平方差、完全平方公式专项练习题
(完整版)平方差完全平方公式提高练习题

平方差公式专项练习题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+,ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(,bc ac ab c b a c b a 222)(2222---++=++ 练一练 A 组: 1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
平方差公式、完全平方公式综合练习题

乘法公式1、平方差公式一、填空题⑴ (b + a)(b -a) = _______________, (x -2) (x + 2) = _________________;⑵ (3a + b) (3a -b) =________________, (2x 2-3) (-2x 2-3) = ______________________;⑶ 2294)3)(______3(______________,__________)2132)(2132(b a b b a a -=-+=-+ ⑷ (x + y) (-x + y) = ______________, (-7m -11n) (11n -7m) = ____________________; ⑸ _____________________)2)(4)(2(___,__________)2)(2(2=++-=---a a a y x x y ;2、计算题)5)(5(33m n n m -+ )2.02)(22.0(x y y x -+)1)(1(---xy xy )132)(132(++--y x y x3、⑴下列可以用平方差公式计算的是( )A 、(x -y) (x + y)B 、(x -y) (y -x)C 、(x -y)(-y + x)D 、(x -y)(-x + y)⑵下列各式中,运算结果是22169b a -的是( )A 、)43)(43(b a b a --+-B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+⑶若2422549))(________57(y x y x -=--,括号内应填代数式( )A 、y x 572+B 、y x 572--C 、y x 572+-D 、y x 572- ⑷22)213()213(-+a a 等于( )A 、4192-aB 、161814-aC 、161298124+-a aD 、161298124++a a 4、计算题⑴ x (9x -5)-(3x + 1) (3x -1) ⑵ (a + b -c) (a -b + c)⑶)49)(23)(23(22b a b a b a ++- ⑷ (2x -1) (2x + 1)-2(x -2) (x + 2)4、解不等式1)3)(3()2(2<-+-+y y y2、完全平方公式一、填空题⑴ (x + y)2=_________________,(x -y)2=______________________;⑵______________________)2(_________,__________)3(22=+-=-b a b a ⑶41________)21(22+=-x x⑷ (3x + ________)2=__________+ 12x + ____________;⑸ _________________________)2(__,__________)()(222=--+-=+y x b a b a ;⑹ (x 2-2)2-(x 2 + 2)2 = _________________________;二、计算题 ⑴2)2332(y x - ⑵22)2()2(a b b a -++⑶)1)(1)(1(2--+m m m ⑷ 22)2()2(n m n m -+⑸22)23()32(+-+x x ⑹2)32(z y x +-7、已知x + y = a , xy = b ,求(x -y) 2 ,x 2 + y 2 ,x 2-xy + y 2的值8、已知3)()1(2-=+-+y x x x ,求xy y x -+222的值一、判断题⑴222964)32(y xy x y x +-=- ( ) ⑵ (3a 2 + 2b )2 = 9a 4 + 4b 2 ( )⑶2234226.004.0)2.0(n m n m m mn m ++=-- ( )⑷ (-a + b) (a -b) = -(a -b) (a -b) = -a 2-2ab + b 2 ( )二、选择题⑴2)2(n m +-的运算结果是 ( )A 、2244n mn m ++B 、2244n mn m +--C 、2244n mn m +-D 、2242n mn m +-⑵运算结果为42421x x +-的是 ( )A 、22)1(x +-B 、22)1(x + C 、22)1(x -- D 、2)1(x - ⑶已知2264b Nab a +-是一个完全平方式,则N 等于 ( )A 、8B 、±8C 、±16D 、±32⑷如果22)()(y x M y x +=+-,那么M 等于 ( )A 、 2xyB 、-2xyC 、4xyD 、-4xy三、计算题⑴ 22)()(y x y x +- ⑵22)35()35(y x y x ++-⑶ ))((c b a c b a +--+ ⑷ 2222)2()4()2(++-t t t5、已知(a + b) 2 =3,(a -b) 2 =2 ,分别求a 2 + b 2, ab 的值提高拓展1、已知a+b=4,a 2-b 2=20,则a -b= 。
平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
3.已知224,4a b a b +=+=求22a b 与2()a b -的值。
4.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值5.已知6,4a b ab +==,求22223a b a b ab ++的值。
6.已知 2()16,4,a b ab +==求223a b+与2()a b -的值。
7.已知16x x -=,求221x x+的值 8.0132=++x x ,求(1)221x x +(2)441x x +9.已知m 2+n 2-6m+10n+34=0,求m+n 的值10.已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
11.已知222450x y x y +--+=,求21(1)2x xy --的值。
12.试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
13、已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法一、填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.4.要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m )÷2a m -1=________.6.29×31×(302+1)=________.7.已知x 2-5x +1=0,则x 2+21x=________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.二、相信你的选择9.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-1B.0C.1D.210.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5 B.51 C.-51 D.-5 11.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有A.0个B.1个C.2个D.3个12.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-313.计算[(a 2-b 2)(a 2+b 2)]2等于A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814.已知(a +b )2=11,ab =2,则(a -b )2的值是A.11B.3C.5D.1915.若x 2-7xy +M 是一个完全平方式,那么M 是 A.27y 2 B.249y 2 C.449y 2 D.49y 2 16.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是A.x n 、y n 一定是互为相反数B.(x1)n 、(y 1)n 一定是互为相反数 C.x 2n 、y 2n 一定是互为相反数 D.x 2n -1、-y 2n -1一定相等1.下列多项式乘法,能用平方差公式进行计算的是( )A.(x+y)(-x -y)B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m)2.下列计算正确的是( )A.(2x+3)(2x -3)=2x 2-9B.(x+4)(x -4)=x 2-4C.(5+x)(x -6)=x 2-30 D.(-1+4b)(-1-4b)=1-16b 23.下列多项式乘法,不能用平方差公式计算的是( )A.(-a -b)(-b+a)B.(xy+z)(xy -z)C.(-2a -b)(2a+b)D.(0.5x -y)(-y -0.5x)4.(4x 2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( )A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y)2D.(4x+5y)25.a 4+(1-a)(1+a)(1+a 2)的计算结果是( )A.-1B.1C.2a 4-1D.1-2a 46.下列各式运算结果是x 2-25y 2的是( )A.(x+5y)(-x+5y)B.(-x -5y)(-x+5y)C.(x -y)(x+25y)D.(x -5y)(5y -x)三、考查你的基本功17.计算(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .18.(6分)解方程x (9x -5)-(3x -1)(3x +1)=5.五、探究拓展与应用20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值. 1.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2.已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
平方差、完全平方公式专项练习题

