=22=PH,所以PA=PB=1=AB,所以∠APB=60°,θ=4π3,离散曲率为1-12π×4π3=13;(3)区域β比区域α更加平坦,所以θ更大,离散曲率更小,故区域α和区域β中点的离散曲率的平均值更大的是区域α.【解析】本题考查空间几何体的性质以及新定义,正四面体的几何特征和曲率的计算公式,考查分析问题的能力以及空间想象能力,综合性较强,属于较难题.(1)利用离散曲率为1-θ2π,以及三角形的内角和公式求解;(2)记∠Q1PQ2+∠Q2PQ3+⋯+∠Q n PQ1=θ,于是θ越大离散曲率越小,进而求得结果;(3)区域β比区域α更加平坦,所以θ更大,离散曲率更小,进而得答案.14近些年来,三维扫描技术得到空前发展,从而催生了数字几何这一新兴学科.数字几何是传统几何和计算机科学相结合的产物.数字几何中的一个重要概念是曲率,用曲率来刻画几何体的弯曲程度.规定:多面体在顶点处的曲率等于2π与多面体在该点的所有面角之和的差(多面体的面角是指多面体的面上的多边形的内角的大小,用弧度制表示),多面体在面上非顶点处的曲率均为零.由此可知,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正方体在每个顶点有3个面角,每个面角是π2,所以正方体在各顶点的曲率为2π-3×π2=π2,故其总曲率为4π.(1)求四棱锥的总曲率;(2)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有:D -L +M =2.利用此定理试证明:简单多面体的总曲率是常数.【答案】解:(1)四棱锥有5个顶点,4个三角形面,1个凸四边形面,故其总曲率为2π×5-4×π-2π=4π.(2)设多面体有M 个面,给组成多面体的多边形编号,分别为1,2,⋯,M 号.设第i 号(1≤i ≤M )多边形有L i 条边.则多面体共有L =L 1+L 2+⋯+L M2条棱.由题意,多面体共有D =2-M +L =2-M +L 1+L 2+⋯+L M2个顶点.i 号多边形的内角之和为πL i -2π,故所有多边形的内角之和为π(L 1+L 2+⋯+L M )-2πM ,故多面体的总曲率为2πD -πL 1+L 2+⋯+L M -2πM=2π2-M +L 1+L 2+⋯+L M2 -πL 1+L 2+⋯+L M -2πM =4π所以满足题目要求的多面体的总曲率为4π.【解析】本题考查棱锥与简单组合体的结构特征,属于较难题.(1)利用总曲率定义即可得到结果;(1)利用总曲率定义及欧拉定理即可证明其为常数.。

【推荐】专题19+解三角形-备战2019高考技巧大全之高中数学黄金解题模板

【推荐】专题19+解三角形-备战2019高考技巧大全之高中数学黄金解题模板

【高考地位】正余弦定理是三角函数中有关三角知识的继续与发展,进一步揭示了任意三角形的边与角之间的关系,其边角转换功能在求解三角形及判断三角形形状时有着重要应用. 在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题. 【方法点评】类型一 判断三角形的形状使用情景:已知边与三角函数之间的等式关系解题模板:第一步 运用正弦定理或余弦定理将已知等式全部转化为都是角或都是边的等式;第二步 利用三角函数的图像及其性质或者边与边之间的等式关系得出所求的三角形的形状; 第三步 得出结论.例1在ABC ∆中,已知cos cos a B b A =,那么ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形 【答案】A考点:正弦定理.【点评】解决这类问题的方法通常有两种思路:一是将等式两边的边运用正弦定理全部转化为正弦角的形式,使得式子只有三角形式;二是运用余弦定理将右边的cos B 化为边的形式,使得等式只有边与边之间的等式关系.【变式演练1】在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若,则ABC ∆为. A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 【答案】A【解析】试题分析:根据 定理,那么A B C cos sin sin =,根据π=++C B A ,所以()B A C +=sin sin ,所以()A B B A cos sin sin <+,整理为:0cos sin <B A ,三角形中0sin >A ,所以0cos <B ,考点:1.正弦定理;2.解斜三角形.【变式演练2】在C ∆AB 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若,且a ,b ,c 成等比数列,则C ∆AB 一定是( )A .不等边三角形B .钝角三角形C .等腰直角三角形D .等边三角形 【答案】D考点:1.等比数列;2.解三角形.