平方差公式专项练习题1.计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯. (2)利用平方差公式计算:22007200820061⨯+.3.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).三、实际应用题4.广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
练一练1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
3、已知224,4a b a b +=+=求22a b 与2()a b -的值。
4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值5.已知6,4a b ab +==,求22223a b a b ab ++的值。
6.已知222450x y x y +--+=,求21(1)2x xy --的值。
7.已知16x x -=,求221x x +的值。
平方差、完全平方公式专项练习题 经典

平方差公式专项练习题有关配方问题(一)对于a2+2ab+b2=(a+b)2、a2-2ab+b2=(a-b)2的配方问题是,对于a2,2ab,b2这三项,认准特点,式子中缺哪项就补哪项,但要保证式子相等。
具体操作:先确定第一项,再确定第三项,最后确定中间项,并且要检验中间项与原式中的中间项相等。
(二)练习: 1.若x2+mx+9是完全平方式,则m=_____.2. 若x2+12x+m2是完全平方式,则m=_____.3. 若x2-mx+9=(x+3)2,则m=_____.4. 若4x2-mx+9是完全平方式,则m=_____.5.若4x2+12x+m2是完全平方式,则m=_____.6.若(mx)2+12x+9是完全平方式,则m=_____.7.若mx2+12x+9是完全平方式,则m=_____.8.已知x2-2(m+1)xy+16y2是一个完全平方式,那么m的值是_____.9.(1)化简(a-b)2+(b-c)2+(a-c).(2)利用上题的结论,且a-b=10,b-c=5,求a2+b2+c2-ab-bc-ac的值.(3)已知a=2x-12,b=2x-10,c=2x+4,求a2+b2+c2-ab-bc-ac的值(4)已知a,b,c是三角形的三边且满足a2+b2+c2-ab-bc-ac=0,判断三角形的形状.10.已知x2-2x+y2+6y+10=0,求x=_____,y=_____,x+y=_____.11. 已知x2-4x+y2+6y+13=0,求x=_____,y=_____,xy=_____.12.试说明N=x2-4x+y2+6y+15永远为正值.平方差公式专项练习题一、基础题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).二、提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯.(2)利用平方差公式计算:22007200820061⨯+.3.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).三、实际应用题4.广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.拓展题型1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
平方差和完全平方公式及经典例题

平方差和完全平方公式及经典例题专题一:平方差公式例1:计算下列各整式乘法。
①位置变化$(7x+3y)(3y-7x)$②符号变化$(-2m-7n)(2m-7n)$③数字变化$98\times102$④系数变化$(4m+n)(2m-n)-24$⑤项数变化$(x+3y+2z)(x-3y+2z)$⑥公式变化$(m+2)(m-2)(m^2+4)$变式拓展训练:变式1】$(-y-x)(-x+y)(x^2+y^2)(x^4+y^4)$变式2】$(2a-\frac{b}{3})^2-\frac{(b-4a)^2}{33}$变式3】$1002-992+982-972+\cdots+22-12$专题二:平方差公式的应用例2:计算$2004-2004^2\times2005\times2003$的值为多少?变式拓展训练:变式1】$(x-y+z)^2-(x+y-z)^2$变式2】$301\times(302+1)\times(302^2+1)$变式3】$(2x+y-z+5)(2x-y+z+5)$变式4】已知$a$、$b$为自然数,且$a+b=40$。
1)求$a^2+b^2$的最大值;(2)求$ab$的最大值。
专题三:完全平方公式例3:计算下列各整式乘法。
①位置变化:$(-x-\frac{y}{2})(\frac{y}{2}+x)$②符号变化:$(-3a-2b)^2$③数字变化:$197^2$④方向变化:$(-3+2a)^2$⑤项数变化:$(x+y-1)^2$⑥公式变化$(2x-3y)^2+(4x-6y)(2x+3y)+(2x+3y)^2$变式拓展训练:变式1】$a+b=4$,则$a^2+2ab+b^2$的值为()A.8B.16C.2D.4变式2】已知$(a-b)^2=4$,$ab=12$,则$(a+b)^2$=_____变式3】已知$x+y=-5$,$xy=6$,则$x^2+y^2$的值为()A.1B.13C.17D.25变式4】已知$x(x-1)-(x^2-y)=-3$,求$x^2+y^2-2xy$的值专题四:完全平方公式的运用例4:已知:$x+y=4$,$xy=2$。
平方差、完全平方公式专项练习题

公式变形一、基础题1.(-2x+y)(-2x-y)=______.2.(-3x2+2y2)(______)=9x4-4y4.3.(a+b-1)(a-b+1)=(_____)2-(_____)2.4.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.5.利用平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a2+4)(a4+16)(a-2).·(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).8(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)[(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方式常见的变形有:abbaba2)(222-+=+abbaba2)(222+-=+%abbaba4)(22=--+)(bcacabcbacba222)(2222---++=++1、已知m2+n2-6m+10n+34=0,求m+n的值2、已知0136422=+-++yxyx,yx、都是有理数,求y x的值。
(完整版)实用版平方差、完全平方公式专项练习题(精品)

其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(
)
(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072
.
2008 2006
20072
.
2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式变形一、基础题1.(-2x+y)(-2x-y)=______.2.(-3x2+2y2)(______)=9x4-4y4.3.(a+b-1)(a-b+1)=(_____)2-(_____)2.4.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.5.利用平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a2+4)(a4+16)(a-2).(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).8(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n =______(n 为正整数). ③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______. (3)通过以上规律请你进行下面的探索: ①(a -b )(a+b )=_______. ②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
练习: ()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
3、已知224,4a b a b +=+=求22a b 与2()a b -的值。
4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值5.已知6,4a b ab +==,求22223a b a b ab ++的值。
6.已知222450x y x y +--+=,求21(1)2x xy --的值。
7.已知16x x -=,求221x x+的值。
8、0132=++x x ,求(1)221x x +(2)441x x +9试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
10、已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形“整体思想”在整式运算中的运用1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N试比较M 与N 的大小整式的乘法、平方差公式、完全平方公式、整式的除法一、请准确填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.4.要使式子+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m )÷2a m -1=________. ×31×(302+1)=________. 7.已知x 2-5x +1=0,则x 2+21x=________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.二、相信你的选择9.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-110.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 B.51 C.-51 D.-5 11.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有 个 个 个 个12.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为 B.-1 D.-3 13.计算[(a 2-b 2)(a 2+b 2)]2等于-2a 2b 2+b 4 +2a 4b 4+b 6 -2a 4b 4+b 6 -2a 4b 4+b 8 14.已知(a +b )2=11,ab =2,则(a -b )2的值是15.若x 2-7xy +M 是一个完全平方式,那么M 是2724944916.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是、y n 一定是互为相反数 B.(x1)n 、(y1)n 一定是互为相反数、y 2n 一定是互为相反数 -1、-y 2n -1一定相等 三、考查你的基本功17.计算(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100××(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .18.(6分)解方程x (9x -5)-(3x -1)(3x +1)=5.四、生活中的数学19.(6分)如果运载人造星球的火箭的速度超过 km/s(俗称第二宇宙速度),则人造星球将会挣脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为×106m/h,请你推算一下第二宇宙速度是飞机速度的多少倍五、探究拓展与应用20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1) =(24-1)(24+1)=(28-1). 根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值.用适当的方法计算(1)20022003200220022⨯-(2)2222221247484950-++-+-(3)⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222200411411311211 (4)()()()()1212121264842++++整合与拓展 一变号后运用:()()()()()2525555522+-=--=-+-=---b b b b b b二 交换位置后运用: ()()()()2255555b b b b b -=--+-=---三 连续运用:()()()()()4222111111x x x x x x -=+-=+-+四 整体运用:()()()[]()1111222-+=-+=-+++b a b a b a b a 五 逆向应用:2222221247484950-++-+-=()()()()()()12124748474849504950-+++-++-+()127522599339599=⨯+=++=六先拆项再运用:()()99964100002100210021009810222=-=-=-+=⨯七 先添因式再运用:()()()()1212121264842++++=()()()()1212121212264422-+++-=()()()()()31231212312121212864646444-=+-=++-。