类型二 解三角形中的边和角使用情景:三角形中解题模板:第一步 直接运用正弦或余弦定理通常使用的条件判断是运用正弦定理还是余弦定理;第二步 利用相应的正弦、余弦定理的计算公式即可得出所求的结论.例2、 设ABC ∆的内角A , B , C 所对的边长分别为a , b , c ,若则A =( )【答案】C【解析】第一步,直接运用正弦或余弦定理通常使用的条件判断是运用正弦定理还是余弦定理:根据正弦定理第二步,利用相应的正弦、余弦定理的计算公式即可得出所求的结论:a b <,则A 为锐角,则,选C.考点:正弦定理.【点评】正弦定理主要解决两类三角问题:其一是已知二边及其一边的对角求其中一角的情况;其二是已知一边及其一对角求另一边的情况.【变式演练3】已知△ABC 中,a x =,2b =,45B =︒,若三角形有两解,则x 的取值范围是( ) A .2x > B .2x <【答案】C 【解析】考点:三角形解的个数的判定.【变式演练4】在ABC ∆中,角,,A B C 的对边为,,a b c ,若,则角B 为( )A【答案】A 【解析】试题分析:由余弦定理,又(0,)B π∈,A .考点:余弦定理.【变式演练5】在ABC ∆中,,则cos C =( )A 【答案】D 【解析】考点:正弦定理与余弦定理.类型三 解决与面积有关问题使用情景:三角形中解题模板:第一步 主要利用正、余弦定理求出三角形的基本元素如角与边;第二步 结合三角形的面积公式直接计算其面积.例3 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,则ABC ∆的面积为____________.【解析】第一步,主要利用正、余弦定理求出三角形的基本元素如角与边:,所以30C =︒,所以60,90A B =︒=︒. ,所以2b c =,又,所以2c =,第二步,结合三角形的面积公式直接计算其面积:考点:正弦定理.【方法点睛】解三角形问题,多为边和角的求值问题,其基本步骤是:(1)确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;(2)根据条件和所求合理选择正弦定理与余弦定理,使边化角或角化边;(3)求解.【变式演练6】在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,如果a ,b ,c 成等差数列,30B =︒,△ABC 的面积为则b 为( )AC 【答案】B 【解析】考点:1.余弦定理;2.面积公式.【变式演练7】顶点在单位圆上的ABC ∆中,角,,A B C 所对的边分别为,,a b c .若522=+c b ,,则ABC S ∆= .【解析】试题分析:由题意和正弦定理可得(r 为△ABC 外接圆半径1),∵a 2=b 2+c 2-2bccosA ,代入数据可得3=4±bc,解得bc=2,∴S △考点:余弦定理;正弦定理【变式演练8】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,已知(1)求c 及ABC ∆的面积S ; (2)求()C A +2sin .【答案】(1(2【高考再现】1.【2017全国I 卷文,11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c C =A B C D 【答案】B 【解析】试题分析:由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,B . 【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2.【2017山东,理9】在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cos C 2sin cos C cos sin C B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【考点】1.三角函数的和差角公式2.正弦定理.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.3. 【2018年全国卷Ⅲ理数高考试题】的内角的对边分别为,,,若的面积为,则A .B .C .D . 【答案】C【解析】分析:利用面积公式和余弦定理进行计算可得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优点十九 圆锥曲线综合1.直线过定点例1:已知中心在原点,焦点在x 轴上的椭圆C,过左焦点F 且垂直于x 轴的直线交椭圆C 于P ,Q两点,且PQ = (1)求C 的方程;(2)若直线l 是圆228x y +=上的点()2,2处的切线,点M 是直线l 上任一点,过点M 作椭圆C 的切线MA ,MB ,切点分别为A ,B ,设切线的斜率都存在.求证:直线AB 过定点,并求出该定点的坐标.【答案】(1)22184x y +=;(2)证明见解析,()2,1. 【解析】(1)由已知,设椭圆C 的方程为()222210x y a b a b +=>>,因为PQ =(P c -,代入椭圆方程得22221c a b+=,又因为c e a ==,所以21212b+=,b c =,所以24b =,2228a b ==, 所以C 的方程为22184x y +=.(2)依题设,得直线l 的方程为()22y x -=--,即40x y +-=, 设()00,M x y ,()11,A x y ,()22,B x y ,由切线MA 的斜率存在,设其方程为()11y y k x x -=-,联立()1122184y y k x x x y -=-+=⎧⎪⎨⎪⎩得,()()()2221111214280k x k y kx x y kx ++-+--=,由相切得()()()222211111682140Δk y kx k y kx ⎡⎤=--+--=⎣⎦,化简得()221184y kx k -=+,即()22211118240x k x y k y --+-=,因为方程只有一解,所以1111122111822x y x y x k x y y ===---,所以切线MA 的方程为()11112x y y x x y -=--, 即1128x x y y +=,同理,切线MB 的方程为2228x x y y +=,又因为两切线都经过点()00,M x y ,所以101020202828x x y y x x y y +=+=⎧⎨⎩,所以直线AB 的方程为0028x x y y +=,又004x y +=,所以直线AB 的方程可化为()00248x x x y +-=,即()02880x x y y -+-=,令20880x y y -=-=⎧⎨⎩,得21x y ==⎧⎨⎩,所以直线AB 恒过定点()2,1.2.面积问题例2:已知椭圆()222210x y a b a b +=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1:bl y xc =与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 在椭圆上.斜率为1-的直线2l 与线段AB 相交于点P ,与椭圆相交于C 、D 两点.(1)求椭圆的标准方程;(2)求四边形ACBD 面积的取值范围.【答案】(1)22184x y +=;(2)3232,93⎛⎤⎥⎝⎦. 【解析】(1)由椭圆焦距为4,设()12,0F -,()22,0F ,连结1EF ,设12EF F α∠=, 则tan b cα=,又222a b c =+,得sin b a α=,cos c a α=,()12122sin9012||sin sin 90F F c a ce b c a EF EF b c aa aαα︒∴======++︒-++, 解得222a bc c b c =+⇒==,28a =,所以椭圆方程为22184x y +=.(2)设直线2l 方程:+y x m =-,()11,C x y 、()22,D x y ,由22184x y y x m +==-+⎧⎪⎨⎪⎩,得2234280x mx m -+-=,所以1221243283x x m m x x +=-=⎧⎪⎪⎨⎪⎪⎩,由(1)知直线1l :y x =,代入椭圆得A ⎛ ⎝,B,得AB =由直线2l 与线段AB 相交于点P,得m ⎛∈ ⎝,12CD x =-=而21l k =-与11l k =,知21l l ⊥,12ACBD S AB CD ∴=⨯=由m ⎛∈ ⎝,得232,03m ⎛⎤-∈- ⎥⎝⎦3232,93⎛⎤⎥⎝⎦, ∴四边形ACBD 面积的取值范围3232,93⎛⎤⎥⎝⎦.3.参数的值与范围例3:已知抛物线()2:20C y px p =>的焦点()1,0F ,点()1,2A 在抛物线C 上,过焦点F 的直线l 交抛物线C 于M ,N 两点. (1)求抛物线C 的方程以及AF 的值;(2)记抛物线C 的准线与x 轴交于点B ,若MF FN λ=u u u u r u u u r ,2240BM BN +=,求λ的值.【答案】(1)24y x =,2AF =;(2)2λ=. 【解析】(1)Q 抛物线()2:20C y px p =>的焦点()1,0F ,12p∴=,则24p =,抛物线方程为24y x =; Q 点()1,2A 在抛物线C 上,122pAF ∴=+=. (2)依题意,()1,0F ,设:1l x my =+,设()11,M x y 、()22,N x y ,联立方程241y xx my ==+⎧⎨⎩,消去x ,得2440y my -=-.所以121244y y m y y +==-⎧⎨⎩ ①,且112211x my x my =+=+⎧⎨⎩,又MF FN λ=u u u u r u u u r,则()()11221,1,x y x y λ--=-,即12y y λ=-,代入①得()222414y y mλλ⎧-=--=⎪⎨⎪⎩,消去2y 得2142m λλ=+-,()1,0B -,则()111,BM x y =+u u u u r ,()221,BN x y =+u u u r,则()()222222221122||11BM BN BM BN x y x y +=+=+++++u u u u r u u u r u u u u r u u u r ()222212121222x x x x y y =++++++()2222121212(1)(1)222my my my my y y =+++++++++ ()()()2221212148m y y m y y =+++++()()22421168448164016m m m m m m =+++⋅+=++,当4216401640m m ++=,解得212m =,故2λ=.4.弦长类问题例4:已知椭圆()22122:10x y C a b a b +=>>的左右顶点是双曲线222:13x C y -=的顶点,且椭圆1C 的上顶点到双曲线2C. (1)求椭圆1C 的方程;(2)若直线l 与1C 相交于1M ,2M 两点,与2C 相交于1Q ,2Q 两点,且125OQ OQ ⋅=-u u u u ru u u u r ,求12M M 的取值范围.【答案】(1)2213x y +=;(2)(. 【解析】(1)由题意可知:23a =,又椭圆1C 的上顶点为()0,b ,双曲线2C 的渐近线为:330y x x y =±⇔±=, 由点到直线的距离公式有:331b b +=⇒=,∴椭圆方程2213x y +=. (2)易知直线的斜率存在,设直线的方程为y kx m =+,代入2213x y -=,消去y 并整理得:()222136330k xkmx m ----=,要与2C 相交于两点,则应有:()()222222221301303641333013k k k m k m m k -≠⎧-≠⎪⇒⎨----->+>⎧⎪⎨⎪⎩⎪⎩, 设()111,Q x y ,()222,Q x y ,则有:122613kmx x k +=-,21223313m x x k --⋅=-.又()()()()22121212121212121OQ OQ x x y y x x kx m kx m k x x km x x m ⋅=+=+++=++++u u u u u u u r u r. 又:125OQ OQ ⋅=-u u u u ru u u u r ,所以有:()()()22222221133613513k m k m m k k ⎡⎤+--++-=-⎣⎦-, 2219m k ⇒=-,②将y kx m =+,代入2213x y +=,消去y 并整理得:()222136330k x kmx m +++-=,要有两交点,则()()2222223641333031Δk m k m k m =-+->⇒+>.③ 由①②③有2109k <≤.设()133,M x y 、()244,M x y .有342613kmx x k -+=+,23423313m x x k -⋅=+,()()()2222212223643313113k m m k M M k k --+=++()()222224339113m k k k ---=++将2219m k =-代入有()222121222212144111313k k M M k M M k kk =+=+++12M M ⇒=2t k =,10,9t ⎛⎤∈ ⎥⎝⎦,令()()()()()2311'1313t t tf t f t t t +-=⇒=++,10,9t ⎛⎤∈ ⎥⎝⎦.所以()'0f t >在10,9t ⎛⎤∈ ⎥⎝⎦内恒成立,故函数()f t 在10,9t ⎛⎤∈ ⎥⎝⎦内单调递增,故()(1250,72f t M M ⎛⎤∈⇒∈ ⎥⎝⎦.5.存在性问题例5:已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为()11,0F -,()21,0F ,点A ⎛ ⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线l ,使得当直线l 与椭圆C 有两个不同交点M ,N 时,能在直线53y =上找到一点P ,在椭圆C 上找到一点Q ,满足PM NQ =u u u u r u u u r ?若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)2212x y +=;(2)不存在,见解析.【解析】(1)设椭圆C 的焦距为2c ,则1c=, ∵A ⎛ ⎝⎭在椭圆C 上,∴122a AF AF =+==∴a =2221b a c =-=,故椭圆C 的方程为2212x y +=.(2)假设这样的直线存在,设直线l 的方程为2y x t =+,设()11,M x y ,()22,N x y ,353,P x ⎛⎫⎪⎝⎭,()44,Q x y ,MN 的中点为()00,D x y ,由22222y x t x y =++=⎧⎨⎩,消去x ,得229280y ty t -+-=,∴1229ty y +=,且()2243680Δt t =-->,故12029y y t y +==且33t -<<, 由PM NQ =u u u u r u u u r,知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此D 为线段PQ 的中点, ∴405329y t y +==,得42159t y -=,又33t -<<,可得4713y -<<-,∴点Q 不在椭圆上,故不存在满足题意的直线l .一、解答题1.已知动圆P 过点()22,0F 并且与圆()221:24F x y ++=相外切,动圆圆心P 的轨迹为C . (1)求曲线C 的轨迹方程;(2)过点()22,0F 的直线1l 与轨迹C 交于A 、B 两点,设直线1:2l x =,设点()1,0D -,直线AD 交l 于M ,求证:直线BM 经过定点.【答案】(1)()22103y x x -=>;(2)见解析. 【解析】(1)由已知12| | 2PF PF =+,12| | 2PF PF -=,P 轨迹C 为双曲线的右支,22a =,1a =,12| 24F F c ==,2c =∴曲线C 标准方程()22103y x x -=>.(2)由对称性可知,直线BM 必过x 轴的定点,当直线1l 的斜率不存在时,()2,3A ,()2,3B -,13,22M ⎛⎫⎪⎝⎭,知直线BM 经过点()1,0P ,当直线1l 的斜率存在时,不妨设直线()1:2l y k x =-,()11,A x y ,()22,B x y ,对点增分集训直线()11:11y AD y x x =++,当12x =时,()11321M y y x =+,()1131,221y M x ⎛⎫ ⎪ ⎪+⎝⎭, ()22233y k x x y =--=⎧⎪⎨⎪⎩得()()222234430k x k x k -+-+=,212243k x x k -+=-,2122433k x x k +=-, 下面证明直线BM 经过点()1,0P ,即证PM PB k k =,即1212311y yx x -=+-, 即12112233y x y x y y -+=+,由112y kx k =-,222y kx k =-,整理得,()12124540x x x x -++=,即()22222243434450333k k k k k k -+⋅-⋅+=--- 即证BM 经过点()1,0P ,直线BM 过定点()1,0.2.已知点31,2⎛⎫⎪⎝⎭在椭圆()2222:10x y E a b a b +=>>上,设A ,B 分别为椭圆的左顶点、下顶点,原点O 到直线AB的距离为7(1)求椭圆E 的方程;(2)设P 为椭圆E 在第一象限内一点,直线PA ,PB 分别交y 轴、x 轴于D ,C 两点,求四边形ABCD 的面积.【答案】(1)22143x y +=;(2) 【解析】(1)因为椭圆()2222:10x y E a b a b +=>>经过点31,2⎛⎫⎪⎝⎭,有229141a b +=,由等面积法,可得原点O 到直线AB=联立两方程解得2a =,b =E 的方程为22:143x y E +=.(2)设点()()00000,,0P x y x y >>,则2200143x y +=,即2203412x y +=. 直线()00:22y PA y x x =++,令0x =,得0022D yy x =+.从而有000002222y y BD x x ++=++,同理,可得AC =.所以四边形的面积为1122AC BD ⋅=1122====.所以四边形ABCD的面积为3.已知点C 为圆()2218x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点()1,0A 和AP 上的点M ,满足0MQ AP ⋅=u u u r u u r u u ,2AP AM =u u u u r u u u r .(1)当点P 在圆上运动时,判断Q 点的轨迹是什么?并求出其方程;(2)若斜率为k 的直线l 与圆221x y +=相切,与(1)中所求点Q 的轨迹交于不同的两点F ,H ,且3445OF OF ≤⋅≤u u ur u u u r (其中O 是坐标原点),求k 的取值范围. 【答案】(1)是以点C ,A 为焦点,焦距为2,长轴长为2212x y +=;(2)⎡⎢⎣⎦⎣⎦U . 【解析】(1)由题意MQ 是线段AP 的垂直平分线,所以2CP QC QP QC QA CA =+=+=>=,所以点Q 的轨迹是以点C ,A 为焦点,焦距为2,长轴长为∴a =1c =,1b =,故点Q 的轨迹方程是2212x y +=.(2)设直线l :y kx b =+,()11,F x y ,()22,H x y , 直线l 与圆221x y +=1=,即221b k =+,联立2212x y y kx b +==+⎧⎪⎨⎪⎩,消去y 得:()222124220k x kbx b +++-=,()()()2222222164122182180Δk b k b k b k =-+-=-+=>,得0k ≠,122412kbx x k +=-+,21222212b x x k -=+, ∴()()()()()222221212121222122411212k b kb OF OH x x y y k x x kb x x b kb b k k +--⋅=+=++++=++++u ur u u u u u r()()222222222124111121212k kk k k k k k k +++=-++=+++,所以223144125k k +≤≤+,得21132k ≤≤,k ≤≤,解得k ≤≤k ≤≤故所求范围为⎡⎢⎣⎦⎣⎦U . 4.已知椭圆()2222:10x y C a b a b +=>>的焦距为2c ,离心率为12,圆222:O x y c +=,1A ,2A 是椭圆的左右顶点,AB 是圆O 的任意一条直径,1A AB △面积的最大值为2. (1)求椭圆C 及圆O 的方程;(2)若l 为圆O 的任意一条切线,l 与椭圆E 交于两点P ,Q ,求PQ 的取值范围. 【答案】(1)22143x y +=,221x y +=;(2)⎡⎢⎣⎦.【解析】(1)设B 点到x 轴距离为h ,则1111222A AB A OB S S AO h a h ==⋅⋅⋅=⋅△△,易知当线段AB 在y 轴时,max h BO c ==,12A AB S a c ∴=⋅=△, 12c e a ==Q ,2a c ∴=,2a ∴=,1c =,b =, 所以椭圆方程为22143x y +=,圆的方程为221x y +=.(2)当直线L 的斜率不存在时,直线L 的方程为1x =±,此时223b PQ a==;设直线L 方程为:y kx m =+,直线为圆的切线,211m d k∴==+,221m k ∴=+,直线与椭圆联立,22143y kx m x y ⎧=++=⎪⎨⎪⎩,得()2224384120k x kmx m +++-=,判别式()248320Δk =+>,由韦达定理得:122212284341243km x x k m x x k -+=+-⋅=+⎧⎪⎪⎨⎪⎪⎩, 所以弦长22212431321k k PQ k x x ⋅+⋅+=+-=,令2433t k =+≥,所以21246333,PQ t t ⎛⎤⎛⎫=⋅-++∈ ⎥ ⎪ ⎝⎭⎝⎦; 综上,463,PQ ⎡⎤∈⎢⎥⎣⎦,5.如图,己知1F 、2F 是椭圆()2222:10x y G a b a b +=>>的左、右焦点,直线():1l y k x =+经过左焦点1F ,且与椭圆G 交A ,B 两点,2ABF △的周长为43. (1)求椭圆G 的标准方程;(2)是否存在直线I ,使得2ABF △为等腰直角三角形?若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)22132x y+=;(2)不存在,见解析. 【解析】(1)设椭圆G 的半焦距为c ,因为直线l 与x 轴的交点为()1,0-,故1c =. 又2ABF △的周长为432243AB AF BF a ++==3a =222312b a c =-=-=.因此,椭圆G 的标准方程为22132x y +=.(2)不存在.理由如下:先用反证法证明AB 不可能为底边,即22AF BF ≠.由题意知()21,0F ,设()11,A x y ,()22,B x y ,假设22AF BF =,则又2211132x y +=,2222132x y +=,代入上式,消去21y ,22y 得:()()121260x x x x -+-=. 因为直线l 斜率存在,所以直线l 不垂直于x 轴,所以12x x ≠,故126x x +=.(与1x≤,2x ≤126x x +≤矛盾)联立方程()221321x y y k x +==+⎧⎪⎨⎪⎩,得:()2222326360k x k x k +++-=,所以21226632k x x k +=-=+矛盾.故22AF BF ≠.再证明AB 不可能为等腰直角三角形的直角腰. 假设2ABF △为等腰直角三角形,不妨设A 为直角顶点.设1AF m =,则2AF m =-,在12AFF △中,由勾股定理得:()224m m +=,此方程无解.故不存在这样的等腰直角三角形.。

相关文档
最新文档